人工智能和未来教育范文
时间:2023-08-29 17:18:59
导语:如何才能写好一篇人工智能和未来教育,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
中图分类号:TP18 文献标识码:A 文章编号:1671-2064(2017)01-00218-01
人工智能包含三个层次:计算智能、感知智能和认知智能,讯飞超脑计划是包含模拟人脑的知识表示与推理、类人学习机制与新知识的获取、机器加载专业知识成为专门的教育领域。讯飞超脑计划是基于全球关于人工神经网络的深度学习研究,简单来说就是希望未来讯飞超脑计划能够将人工智能从只是简单地能听会说到能够深度思考相关问题的科技转变。人工智能的不断开拓创新是为了帮助人类能够更好地生活,我们应该注重人工智能的发展推进,将其广泛合理地应用到生活的实际中去。
1 讯飞超脑计划目前取得的阶段学习研究成果
1.1 讯飞超脑计划关于我国现阶段关于高中生学习教育的人工智能成果
随着近年来教育电子多媒体设备的投入普及使用,使目前的高中老师在课堂上更习惯用电子化的教学方式来替代传统的板书课本单一枯燥的教学,与此同时,现阶段高中生也同样具备使用移动互联网的条件,这样就使得科大讯飞超脑计划的教育产品可以形成以下的模式如图1所示。
采用此智能的学习模式可以使我国的高中生接受公平的最好的教育,这就需要借助人工智能的帮助来使老师提高自身的教育水平,使高中生丰富并开阔自身的视野。课堂教学包括了在线课堂、畅言交互式多媒体教学系统以及畅言智能语音等,这种新颖的课堂教学模式使原本单一的教学方式变成了思想上任意遨游的知识海洋;智能考试包含了标准考场、英语四六级网上阅卷、普通话与英语口语测试等方面,智能考试系统从字迹工整的程度、词汇量的丰富度、语法的正确性与通顺性等多个方面来评判考试试卷,加上多年来的不断改进,人工智能的评判方法跟相关专家的人工试卷评判的相似度相差无几,很大程度地增加了试卷评判的效率性与公平性;学习产品与教育评价更是覆盖到了从低到高的各个层面的产品组织结构,更有利于高中生的学习与应试教育的公平性。
1.2 讯飞超脑计划对于提高人类生活水平的成果
随着人工智能技术在经济、教育、文化、娱乐等领域的不断应用,使人们的生活质量水平得到了很大程度的提高,人工智能带来的方便快捷对于人类的发展进化与物质文化的进步产生了不可忽视的作用。随着讯飞超脑计划的推出,一方面,可以把人类从繁重的劳动中解放出来,很大程度地提高人类生产生活的效率与质量;另一方面,人工智能的进步会极大地革新人类的思维方式,使人们能够多角度地认知世界,加深对人类对自身所处的宇宙地位的思考,利于人不断地探索奥秘,进一步推进人类社会的进步。
2 讯飞超脑计划下人工智能对于未来生活的影响及其发展趋势
2.1 讯飞超脑计划下人工智能对未来生活的影响
由于讯飞超脑计划是感知智能结合认知智能的再创新,使得未来机器将会实现高水平的感知智能,具有更多的包括语音识别、手写识别以及图像识别的更多智能感知能力与实现包括智能客服、人机交互等的取代人类脑力劳动的认知智能突破。所以说讯飞超脑计划下的人工智能在未来的教育、经济、文化、社会结构等未来生活的各个方面都会产生重大影响。在教育上,人工智能的应用优化了课堂结构,使学生能够实时接受外界的新知识以及与时俱进的教育模式改革;在经济上,人工智能的高效能与高效率会明显提高经济效益,用人工智能来进行财务管理有助于缩减不必要的人工劳务开支与相关的培训费用,利于经济的变革与提高;在文化上,人工智能对于人类语言文化与图像处理上的优势日益凸显出来,可以确定的是人工智能的发展将会深入到人类生活的各个层面中去。
2.2 讯飞超脑计划下人工智能的未来发展趋势
随着人工智能的不断演进,人工智能从最初能存会算的计算智能阶段,到后来的能听会说、能看会认的感知智能阶段,最后再到讯飞超脑计划下提出的让机器能理解、会思考的认知智能阶段,未来的人工智能在语言理解、知识表达、联想推理以及自主学习等方面都将会取得很大的进展。
3 结语
人工智能对于未来生活的影响是多方面的,在未来生活的各个方面都十分显著。与此同时,讯飞超脑计划下的人工智能不断的改革创新与发展,也将更快地推动人类的发展,人工智能与人类的生活是互相影响又相互制约的。人工智能的不断发展给人类的未来生活带来了很大程度的改变,人类在不断开拓人工智能的领域时也应不断提高自身能力与素养,以适应人工智能带来的不断创新和改变。
参考文献:
[1]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械.2009,30卷(2).
篇2
[关键词]人工智能;财务机器人;会计电算化;人才培养
0引言
正如会计电算化替代传统手工会计一样,随着信息化、智能化、互联网、大数据等科技元素在会计信息化中的应用,人工智能悄然到来。自2017年“会计证被取消”,到普华永道、安永、德勤等国际会计师事务所纷纷推出财务机器人,这些举动在财务圈引起了轩然大波,许多中职学校会计相关专业的学生,担心基础核算会计将被人工智能取代,对未来颇感担忧。根据世界经济论坛2016年的调研数据预测,到2020年,在全球15个主要的工业化国家中,机器人与人工智能的崛起,将导致510万个就业岗位的流失,未来20年最有可能被机器人抢走饭碗的岗位包括低端制造业的生产、会计等[1]。2017年7月,中国《新一代人工智能发展规划》,将人工智能上升为国家战略。所以笔者认为,基于人工智能背景下的中职会计电算化专业人才培养方式将面临变革,在教学中应站在未来发展的高度,适应信息化发展,及时掌握人工智能相关技术,实现由传统会计电算化专业人才培养向智能化管理会计转型。
1人工智能的概念[2]
人工智能即AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术以及应用系统的一门新的技术科学,它是指由人工制造出来的系统表现出来的智能。目前人工智能在计算机科学领域内,受到了广泛的发挥。在机器人、经济政治决策、控制系统、仿真系统中得到应用。人工智能是信息技术发展的必然,它已悄悄地改变着人类的各行各业。人工智能在会计行业中应用,促使会计由简单核算向管理方向变革,推动了会计行业的发展,同时也促使着中职学校会计及相关专业的人才培养转变。人工智能取代传统的会计电算化操作人员是一种趋势,但也是一种转变,自我提升的机遇。
2中职学校传统会计电算化专业人才培养[3]
2.1课程偏传统基础核算类,轻参与、管理类会计课程
在多数中职学校会计电算化教学计划课程设计中,传统财务会计类课程占大多数,管理会计类课程设置单一或者没有。而财务机器人的出现,则能够替代大部分重复性、流程性基础会计核算工作。
2.2会计实操偏基础性会计技能,轻数据分析、挖掘
在实践教学及技能培养中,过于注重培养学生点钞、传票的翻打、会计书写、凭证装订,会计电算化软件操作机械性录入等。在当前大数据、人工智能背景下,可以让会计人员摆脱繁杂事务,重点放在会计数据分析与数据挖掘,为企业决策提供服务。
2.3课程偏模拟操作,轻实际操作
无论是手工核算还是会计电算化记账,大多数实操是模拟一个企业一个月的业务,学生根据教材或老师给予的信息进行会计处理,过账,做报表。一学期就是这样反反复复练习。学期结束,虽然考试合格,但仍有很多学生不明白为什么这么处理,特别在月末业务处理更加模糊不清,例如工资发放,计提税费、费用摊销、成本及费用结转等。还有绝大多数学生不知道真实环境如何计税、报税、纳税,只是理想中的学习,为了做账而做账。
3人工智能背景下的中职会计电算化人才培养[4]
3.1由基础核算型初级人才向有思想的中级人才转变
人工智能在会计行业中的应用,会计核算软件中的基础数据录入、凭证录入与审核、记账、编制科目汇总表、材料的收发统计、报表的编制等操作很容易被财务机器人替代,但是也有一些是机器无可替代的,需要有思想的“人”来处理。例如:由于大环境变化,企业的固定资产有明显减值趋势,而财务机器人并不能分析与判断这个固定资产是否会减值或减值多少,如果财务上不及时做出处理,将可能导致企业少确认资产减值损失,虚增了企业的资产和利润,对于企业来说,这属于信息失真。在大数据时代,中级类型的会计人才储备相对较少,中职学校的会计电算化教育,需要培养的应当是此类会计人才。教学会学生不能只拘泥于看财务数据,还要学会合理利用有效的会计数据服务于企业的发展,提高企业的核心竞争力。
3.2由传统的财务会计向人工智能环境下的管理会计人才转变
财务机器人的出现,替代了传统的财会人员进行基础数据的录入,日常凭证的填制、审核、记账;凭证、账簿、报表的生成;成本结转、折旧等财务处理;纳税申报等,这不仅提高了会计工作的效率,减少了传统的会计人员繁杂的日常账务处理工作,但同时也让传统的会计人员失去工作。作为会计的教育者,如何让学生在未来立于不败之地,不被财务机器人替代,就需要学校适应时代趋势,教学重点由传统的基础核算向智能管理型会计演变。会计从事的活动,除了重复、机械、烦琐的事情外,还可以创造更多价值,比如:评估、判断、沟通、协作、建议等。管理型计人才就是通过智能机器人核算出的精确信息,对企业的未来做出评估、预判、建议等,甚至帮助企业管理者做出决策。
3.3由会计电算化软件操作员向人工智能会计系统的设计者转变
人工智能环境下的财务机器人,实质就是一种自动化运行的程序,这种程序的设计,需要设计人员既要懂计算机又要懂会计。而现在的中职学校,会计电算化专业主要培养的是会计专业人才,操作会计核算软件,而很少在计算机方面进行教学。在人工智能环境下,懂得会计专业的人才只是人工智能会计系统设计的主导者,而计算机方面人才则根据会计法及相关规则进行系统设计,自动化处理会计业务需要想到协作,融会贯通。人工智能永远是基于系统的规则和大数据,如果规则发生变化,人工智能将无法起作用。在日常教学中,哪怕我们不能完全让学生掌握编写程序,但是应当教会学生看懂和读懂程序,对机器人“思想”进行修改,也算是人工智能的掌控者,而不是被替代者。
4人工智能背景下中职学校会计电算化专业人才培养应对策略[5]
4.1更新理念与改变教学计划
笔者认为,在人工智能背景下,在中职学校,会计及电算化专业办学理念中应加入人工智能等相关技术,同时其人才培养方案、专业建设、教学计划等方面都需要做出相应的调整,培养适应于人工智能时代复合型人才。例如,中职学校会计或会计电算化专业的教学计划中,计算机方面课程开设仅有计算机应用及会计电算化软件操作课程,数据处理、编程类或人工智能课程几乎没有,这样的教学安排不利于学生对未来人工智能的应对能力培养,应当增加相应的计算机方面课程,财务管理、会计政策、法律法规等人工智能无法替代的课程,减少将来可能被财务机器人替代的会计技能课程。
4.2提高教师人工智能等相关理念和技术
要给学生一碗水,教师必须要有一桶水,虽然人工智能的出现解决了许多教育上的难题,但是教师在人工智能背景下还需要增强自身信息化能力,学习人工智能相关理念,掌握人工智能相关技术。这就需要学校给予老师多点人文关心以及人工智能方面的继续教育。
4.3关注人文综合素质培养,让人工智能为我所用
财务机器人出现,会计人员有更多时间去从事财务机器人无可替代更具有情感类的工作,这些工作需要人与人之间的沟通与交流,因此,笔者认为,中职会计电算化专业教育,不仅需要培养学生人工智能动手能力,还要关注学生思想道德、人文综合素质的培养,提升学生的思想道德水平,教会学生爱岗敬业,诚实守信、乐于助人,激发学生的学习主动性和创造性。如果没有良好职业道德水平,即使掌握了人工智能技术,也将会破坏规则,让会计信息失真。我们不能教出人工智能的“奴才”,应当让人工智能为人类所用,做人工智能的主人。
5结语
总之,人工智能正在快速又深刻地改变我们的生活和工作方式,将人工智能用于会计行业会也将会不断得到规范。对于人工智能这类新兴技术在财务行业的运用初期可能会让学生产生恐慌、彷徨,认为学校教育无用。作为专业教师,要教会学生变革思想,提高其对会计价值的认识,提高其人文综合素养,拥有过硬的专业技术,不断地完善专业胜任能力,把握机会,主动迎接挑战,那么人工智能就只是会计人员的好帮手,而不是掘墓人。
主要参考文献
[1]彭维.浅谈人工智能时代财务的变革与转型[J].中国管理信息化,2018(19):39-41.
[2]巩彦哲.人工智能在会计管理中的应用微探[J].财会学习,2018(20):86-87.
[3]卢映芝,黄静.人工智能与会计课程实操的结合探讨———VR技术的引进[J].现代商贸工业,2018(30):160-162.
[4]王立法.论人工智能环境下会计人才培养所面临的挑战及见解[J].财经界,2018(6).
篇3
这个超前的预言,会不会有些夸张?
刘庆峰正以激情昂扬的斗志,带领科大讯飞接近这个现实。
事实或许如此。人工智能诞生60年以来,从未像今天这样炙手可热。细数很多领域,都能发现人工智能所能触及并产生颠覆性影响的例子。其中,广为人们热议的,是2016年3月谷歌公司的AlphaGo(阿尔法围棋)战胜韩国名将李世石的惊人壮举,并且未来还有“好戏”。
而据刘庆峰的预测,随着万物互联时代到来,以语音为主、键盘触摸为辅的人机交互正逐渐成为刚需,人工智能产业迎来第三次发展浪潮。
今天对人工智能未来的预测是不是过于乐观?它是一个真正的产业大潮还是概念的泡沫?当人工智能产业爆发,它会怎样改变我们所生存的现实世界?我们是兴奋,还是如霍金所警示的“恐慌”?
黑科技,兴奋还是恐慌?
2016年11月23日,北京国家会议中心的一场数千人会上,演讲者在台上声情并茂地演说着,两侧的大屏幕上一行行字幕实时跳跃显现,速度和准确率远超人工速记。据《中外管理》了解,这种在业界率先实现演讲和会议场景下的语音转写技术突破的智能语音系统,现场实测识别率达95%。
它,叫“讯飞听见”。其功能是实时将语音转写成文字。更加“不可思议”的是,它在实时中文语音转写的基础上,还融合了全新的多语种翻译技术,实时将中文演讲翻译成英语、日语、韩语等同步展示在大屏幕上,引发现场强烈反响。
看起来,这项基于人工智能技术的实时机器多语种翻译技术,似乎可以直接颠覆速记和翻译的工作了!而事实上,此“神器”已实际应用于在浙江乌镇举办的第三届世界互联网大会,令使用者赞不绝口。 “让机器能会说,首先要给机器装上一个人工的嘴巴。”科大讯飞董事长刘庆峰以一个形象的比喻,来印证科大讯飞在“黑科技”上“耍”出的成果。“讯飞听见”仅仅是其中之一。此次,科大讯飞一口气的万物互联输入法、智能家居、智能车机、智能服务机器人、智慧教育、个性化语音合成等创新产品,均是基于“讯飞超脑”人工智能最新技术的产物。
并非哗众取宠。这些抢眼的黑科技产品,事实上已经让这家以智能语音技术见长的公司执着地走过了17年。早在1999年成立时,科大讯飞便坚信无论人工智能如何发展,交互和后台的理解和学习都是刚需,通过人机耦合以及迭代学习进步,人工智能会逐步替代人类简单重复的劳动。
先见之明可以引领一家公司的长远战略,但没有坚忍的投入也无法结出果实。对未来的深入洞察,使科大讯飞在创新的道路上不断突破,而连续多年的研发投入占销售收入的25%,更是少有公司能够比拟的。在人工智能的前沿技术,如语音识别、合成以及机器翻译等领域,科大讯飞在国际比赛上包揽很多项目的冠军。例如语音合成技术,能够做到将人的音色和语言要素分离出来,从而实现这些要素的重新组合。
成绩背后,是科大讯飞构建的拥有1000余研发人员的核心研发平台,以及外部1500人的联合实验室,基于人工智能和大数据技术的长期研发。
用速度战胜自己。你可以说是一种“颠覆”,但也何尝不是进步?
是什么驱动一家公司始终保持着专业与专注的文化特质,在一个垂直领域深耕十几年?刘庆峰给出的答案是:人工智能的发展不会是一蹴而就的,创业者要有坚守的心态、毅力和恒心。
“人工智能+”,颠覆还是改变?
不仅让机器能听会说,还要让它能理解会思考。实现所谓的“人机交互”。
完成这个“神奇”的使命,光靠激情和畅想肯定不行,用刘庆峰的话说,“用一种爬山的企业精神,坐十年冷板凳,然后厚积薄发。”
资料显示:人工智能概念在1956年达特莫斯会上被专家提出以后,于1970年掀起第一次浪潮,那时已经通过第一代的人工智能神经网络算法证明了《数学原理》一书的绝大部分数学原理。而第二次浪潮发生在1984年,当时霍普菲尔德网络被推出来,让人工智能的神经网络具备了历史记忆的功能。
“但是前两次的大潮,后来都破灭了,为什么?”刘庆峰描述着,是因为神经网络本身算法的局限性,同时也受到当时整个运算能力的一些限制。那么今天,以深度神经网络为基础,基于大数据、云计算运算平台,再加上移动互联网源源不断地将各种训练数据收集到后台,以目前的时间节点看,人工智能的第三次大潮已经切实到来了。”令他兴奋的是,科大讯飞17年的坚持,正在验证一个“算法”与围绕它的科技和产业界持续的创新实验。
“人工智能+”,或许可以改变更多我们头脑中的认知――尽管现在还没有清晰地为我们感知到。
但是科大讯飞的研究表明,这是我们面临的时代趋势。人工智能进入产业领域并释放它的智慧,或许更值得期待。
一个颇为有趣的例证,便是2015年科大讯飞在教育领域推出的机器阅卷技术。这一技术在2016年进一步迭代――在以往语文、英语作文学生手写文字精准识别、可靠评分基础上,应用“讯飞超脑”最新成果,又重点突破了中英文作文综合反馈和逐句精批并在多校持续打磨形成新型作文教学模式,将原来最难开展教学的作文课从月频提高到周频授课和测练。
如此“智慧”的个性化教学产品,科大讯飞目前已经推广至全国220多个地市、超过10000所学校,1500万师生受惠于此。并且在数、理、化教学的应用同样亦不逊色。
篇4
2016年是世界围棋界极不寻常的一年,3月份在“阿尔法围棋”(AlphaGo,一款围棋人工智能程序)与围棋世界冠军、职业九段选手李世石之间展开的一场人机大战中,“阿尔法”的胜出震惊全球。7月份世界职业围棋排名网站公布了最新世界排名:“阿法围棋”以3612分,超越3608分的柯洁成为新的世界第一。
2016年12月29日到2017年1月4日,一个名叫 “Master”的神秘网络围棋手横扫中、韩、日围棋界。它凭借惊人的稳定性一路高唱凯歌,获胜60场,没有败绩。最终神秘的“Master”揭开了庐山真面目,宣布自己就是“阿尔法围棋”。
2017年1月,谷歌Deep Mind公司宣布推出真正2.0版本的“阿尔法围棋”,成为第一个不借助让子,在全尺寸19×19的棋盘上击败职业围棋棋手的电脑围棋程序,其特点是摈弃了人类棋谱,只靠“深度学习”的方式成长起来挑战围棋的极限。
围棋是人类最具智慧的竞技之一,而人工智能(Artificial Intelligence,简称AI)研发是人类最具挑战性的科技探索。人机大战的经典对决将被同时载入围棋史册和科技史册。它的意义已经远远超出围棋本身,人们热衷谈论“阿尔法围棋”更多是出于对AI技术的关切。从诞生到日益成熟,AI理论和技术的应用领域在不断扩大,不知不觉间渗透到人类当代生活的各个方面。AI时代,互联网、金融、医疗、教育、物流、娱乐、传媒等行业都在加速自己智能化的进程。可以想见,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 而与此同时,人类命运和机器智慧的冲突与共存,已经由人机大战开始不断升温。
“人工智能百年研究”项目
2014年秋季,美国斯坦福大学开启了“人工智能百年研究”(AI100)项目。这是一个超大型长期项目,该项目发起人――美国人工智能发展协会会长、前微软研究员埃里克・霍维茨博士表示,“我们的职责是研究人工智能在2030年前对人类社会生活方方面面所产生的影响,尤其是在北美地区”,而“研究的核心是,人类不能丧失对人工智能的控制能力”。 “人机大战”
2016年9月1日,“人工智能百年研究”项目的第一项成果《人工智能与2030年的生活》。这是一份试图定义北美城市在未来10多年间将要面临的可以模拟人类行为的计算机和机器人系统 (即人工智能)问题的报告,涉及交通、家庭/服务、健康医疗、教育、低资源社区、公共安全与防护、就业、娱乐等关注领域,目的是推动相关政策的制定。业内人士认为,工业界和学术界目前正在联手倒逼政府出台人工智能的相关政策,希望可以获得更大力度的资金和法律扶持。
《人工智能与2030年的生活》所列举的关注领域,均面临着人工智能的影响和挑战。例如开发安全可信赖的硬件的困难(交通工具和服务机器人),获得工作信赖的困难(低资源社区和公共安防),对劳动力可能被边缘化的担忧(就业和职业),以及人际交往减少带来的社会副作用(娱乐)等等。
1.交通:自动驾驶的汽车、卡车、无人机投递将改变城市里的工作、购物和休闲娱乐模式,但需要增加可靠性、安全性和用户接受度,并根据新的交通模式改进当前的相关法规和基础设施。
2.家庭/服务机器人:现在进入家庭的扫地机器人或特种机器人能够为家庭和工作场所提供清洁和安保服务,当务之急是技术方面的挑战和机器人成本过高的问题。
3.健康医疗:个人健康监测装备与手术机器具有极大的发展潜力,人工智能软件将最终对某些疾病自动进行诊断和治疗。目前的关键是获取医疗从业者的信任。
4.教育:互动辅导系统在帮助学生进行语言、数学以及其他技能的学习方面已经发挥出作用,自然语言处理的发展将为这一领域的应用带来全新的方式。当务之急是教育资源分配不均的问题,以及教、学双方直接互动的减少会带来哪些消极影响。
5.低资源社区:投资最新技术领域有助于更充分地发挥人工智能的优势,比如避免铅污染和改进食品分配等,重要的是让公众参与进来以增强相互信任。
6.公共安全与防护:利用相机、无人机和软件进行犯罪模式分析,应用人工智能技术来降低人类判断的主观偏见,与此同时在不侵犯个人自由和尊严的情况下增强安全性。目前需注意的是如何保护隐私和避免固有偏见。
7.就业和职业:随着全球经济的快速发展,传统岗位开始被新岗位取而代之,有关人类如何适应这种新变化的相关工作需要立即展开,比如如何妥善处理劳动力下岗以及人工智能对新工作岗位不适应的问题。
8.娱乐:内容创建工具、社交网络和人工智能的结合,将开创全新的媒体内容收集、组织和分发模式。但问题是新的娱乐方式如何在个人价值和社会价值之间取得平衡。
《人工智能与2030年的生活》在回顾发展历程和展望发展趋势时指出,人类正加速在人工智能领域的研究,试图建立一个能与人高效协作的智能系统。其中最重要的是机器学习的成熟,它受到了数字经济崛起的部分影响――数字经济为机器学习提供了大量数据。此外其他影响因素包括云计算资源的崛起,以及消费者对语音识别和导航支持等技术服务的需求。研究人员认为,不管是从基本方法上还是应用领域,包括大规模的机器学习、深度学习、增强学习、机器人、计算机视觉、自然语言处理、协作系统、众包和人类计算、算法游戏理论和计算的社会选择、物联网、神经形态芯片在内的研究趋势,共同促进了人工智能研究的热潮。
这份报告试图严肃地讨论这样一个问题:如何更好地引导人工智能来丰富和服务于人类生活,同时推动和激励这一领域的创新。因为人类目前并不能清晰而完美地预测未来的人工智能技术及其影响,所以一定要对相关政策进行评估。未来几年公众在交通和医疗等领域内应用人工智能的机会日渐增多,因此必须以一种能构建信任和理解的方式将其引入,确保在尊重人权和公民权利,保护隐私和安全,维护广泛而公正的利益分配等方面措施周备。 世界经济论坛说,机器人和人工智能到2020年可以取代510万个工作岗位。
研究人员指出,传统的人工智能范式已被数据驱动型范式成功取代,对于定理证明、基于逻辑的知识表征与推理这些程序的关注度在降低。作为20世纪七八十年代人工智能研究的一根支柱,规划( Planning )强烈依赖于建模假设,难以在实际应用中得到满足;视觉方面基于物理的方法和机器人技术中的传统控制与制图,正让位于通过检测手边任务的动作结果来实现闭环的数据驱动型方法;还有曾颇受欢迎的贝叶斯推理和图形模式,在数据和深度学习的显著成果前也显得相形见绌。在未来15年中,针对人类意识系统开发,按照能够互动的人类特点进行建模和设计人工智能系统成为人们的兴趣点。在考虑社会和经济维度的人工智能时,物联网型的系统变得越来越受欢迎。数据驱动型产品的数量及其市场规模将会扩大。
“为机器人安装‘死亡开关’”
2017年1月,欧洲议会法律事务委员会召开会议,呼吁制定“人类与人工智能/机器人互动的全面规则”。议公布的报告对机器人可能引发的安全风险、道德问题、对人类造成的伤害等情况进行了讨论,探讨是否需要为机器人安装“死亡开关”、研究机器人抢走人类工作的应对措施等等,要求欧盟为民用机器人制订法律框架。专家认为,这或将是首个涉及管制机器人的立法草案,将有利于人类应对机器人革命带来的社会震荡。
会议认为,人工智能和机器人发动的新工业革命可能影响到所有的社会阶层。机器人可能创造无限的繁荣,与此同时将影响人类未来的就业情况。机器人取代人类在许多行业是大势所趋。在德国,每1万个雇员中就有301个是工业机器人。报告要求欧盟委员会对各国民众的就业情况进行调查,重点关注极易被机器人取而代之的职位。如果机器人成为职位“杀手”,欧盟各成员国应考虑为国民提供基本的生活保障。埃里克・希尔根多夫是一名德国法律教授,他非常认同欧洲议会讨论的这项议题。“这不仅在政治上是可取的,从法律角度也是必要的,这样我们才能及时应对机器人革命带来的社会震荡。”他指出,“即使是银行顾问、教师和记者等要求严格的职业,未来也无法在这场科技洪流中幸免。”
会议强调,因为人工智能在几十年内可能超越人类的智力,将对人类控制机器人构成挑战。随着机器人自我意识的崛起,甚至可能威胁人类的生存。近年来,机器人“杀人”的事件时有发生:2015年6月,在德国大众汽车公司,一名工人安装机器人时反被它抓起推向金属板压死;2016年6月,美国一家汽车零件生产商的一名女员工正在修理出现故障的机器人时,它突然启动,将修理女工活活压死。
报告参照美国科幻小说作家艾萨克・阿西莫夫提出的“机器人学三大法则”,将其作为立法框架,对机器人自我意识觉醒后的行为规范做出规定。“机器人学三大法则”包括: 1.机器人不得伤害人,也不得见人受到伤害而袖手旁观。2.机器人应服从人的一切命令,但不得违反第一法则。3.机器人应保护自身的安全,但不得违反第一、第二法则。由于规则无法转化为代码,欧洲议会正在着手建立一个针对机器人和人工智能研发的机构,为设计、生产和操作机器人的人员提供技术、伦理和监管方面的专门知识等。
报告还提出:1.在设计新型机器人时,设计师应该尊重人类的基本人权,事先获得道德研究委员会的批准。2.必须为机器人注册,以便在调查事故时查找涉事的机器人。3.确保机器人安装有“死亡开关”,可以随时被关闭。4.机器人不能对使用者造成“身体或心理伤害”。如果酿成事故,机器人不能逃脱责任。机器人所负担的责任应该与其接收的实际指令及其自主程度相对应:它的学习能力和自主性越高,那么人的责任就较低;倘若它“受教育”的时间越长,教它的“老师”负的责任就越大。报告还指出,机器人的生产商或拥有者将来需要购买保险,来承担机器人可能造成的损失。
人类与机器人的关系将会引起一场涉及私隐、尊严和安全的大讨论,在欧洲议会投票赞成立法之前,各成员国政府将对此做进一步的辩论和修正。
“机器人应当纳税”
英国牛津大学近期一项调查结果显示,今后数十年间,自动化改变生产线的速度将超过20世纪。在经济合作与发展组织(OECD)成员国,57%的工作岗位有被自动化取代的风险。英国中央银行英格兰银行预测,在自动化浪潮中,危在旦夕的英国工作岗位多达1500万个。美国白宫2016年预测,机器人取代时薪低于20美元以下岗位、介于20~40美元岗位和时薪40美元以上岗位的概率分别为83%、31%和4%。
在美国微软公司创始人比尔・盖茨看来,为暂时性减缓自动化蔓延速度,很有必要向企业为雇用机器人员工而征税,税单将是阻止机器人取代人类工作岗位的杀伤性武器。如果机器人将大范围取代人类工作岗位,那它们至少应为此买单。“目前一个人类员工在工厂中创造了5万美元的价值,这个价值会被征税。人类员工需要缴纳各种税,如所得税、社会保障税以及其他税款。如果一个机器人在工厂做与某个工人同样的事情,我们也应按同等水平向它征税。”
盖茨同时认为,尽管一些工作岗位可能被机器人取代,但人们可以在那些所需技能是机器人无法复制的领域里继续工作。世界需要抓住机遇解放劳动力,让人们从事更好的工作,例如关爱老人和帮扶特需群体。在这些领域,人类具有独特的同情心和理解力。
法国社会党总统候选人伯努瓦・阿蒙也呼吁法国对机器人征税,部分税收用于补贴全民基本收入保障。越来越多的政界人士和硅谷富翁支持推出全民基本收入保障,以化解自动化引发的大范围失业。而反对机器人税的人士则持这样的观点:自动化即使在短期也可以借助提高生产率创造新的就业岗位。
“人类需要成为‘半机器人’”
美国特斯拉汽车公司首席执行官伊隆・马斯克在2017年2月13日迪拜举行的 “世界政府峰会”上表示,未来20年,驾驶人员的工作将被人工智能所颠覆,之后全球12%~15%的劳动力将因为人工智能而失业。“从技术角度讲,最迫切的影响会来自自动驾驶汽车。它到来的速度将远快于人们的预期,当然它会为人类提供极大的方便。”
篇5
科技巨头布局人工智能
在欧洲,“欧盟人脑计划”将通过ICT的庞大资源库,更有效地为神经科学和医疗领域提供技术支持。长远来说,该计划将为各类脑部疾病提供更好的治疗方案,以及通过探索大脑运作模式,研发更先进的ICT技术。“欧盟人脑计划”的主要研究领域可以大致划分为三大类:未来神经科学、未来医学、未来计算。旗下涵盖13个子项目,其中包括老鼠大脑战略性数据、人脑战略性数据、认知行为架构、理论型神经科学、神经信息学、大脑模拟仿真、高性能计算平台、医学信息学、神经形态计算平台、神经机器人平台、模拟应用、社会伦理研究和“欧盟人脑计划”项目管理。
作为“欧盟人脑计划”神经形态计算系统项目和SpiNNaker计划的的负责人,Steve Furber博士透露说,目前“欧盟人脑计划”的最新进展是近期将对外开放一系列欧盟人脑计划的平台系统,让更多研究者、专业人士可以使用这些先进的系统。现在谁都可以申请使用内置500,000个特制ARM处理器核心的“脉冲神经网络架构(SpiNNaker)计划”和德国海德堡的“大脑规模(BrainScaleS)计划”的设备,以及其他平台系统。我们在3月30日举行会宣布这一举措,并在4月1日正式实施对外开放。通过开放平台系统的共享,我们相信一定能够极大地促进世界范围内的大脑科学研究的发展,为每一位参与到大脑科学研究中的科学家们提供广阔的发展前景和机遇。
扎克伯格也在他的Facebook上透露,他2016年的新目标是打造一个人工智能助手。事实上,他对人工智能的布局早已开始,早在2014年,他就以个人身份入股了人工智能公司 Vicarious,因为他觉得人工智能可以提升互联网服务的智商,从而对于用户变得更有价值。
除了Facebook,另一个科技巨头谷歌也在人工智能领域动作频频,它收购了8个机器人公司和1个机器学习公司,并在许多新的业务中使用了人工智能技术,比如无人驾驶汽车。同时,谷歌还利用人工智能技术来改善其现有业务,比如安卓手机操作系统或者谷歌搜索引擎。
中国人工智能商用元年
而在国内企业中,进军人工智能的科技企业也不在少数。早在2009年,百度就提出通过推进人工智能实现国家综合国力的弯道超车。百度身体力行,2014年5月将AI最权威的学者之一、谷歌大脑项目之父吴恩达纳入麾下。眼下百度人工智能实验室搭建了作为百度人工智能核心的“百度大脑”,融合了深度学习算法、数据建模、大规模图形处理器(GPU)并行化平台等技术,拥有200亿个参数,构成了一套巨大的深度神经网络。
腾讯也不甘示弱,基于微信平台,开发了多种模式识别功能,推出了“微信智能开发平台”,将微信的图像识别能力和语音识别关键词技术向第三方开放,“扫一扫”和“语音转文字”功能就是典型应用。
从国家意志来说,2015年7月,国务院印发《“互联网+”行动指导意见》,明确人工智能为形成新产业模式的11个重点发展领域之一,将发展人工智能提升到国家战略层面,提出具体支持措施,清理阻碍发展的不合理制度。统计显示,到“十三五”末,我国机器人产业集群产值有望突破千亿元。
“十三五”规划纲要首次出现“人工智能”一词,在科技创新2030项目中,智能制造和机器人成为重大工程之一。培育人工智能、智能硬件、新型显示、移动智能终端等,被列入战略性新兴产业发展行动。种种迹象表明,2016年,不仅是“十三五”起步之年,也是我国人工智能商用元年。
而市场也普遍认为如今人工智能已经在诸如智能穿戴设备、无人机、虚拟客户服务、智慧城市、安防、基于大数据的业务分析等领域得到应用,节省了大量人工成本。随着人工成本的增长,人工智能的经济效益优势将会愈发明显。在技术突破、应用领域拓展以及相关扶持政策推动下,人工智能的大潮即将来袭,万亿元的市场规模值得期待。
人工智能的现实入口
在教育领域,你想象一下这样的世界,任何一个孩子都可以使用智能手机访问熟悉其学习风格的个人导师,以便提高学习成绩。
“比如遇到问题需要帮助的学生,可以将问题拍摄下来,并上传到专门应用中。机器人识别出问题,并给出相关答案。由于机器人了解提问者的学习风格,它可以引导他们解决这个问题,跳过他们已经了解的知识点,重点集中在需要帮助的方面,而非仅仅提供标准答案。由于机器人很了解你,它甚至比负责全班同学学习情况的人类教师更加胜任,因为后者需要应对不同学习风格和不同水平的学生。”Uber联合创始人、独立创业家奥斯卡. 萨拉查说。
除了教育领域,医疗领域恐怕是人工智能商业化的最主要领域了。此前研发出“深蓝”打败国际象棋世界冠军的科技巨头IBM在医疗领域耕作多年。2013年,IBM研发的认知计算系统Watson已正式向癌症“宣战”。美国Bumrungrad国际医院采用为肿瘤学而开发的Watson解决方案――已由世界一流的肿瘤医生及研究人员进行过培训,让Watson为其遍布东南亚、包含超过100万名癌症病患的庞大网络提供支持。
早在2011年Watson参加“Jeopardy!”电视问答挑战赛并获得冠军后,IBM坚信继制表计算、可编程计算之后,人类的第三个计算时代――认知计算时代,已经拉开帷幕。几年时间里,Watson已经取得了巨大进步。Watson原来只有1个 “深度问答”的API,现在已经有42个API应用于36个国家的几十个行业,内容涵盖文字图像识别、自然语言理解、专业知识学习、人类情绪分析等各个领域,并且有更多的API正在孵化当中。在医疗、教育、旅游、零售等各个行业里的成功案例已经开始有井喷之势。
据IBM大中华区全球企业咨询服务部合伙人、电子行业总经理徐闻天介绍,IBM将与Medtronic加强合作,利用IBM认知解决方案处理来自Medtronic可穿戴医疗设备及其他情景化来源的数据,并提供个性化的糖尿病管理。
篇6
关键词:人工智能技术;教学方法;编程能力
中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2014)16-3865-02
1 概述
2008年11月16日,中国科协成立50周年新闻会在北京召开。在新闻会上,“五个10”系列评选活动,即10位传播科技的优秀人物、10部公众喜爱的科普作品、10个公众关注的科技问题、10个影响中国的科技事件、10项引领未来的科学技术评选结果揭晓。10项引领未来的科学技术是:基因修饰技术;未来家庭机器人;新型电池;人工智能技术;超高速交通工具;干细胞技术;光电信息技术;可服用诊疗芯片;感冒疫苗;无线能量传输技术。
人工智能技术学科是计算机科学中涉及研究、设计和应用智能机器的一个分支。指人类的各种脑力劳动或智能行为,诸如判断、推理、证明、判别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,可以用某种智能化的机器来予以人工实现[1]。
通过《人工智能技术》课程的学习,使学生对人工智能技术的发展概况、基本原理和应用领域有深入了解、对主要技术及应用有一定掌握,并对现代人工智能技术发展的方向有所研究。通过人工智能技术课程的学习与研究,启发学生对人工智能技术的兴趣,培养知识创新和技术创新能力,并能将人工智能技术融入到今后所开发的计算机软件之中。
《人工智能技术》是一门众多学科交叉的新兴课程,其涵盖范围广,涉及知识点多,知识更新快,内容抽象,不容易理解,理论性强,而且需要较好的数学基础和较强的逻辑思维能力,这给该课程的讲授带来了一定困难。《人工智能技术》也是一门应用型学科,怎样将理论运用到实践中,使学生将学到的人工智能技术知识和思想运用到自己的实际课题,这也是该课程需要解决的问题之一。
因此,对《人工智能技术》课程教学来说,我们要了解课程的最新信息,把握课程的特点,帮助学生找到好的学习方法,使他们能充分发挥自己的创新思维能力,提高学习兴趣,该文给出了《人工智能技术》课程的教学与实践的探索。
2 教学与实践的探索
2.1 教材和实验教学内容的选取
1) 人工智能技术是整个计算机科学领域发展最快,知识更新最快,最前沿的学科之一。在教材选用方面,我们采用了蔡自兴教授等主编,由高等教育出版社出版的《人工智能基础》这本教材。蔡自兴教授的主要研究领域为人工智能、机器人学和智能控制等。这本教材是作者在美国国家工程院院士、普度大学教授傅京孙先生的指导和鼓励下编写,借鉴了国内外人工智能技术研究领域专家的最新研究成果和学术书籍的长处,该书比较全面地介绍了人工智能技术的基础知识与技术,材料新,易于理解,兼顾基础及应用[2]。
此外,我们还给学生自主学习提供多种类型的学习资料,其中包括参考书目,如:Russel S, Norvig P.等编著的《Artificial Intelligence: A Modern Approach》一书,人工智能技术国内外期刊,如电子学报,计算机学报,人工智能与模式识别,Artificial Intelligence,Journal of Artificial Intelligence Research,Engineering Applications of Artificial Intelligence和International Joint Conference on Artificial Intelligence,AAAI: American Association for AI National Conference等人工智能技术会议,使学生能够掌握人工智能技术的更多前沿动态,提高学习兴趣。
2) 配套的实验教学内容。《人工智能技术》是一门理论性和实践性都很强的课程,实践性教学环节对该课程尤为重要。除了完成课本上的作业之外,还注重实验教学,培养学生的创新能力、算法设计能力和编程能力。首先,每个章节设置相应的实验,而实验内容经过严格的考虑,如:五子棋游戏,产生式系统,旅行商问题,传教士和野人问题,BP神经网络实现简单的分类,遗传算法、人工生命程序等,要求学生运用所学章节的知识,独立地设计和实现实验内容。实验报告包括简述实验原理及方法,给出程序设计流程图,源程序清单,实验结果及分析等内容,通过这种方式,进一步加强学生的信息获取能力和研究能力。
2.2 教学方法和手段的改革
人工智能技术课程交叉性强,涉及面广,传统的教学方法手段单一,缺少交流,课堂气氛沉闷,激发不起学生的学习兴趣,教学效果不理想。人工智能技术这门课程内容抽象,如何激发学生的学习兴趣是本课程需要解决的主要问题,也是关系教学改革成败的关键。本课程需采用多种方法进行教学,以此来激发学生的学习兴趣。
1) 问题启发式教学。《人工智能技术》这门课程中有很多似是而非、引人入胜的问题,主要是用计算机模拟人类的智能来解决这种问题。在教学中,有目的的提出这些问题,鼓励学生思考,提出自己的想法和解决方案,并进行分析和比较,这样强化学生的主动学习意识,提高学习积极性[3]。
2) 个性化学习和因材施教。学生中存在计算机专业和非计算机专业本科毕业的差别,由于他们每个人的基础不同,有的计算机知识比较匮乏,因此有必要针对每个学生的学习进度,课堂作业和实验报告情况进行及时评估,对学生提出个性化的教学。例如:在实验教学中,要求有能力和兴趣的学生可以做探究性和创新性的附加实验,从而引导学生发挥个性的空间,而对稍微吃力的学生则要求完成基本的实验,更注重基础知识的学习和夯实,这样就能达到因材施教的目的。同时对不同层次的学生进行分析,进一步提出学习建议,并进行有针对性的指导。
3) 多媒体使用和多学科知识的融合。本课程PPT课件图文并茂,提纲挈领,便于学生理解。课堂讲授、板书与PPT手段相结合,注重课程中的关键词用英文表示,并适当指定英文参考书,使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。PPT课件运用了大量多媒体技术,如动画、声音、图像,通过动画和视频演示抽象的概念、算法和过程,使人工智能技术中抽象的知识形象化,在课件中融入了文学,历史等其他学科的相关知识,便于学生较好地理解知识难点和重点[4]。
4) 师生互动和课内外答疑。在教学中,改变了传统的老师讲,学生听的教学模式。针对人工智能技术的实用性,适当提问,收集学生学习情况,尽量使用实例进行讲解。设置了实验讲解互动课程,对于实验的讲解,学生可以提出疑问,然后在课堂上展开讨论,学生可以看到问题从提出、分析到解决的整个过程,让学生自己在讨论中总结结论。为了解决教学中存在的疑难问题,还设有课后答疑,使学生能将所有的问题都理解透彻。
5) 理论研究与实践结合。在教学内容的安排上,注重学生的理论研究和动手能力,适当布置一些课程相关的论文和实验编程。通过课程论文,可以培养学生钻研问题的兴趣; 通过查阅科技文献使学生掌握如何查找相关文献的技能,可以培养学生撰写科技论文的能力。通过实验实践,使学生可以更加清楚地了解人工智能技术基本概念和难点,也能了解算法的设计具体运行过程,并对其进行验证,提高了学生的编程能力和和学习兴趣。
6) 考试考核方式改革。本课程的考核考试也是一个值得探讨的问题,本课程应采用多种综合考试方法,注重学生对基础概念、知识和基本的技能的掌握以及理论联系实际的能力。平时作业考核成绩,实验实践教学成绩、提交课程论文成绩,以及最后的期末考试成绩形成一种有效的考试考核方法,促进学生主动学习,提高教学质量。实验的评价指标在于算法设计、编程的准确性和实验结果及分析。课程论文评价指是选题是否严谨科学和具可研究性,论文结构、思路是否严谨,论文内容科学性、正确性,能否提出自己的见解。考查查阅科技文献的能力主要通过是否查找到权威的、最新文献以及撰写是否规范。
2.3 学生学好《人工智能技术》课程的建议
《人工智能技术》是一门理论与实践相结合的应用课程,学生如何学习这么课程,也是我们应该探讨的问题。
学生应该正确看待《人工智能技术》这门科学的发展。人工智能技术孕育于20世纪30、40年代,形成于60、70年代,发展至今,人工智能技术只有短短60多年的历史,它是一门不断发展和完善的崭新学科,还有许多课题处于探索中,理论和技术还远未成熟,我们应该对它有科学的认识。
针对非计算机专业本科毕业的学生,除了课堂听讲之外,还应该课下自学该课程的先修课程,如:数据结构、离散数学等课程。人工智能技术中涉及到大量的数学知识,如:模式识别需要具有较好的概率论,数理统计知识,另外还会用到少量随机过程、模糊数学的一些知识。人工智能技术是一门应用课程,编程语言的掌握必不可少,涉及到SVM算法,粒子群算法,免疫算法神经网络,遗传算法等算法,实现这些算法要求学生具有较强的编程能力。
学生应该多读,多查阅资料,特别是国外的期刊文献和重要国际会议论文,多了解人工智能技术最前沿的信息,理论联系实际,加深对基本算法的理解,并将人工智能技术的知识运用到自己所研究的领域,以做到学以致用。
3 结论
人工智能技术在一定程度上代表着信息技术的前沿,该文对《人工智能技术》的课程教学进行了一些探讨,教学与实践效果有了显著提高,但仍然有许多方面还需要我们继续探讨和改进。
参考文献:
[1] 蔡自兴,徐光佑.人工智能技术及其应用[M].北京: 清华大学出版社,2003.
[2] 蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能技术课程建设[J].中国大学教学,2004(1):28-29.
篇7
过去几年里,中国的资本规模和它的潜力已经达到了世界顶尖的状态。因此,一些优质的科技资产,需要明确地看到在中国做早期投资、中期投资、成长性投资的潜力,了解到自己的技术潜能和发展,中国才是最合适自己的市场。
社交、大数据、人工智能……如果把这些当作互联网技术的延伸,那么,互联网的革命才刚刚开始。
这会是一个非常彻底的、血腥的改造,它将彻底改造行业和改变所有人类的习惯。机会主要掌握在懂得互联网和数据威力的公司手上,那些不能接受“互联网+”、“AI+”概念的公司,就会被颠覆。如今世界最有价值的20个公司里面,科技型公司占多数,未来更会如此。
作为早期投资者,需要有非常敏锐的鼻子,能够在一个风口还没有起来的时候布局。有几个蓝海领域值得关注,第一个就是人工智能。
六年前,有一个黑盒技术,可以识别、判断数据,甚至超过人类。但这不是一个标准的软件,世界上可能只有7 000个人会用它。看准这个方向之后,一个又一个的产品就推出来了,它们是能够取代人类所有需要低于5秒的工作,比如识别人脸、语音、手的字,机器会全面超过这些行业的从业者。
但是,人工智能不是取代工作,而是用更低的成本给人类创造了更高的价值。其中,无人驾驶在未来大有机会。无人驾驶发展的路径会是:人开车,机器给你提醒;人开车,机器给你辅助;机器开车,人被解放了。
改变随之而来,以后每辆车就只坐一个人了,车子的设计也会改变。原来开两辆车的道路,未来可以开4~5辆车,停车场也会消失……你可以想象未来,工业机器人、家庭机器人、陪聊机器人,它们有越来越多的方向。无人驾驶只是一个领域,当你十年以后回顾十年前的今天,会突然发现自己的整个生活方式都改变了。
第二个领域是文化娱乐。文化娱乐会被彻底颠覆,比如优质的头部内容、受年轻人喜爱的节目。随着它们的发展,有可能成为一个平台,搭配更多种类的产品。
第三个领域是在线教育。国内的教育虽然在这十年进步很大,但仍然存在很多问题。要改变已有的教育体制很困难,望子成才的家长更愿意花钱让孩子接受课外教育。十年前教育行业没有足够快的带宽和无所不在的移动平台,但是今天有四个很大的趋势在发生:第一个,企业可以通过互联网获客,虽然成本很高,但每一个获客的终生价值也很高;第二,教学的空间距离被打破。视频会议的质量提高后,大家愿意在网上上课。第三,网上的内容更有趣味性、强交互,那些优质的、有趣的老师可以让孩子快乐地学习。第四,人工智能的技术可以帮助老师用AI判断每一个学生需要学习什么内容,从而推荐合适的产品给他们。
第四个领域是B2B,即企业级的交易。“找钢网”“买好车”是两个例子。“买好车”是新车交易平台,它们的交易不是对用户,而是对接当地非4S汽车经销商,连接上了可以进口的每一辆车。而且,它的利润也很可观。
第五个是消费升级。中国的富人越来越多,他们的消费习惯会改变。这时,过去的销售模式就不合适了。比如电商,过去的就是用户上淘宝买到更便宜的用品。现在,用户愿意多花钱,用更好、更快、更美的模式,得到一些享受,同时满足自己的小资心态。
篇8
从去年开始,阿里巴巴在全国各地频繁举办云栖大会,不断地教育用户。到近期,摩根士丹利报告称,阿里巴巴的云计算业务阿里云其单独估值已经高达390亿美元。而全球最早投身云计算的亚马逊7月12日市值再创历史新高达到3557亿美元,超过伯克希尔哈撒韦公司跻身美国前五大公司。
今年上半年以来深陷舆论漩涡的互联网巨头百度继去年推出百度开放云之后,7月13日正式了2016百度开放云战略。百度创始人、董事长兼CEO李彦宏表示,百度天生就是云计算公司。云计算已经不是简单的云存储以及计算能力的需求,大数据、云计算、人工智能三位一体才是真正的云计算。
巧合的是,在百度2016开放云战略此前不久,阿里巴巴云栖峰会(成都)、腾讯“云+未来”峰会也相继召开。昔日国内互联网领域三巨头BAT在云端的交锋已经不可避免,与阿里巴巴和腾讯相比,百度能否在云端后发先至呢?
三大智能平台
百度云计算事业部总经理刘炀正式智数大数据平台――天算,智能多媒体云平台――天像,以及智能物联网平台――天工,其中包含众多全新上线的行业解决方案和产品。三大智能平台,连同已有的云服务,共同构成了百度开放云成熟、完整的产品矩阵。
天算平台整合百度大数据服务和人工智能技术,提供从数据收集、存储、处理分析到应用场景的一站式服务,广泛适用于诸多行业场景,在生命科学、数字营销、日志分析、金融征信、智能客服等领域变现尤为突出。
随着传播媒介的演变,传播的方式也开始走向智能化,百度天像智能多媒体云平台通过人工智能、大数据的技术,增加互动时的用户体验。天像平台依托百度海量资源,提供了包括从文档到视频的多媒体处理服务;同时基于百度人工智能技术,开放百度在图像、语音处理的智能服务。
百度天工平台提供从设备端的SDK到接入、协议解析、设备管理、存储、数据等全栈产品,让企业和合作伙伴可以快速搭建一个满足行业诉求的物联网应用。万物互联的时代正在开启,然而行业之间的技术和产品天然存在着鸿沟,传统行业和互联网之间更是有着完全不同的技术栈和语言。对此百度天工智能物联网平台,深入行业,用行业的语言和行业交流,做更懂行业的物联网平台。百度天工的物接入服务是国内首个支持原生MQTT协议的公有云物联网服务,物解析服务是国内第一个支持工业Modbus协议的云服务,抹平行业技术鸿沟,降低传统企业上云门槛。
生态之争
伴随着云计算、大数据等技术愈发成熟,云计算已经跨越技术层面演变为生态之争,谁能获得更多合作伙伴的支持,已经成为最关键的竞争维度。
李彦宏表示,虽然大家一直认为是个toC的公司,但是其实百度在搜索领域有超过100万家企业,从去年开始全力发展O2O业务,又有超过200万家企业进入百度生态之中,对于企业级服务百度从来不陌生。百度开放云已经在各个领域陆续取得成效。
北京诺禾致源生物信息科技有限公司副总裁吴俊表示,诺禾致源使用百度智能大数据生命科学解决方案,有效解决了基因测序和生命科学研究海量的数据存储和分析需求。
百度智能多媒体云为业内知名的直播平台――全民TV提供了全方位的支撑,全民TV CEO李然表示通过百度开放云有效帮助平台降低延迟、过滤违法信息,提高了用户体验,大大降低了平台内容审核的成本。
太原铁路局和百度开放云合作,借助百度的云计算、大数据、人工智能和物联网技术平台打造集铁路、公路、航空为一体的智慧物流云平台。太原铁路局表示双方的合作将大大提升物流效率,助力传统物流行业的升级改造。
对于生态问题,刘炀表示希望通过技术输出,用科技的力量为更多的企业服务。百度希望通过技术、产品创新和行业形成紧密结合。同时在行业构建云计算生态,和合作伙伴共建生态,协同共赢,为面临升级转型的传统行业提供帮助支持。
殊途同归
无疑,以BAT为代表的互联网巨头都视云为未来,但是在具体策略上又略有不同。
刘炀表示,百度开放云将继续以三大智能平台为依托,不断创新,精益求精,将未来智能的触角延伸至360行。云计算是百度的战略,人工智能是云计算的未来。
百度首席科学家吴恩达表示希望通过人工智能帮助百度开放云用户。目前百度人工智能在图像识别、语音识别、机器学习平台和大数据领域拥有成熟的应用技术,吴恩达相信人工智能将像100年前的电力一样改变诸多行业。
在此前腾讯的“云+未来”峰会上,腾讯董事会主席兼首席执行官马化腾介绍了腾讯的云计算发展之路。腾讯云与业内其他云解决方案的不同是:腾讯云方案不是作为一个独立的业务来考虑的,而是作为整个平台战略去考虑。
篇9
【关键词】机器人教育;信息技术;课程改革
【中图分类号】G633.67 【文献标识码】A 【文章编号】1005-6009(2015)22-0068-01
【作者简介】赵春声,江苏省镇江市教育局教研室(江苏镇江,212000)教研员。
随着科学技术日新月异的发展,人类社会正进入以机器人为代表的智能化时代,机器人教育越来越受到人们的关注。在一些发达国家,机器人教育已经在中小学得到了普及,在我国基础教育阶段,机器人教育才刚刚起步。因此,在信息技术课程中开展机器人教育成为信息技术课程改革发展的一个趋势。江苏省句容高级中学的机器人创新教育课程基地在这个方面做出了积极的可贵的探索。
首先,机器人教育可以成为学习程序设计的基石。基础教育用到的机器人的编程软件功能简单,大都具有图形化、模块化的特点,它能够通过靠鼠标的拖拽实现编程,不像一般程序设计语言那样要记很多语句。同时,所有编写出来的程序都能执行,程序中出现错误能够在编写中指出,不会出现运行中出错的情况。虚拟机器人通过软件平台对所编写的程序进行仿真,实体机器人通过硬件的实际行动来执行人们编写的程序,使初学编程的人不再觉得编写程序是抽象的、没有具体运用价值的一件事,而是实实在在地看到自己所编写的程序的功能与作用。
其次,机器人教育可以作为人工智能的学习平台。机器人是人工智能研究与应用的一个具体领域。随着微电子和人工智能技术的发展,目前的机器人大都配有相关的智能部件。在高中阶段开展对机器人的探索和研究,通过对看得见、摸得着的人工智能实际应用的问题展开教学,能够使学生受到有关人工智能科学的启蒙教育,既能促进学生的个性发展,又能促使学生未来产生对信息技术的追求。
再次,机器人教育是培养学生实践能力与创新精神的载体。当今全球基础教育改革的趋势就是,以知识为核心的教育逐步转变为以能力为核心的教育,知识成为学习的载体而不是目标,机器人教育正是体现这一教育思想的最佳方式之一。
篇10
如今,类似性集体恐慌再度来袭。此番风暴中心锁定的是一种推测――“人工智能”和机器人或将超越人类能力。去年5月,物理学家史蒂芬・霍金曾撰文发出人工智能迅速发展的危险预警。同月,他联合其他合著者―美国麻省理工学院物理学家弗兰克・韦尔切克、麦克斯・泰格马克以及诺贝尔奖获得者、美国加州大学伯克利分校计算机科学家斯图尔特・罗素,在英国《独立报》发文警告道:“人工智能的成功创建堪称人类历史上最伟大的事件。糟糕的是,这可能成为最后一次。”
近年来,人工智能的发展令世人炫目,从“深度学习”可见一斑。作为一种利用成千上万个数值参数完成逼近复变函数的革命性新技术,它变机器执行看、听甚至思考等人类活动的梦想成真。伴随3D传感和3D投影技术日渐精进,机器人不时更新迭代。稍显遗憾的是,人工智能领域的前行进程难免跌宕起伏。
三本著作虽然从不同视角发表了个中观点,但作者不约而同地强调,机器人的优势处境正面临着的一个巨大现实障碍――人类心理学。
慈爱的机器人
眼见机器人越来越融入现代社会,战争、路建、商业、教育、医疗……,它们深刻地改变了人类的生活方式,谷歌发明无人驾驶汽车、苹果亮相个人助理等。众人心中的疑惑不禁愈发强烈,这些机器到底是在帮助人类,还是要取代人类?
在新书中,普利策获奖者、《纽约时报》记者约翰・马尔可夫回顾了1956年至今的时代进程,重点参比了人工智能与智能增强。他将读者设定在无人驾驶汽车的乘客座位上;他把读者放诸美国国防高级研究计划局(DARPA)的幕后,验看机器人操作;他邀请读者置身于一个完全自动化的制造设备,如一分钟内128个机械臂将组装完成30个电动剃须刀,每项程序均执行特定、精确的装备任务。
纵使早期人们积极乐观,然而事实上,创建人工智能历经了千险万阻。迄今,“莫拉维克悖论”仍旧未被攻破。这是由人工智能和机器人学者所发现的一个与常识相佐的现象:人类所独有的推理等高阶智慧能力只需要非常少量的计算能力,而无意识的技能、直觉等低层次感知运动技能却需要大量的运算能力。正如莫拉维克所写:“要让电脑如成人般地下棋是相对容易的,但是要让电脑有如一岁小孩般的感知和行动能力却相当困难,甚至是不可能的。”这主要归咎于摩擦、碰撞和接触力学的内在复杂性。
被誉为“鼠标之父”的美国发明家道格拉斯・恩格尔巴特则更倾心于“智能增强”。早在20世纪60年代,他已在发表题为《放大人类智力》的学术论文中提出,计算机是人类智力“放大器”的观点。此后,他陆续发明鼠标,开发超文本系统、网络计算机、人机交互和图形用户界面,并倡导运用计算机和网络解决世界上愈发紧张又复杂的问题。无独有偶,人工智能泰斗泰瑞・维诺格拉德和增强现实专家盖瑞・布拉德斯基在深刻意识到人工智能的局限性后,开始转投智能增强阵营。可以设想,马尔可夫所著此书或许成为人工智能成败与否将取决于智能增强进展的强有力范证。
机器人的兴起
未来工作将变成何等摸样?到底日趋丰富还是逐渐凋落?谁能够拥有它?软件企业家马丁・福特借助《机器人的兴起:技术和未来的失业威胁》一书警告说,人工智能和机器人必将挤兑绝大部分工作岗位,无论蓝领还是白领,均难逃厄运。如果你创意如泉涌,就不会被机器人取代吗?答案令人悲观,即便连新闻、音乐、研发等按常理不受影响的领域也无法幸免。同时,千万家庭将备受激增成本拖累,最为突出的两大代表领域是教育和医疗保健。
美国发明家、未来学家雷・库兹韦尔曾预言,到2029年,机译质量将堪比人工翻译水准。而福特一再断言,基于摩尔定律计算机的计算能力正在随时间呈指数级增长,这意味着人们业已处于迅猛的加速发展边缘。然而,有部分计算机科学家确信其为指数谬误,他们辩驳指出,集成电路的问世远远超出了技术史学家认为发展曲线中必然平台阶段已至的预期推断。
19世纪初期,英国纺织工人内德・勒德不仅亲手砸掉了自己的织布机,还领头发起破坏机器运动。经济学家借此把“科技将代替人类工作”这一广为流传的错误概念命名为“勒德分子谬论”(Luddite fallacy)。如是推理却严重疏漏了科技激发新工作岗位的补偿效应,以及劳动力全球化、民主化等无数新可能动向。
伴随机器人时代的来临,在福特的观念中,最理想的结果是人人挣得一份有保障的工资,而由机器完成所有工作。他解释,这种情况的出现多是源于身体构成的不平等。以往,人们应对技术破坏的主要策略是加强培训和教育,然现实收效甚微。现今,人们必须当机立断,未来的不平等和经济不安全状况是将演变为普天繁荣抑或灾难频发。
我们的机器人
遥控机器人专家戴维・曼德尔在新书中指出,自治制度并非新鲜事物。20世纪70年展至今,其在深海、太空探测以及几乎所有航空领域的日常应用程度非高即低。借鉴丰富的实战经验,尽管这些自治制度不断变革,但仍有为数不少的专家持质疑立场。例如,以持续学派的论点,海洋学家务须亲历黑暗的深海去直接洞悉潜伏在那里的神奇事物。如今,机器人潜艇、光纤电缆遥控操作身手日臻敏捷,实现更长时间探测的难题迎刃而解,更何况每次修缮升级成本亦无需支付昂贵代价。
曼德尔认为有绝对充分的理由相信,无论在历史、文化、政治、心理、哲学,还是公共关系领域,都必须坚定不移地确保人类的控制地位。离我们最近的相关事件发生在2015年7月,接近三千名人工智能研究人员联合签署了一份催促联合国禁止自主武器研发和使用的公开信,该封信件在阿根廷首都布宜诺斯艾利斯召开的2015年人工智能国际联合会议上进行展示。为了规避所研发无人驾驶汽车的最大人为隐患,谷歌的做法是拆掉方向盘。曼德尔认为此举大错特错,看似缔造了“完全自治神话”,然而别忘了,机器即使能够自控间隔时间,依旧无法独立完全工作却是不争的事实――人类的意图、假设和特征参数是所有机器赖以组建的必须要素。由此,曼德尔得出了与马尔可夫相近的论断:本质(或最艰难)的挑战在于涵盖人类环路的接口设计。