人工智能教育的优势范文

时间:2023-08-24 17:42:31

导语:如何才能写好一篇人工智能教育的优势,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

人工智能教育的优势

篇1

关键词:人工智能;电气信息类;教学应用

教师在电气信息类专业教育教学中在运用人工智能技术进行教学时,要对人工智能技术的含义和特点进行深入的分析和研究,并且还要了解电气信息类专业的育人目标和教学要求,将人工智能和电气信息类专业教学进行有机的融合,为学生打造全新的教学课堂,从而使学生的专业素质和学习能力能够在人工智能的运用下得到有效的提高,为学生后续的发展提供更多的可能性。

一、人工智能时代的概述

人工智能(ArtificialIntelligence,缩写为AI)亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。该词也指出研究这样的智能系统是否能够实现,以及如何实现。人工智能于一般教材中的定义领域是“智能主体(intelligentagent)的研究与设计”,智能主体指一个可以观察周遭环境并作出行动以达致目标的系统。约翰麦卡锡于1955年的定义是“制造智能机器的科学与工程”。安德里亚斯卡普兰(AndreasKaplan)和迈克尔海恩莱因(MichaelHaenlein)将人工智能定义为“系统正确解释外部数据,从这些数据中学习,并利用这些知识通过灵活适应实现特定目标和任务的能力”。人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广。人工智能是研究使用计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能是十分广泛的科学,它由不同的领域组成,它是哲学、认知科学、数学、神经生理学、心理学、计算机科学、信息论、控制论、不定性论、仿生学等多种学科互相渗透而发展起来的一门综合性学科。在人工智能时代下进行电气信息类专业教育改革的过程中,需要对人工智能时代的含义和发展背景进行深入的分析和研究,这样才可以给电气信息类专业教育改革指明一个正确的方向,保证后续工作的科学性和有效性。在2016年的世界经济报告中,人工智能被预测为第4次工业革命的主要技术代表,人工智能的发展将从宏观到微观的各个角度进行相互的渗透以及融合,从而符合各个领域对于智能化技术的新要求和新需求。在人工智能技术发展的过程中,产生了大量的新技术和新产品,也形成了新的产业核心的发展模式[1]。我国经济结构在人工智能时代下发生了重大的变革,由于人工智能技术独特的技术形式和技术模式,深刻地改变着人们的生活方式和生活模式。在一定程度上不仅可以推动我国社会生产力的提高,还有助于推动科学技术水平逐渐朝着智能化和数字化的方向而发展,从中可以看出人工智能技术的发展是时展的必然趋势,并且发展前景是比较广阔的。人工智能技术主要是指将多个学科技术进行有效的整合,其中涵盖了计算机学科、语言学科和心理学科,智能化特征是比较明显的。在实际应用的过程中,由于融合了各种尖端的技术,能够将技术能力和技术思维进行有机的结合,模仿人的工作行为和思维,在当前时代下人工智能技术得到了蓬勃的发展,但是人工智能技术的发展也需要一定的时间和精力。首先,在实际用的过程中相关工作人员进行了机器人的研发,机器人可以在复杂的环境中对信息进行有效的替代和处理,模仿人类的思维进行日常的工作。在后续工作的过程中,相关工作人员进行了数据系统的开发,可以自动化和智能化的对计算机数据进行有效的处理以及分析,在较短时间内提取出有效的信息,完成整个工作流程[1]。随着我国当前科学技术的不断发展,一些工作人员纷纷加强了对人工智能技术的研发力度和开发力度,不仅可以提高计算机的使用效果,还可以及时的发现在计算机系统日常运行过程中所存在的故障。在当前时代下人工智能技术的使用范围在不断的扩展,并且人工智能技术的发展前景是非常广阔的,在计算机网络技术中发挥着独特性的作用和决定性的重要影响的作用。

其次,随着人工智能技术的不断发展,人工智能技术和各行各业进行了相互的渗透以及融合。在当前电气信息专业领域中人工智能技术得到了广泛的应用,并在实际工作的过程中对原有的工作模式进行了有效的改进和创新。一些工作人员在实际工作的过程中构建了自动化的工作模式和工作平台,将人工智能技术完美的融入电气信息领域中,不仅为我国电气信息领域指明了一个正确的方向,也在一定程度上提高了人工智能技术的水平。最后,人工智能技术的发展,在电气信息领域中的影响是迅速扩大的,人工智能的使用会对电气信息行业的各个环节产生深刻的影响,甚至是革命性的变化。人工智能的应用不仅仅停留于行业的技术层面,更加重要的是在人工智能时代下一些新的工作思维和发展理念。作为电气信息类专业的工作人员在人工智能的时代下要提高自身的专业素质和专业水平,根据人工智能时代的特点以及发展方向,对原有的工作模式和工作理念进行深入的改革以及创新,并且还要掌握有关人工智能方面的新技能,从而使得电气信息类专业影响力能够得到有效的提高。但是从侧面来看人工智能技术的发展对于电气信息类专业2本刊特稿科学咨询/教育科研2021年第24期(总第745期)来说是把双刃剑,给实际工作带来了新的挑战,一些工作人员不得不提高自身的专业素养和专业素质,掌握更多的人工智能技术。在当前时代下这种影响和变革已经被普遍认可,因此使我国电气信息类专业行业能够得到良好的发展。高校要对电气信息类专业教育进行适当的改革以及创新,根据当前人工智能时代的发展方向和对人才的要求,对学生的综合素质和创新能力进行良好的培育,从而使学生能够充分的发挥人工智能技术的优势,提高电气信息类专业的水平和质量,再一次加深人工智能和电气信息行业的融合力度。相关负责教师要加强对这一问题的理解,对原有人才培养模式和课程教育重点进行适当的改革和创新,根据人工智能时代和电气信息领域融合的背景,提高课堂教学的科学性和针对性,从而使学生在毕业之后能够获得良好的发展。

二、人工智能对电气信息类专业人才需求的影响分析

人工智能主要是利用计算机对人脑功能进行模拟,具备一定程度的人类认知和分析问题的能力,人工智能是人类所制造的智能化技术,也是机器智能化发展的主要载体。在人工智能发展的过程中,由于是计算机科学领域的一个分支,所以在人工智能研究的过程中,涉及有关语言识别和图像识别方面的功能。在当前时代下,人工智能所形成的热点效应是比较广阔的,人工智能技术的应用,使得各行各业朝着智能化的方向而发展,对于电气信息类专业人才需求来说,也逐渐朝着智能化的方向而发展。电气信息类的教学,主要是为了让学生能够在班级学习的过程中,将理论和实践进行有机的结合,提高学生的实践能力和操作能力,实践性是比较强的。在电气信息类专业发展的过程中各种新兴的技术被应用其中,扩展了电气信息类专业的发展实力,并且人工智能和电气信息类专业进行了有机的融合和渗透。人们在互联网思维的影响下已经形成了互联网思维的发展理念,随着人工智能技术的广泛运用再加上云技术和算法技术的普遍化,这又给电气信息类专业的发展提供了重要的支撑。在相互融合的技术背景下,电气信息类专业也即将进入到人工智能发展的领域中[2]。因此对于电气信息类专业行业的工作人员来说,要了解人工智能时代下先进的信息技术,并且还要结合电气信息类专业在人工智能背景下的新特点,树立新的工作模式和工作理念,从而使得电气信息类专业能够在人工智能技术背景下得到广泛的发展。对于人才需求方面,要求高校要对原有课堂教学模式和课程教学重点进行深入的改革和创新,融入人工智能方面的内容,对学生的综合素质和专业能力进行良好的培育,高校要正确地理解人工智能对电气信息类专业教学的影响,从而使得电气信息类专业能够朝着生态化和持续性的方向而发展。

三、人工智能给电气信息类专业提供的机遇

在人工智能技术中,所涵盖的技术内容相对来说是较为丰富的,这在一定程度上有助于提高电气信息类专业的教学水平和教学质量。从中可以看出在当前时代下的电气信息类专业教育教学中,教师要充分地把握人工智能技术所带来的机遇,从而提高课堂教学的效果和质量。在人工智能技术中包含着语言识别技术和图像辨认技术,也可以对一些语言进行有效的处理和研究。在课堂教学的过程中,教师要充分的发挥人工智能技术的优势,让学生了解当前电气信息领域的发展方向和主要的发展特点[3]。由于电气信息类专业所涵盖的内容是相对来说较为复杂的,学生在日常学习的过程中,需要进行多个学科知识内容的学习,这给学生日常学习和教师的课堂教学带来了诸多的挑战,教师要结合课程教学的内容,对课堂教学模式和流程进行精心的安排。在实际工作过程中,要以计算机作为主要的辅助手段兼容,并且充分利用其他专业领域的技术来开展日常的教学。在课堂教学过程中,教师要充分的利用人工智能技术,对原有课堂教学模式进行深入的改革以及研究,并且结合新一代人工智能发展规划的这一大背景,对原有课程教育模式进行创新和调整,从而给学生提供更加广阔的发展空间。首先,在实际工作的过程中,人工智能技术重新构造了电气信息专业的课程,由于电气信息类的实用性是比较强的,在人工智能的技术下能够取得不一样的教学效果。将语言识别技术和图像辨认技术进行了有机的结合,教师可以充分发挥这些专业技术的优势,提高课堂教学的效果。另外在课堂教学情景中,教师可以利用人工智能技术来实现网络化的教学,并且为学生打造智能化的工厂开展虚拟实验室,从而对学生的专业能力和操作水平进行良好的培育。其次,在电气信息类专业教学中人工智能技术的应用能够对传统课程教育模式进行有效的转型和升级。在以往课程教学中,由于电气信息类专业所涉及的知识学科是相对来说较为丰富的,这给教师的日常教学带来了诸多的问题。比如在实际教学的过程中很难实现课程的有效统一,也无法为学生打造标准化的课程教育体系,在进行个性化和独特性课程教学方面的力度还是不足的,甚至也没有完善的教育体系进行主要的支撑,这给实际的教学工作带来了诸多的问题。随着人工智能技术的应用,在课程教育的过程中,教师可以充分的发挥人工智能技术的优势,对相关信息进行有效的总结和收集。从而为学生打造个性化的教学课堂,并且运用人工智能技术,还可以对不同学生的学习需求进行分析和研究,提高课堂教学的针对性,从而使学生可以更加积极地进行知识内容的学习,实现快乐学习的效果[4]。在专业教育中教师要充分的发挥人工智能技术的优势,提高人工智能技术的应用性效果,对学生的知识需求进行深入的挖掘以及研究,从而使学生的学习质量能够得到有效的提高。与此同时,在课程教育的过程中,教师还可以进行课堂情景的构建,通过网络化的教学为学生再现一些生活中的真实案例,为学生全面素质的提高奠定坚实的基础。

四、人工智能技术在电气信息类专业教育教学中的应用路径

(一)转变人才培养目标在人工智能时代下的电气信息类专业教育中,由于原有的教育重点和人才培养模式已经无法顺应人工智能时代的发展特点和对人才的需求了,所以在实际工作的过程中,要对电气信息类专业教育进行有效的改革,帮助学生在毕业之后能够获得稳定的发展。首先,在对电气信息类专业教育进行改革时,要转变人才培养的目标,这主要是由于人工智能技术在电气信息类专业行业中的运用对各个环节都产生了非常深刻的影响,并且电气信息类专业对于人才的需求发生了很大的变化。比如,对人才的知识结构和专业技能方面都和传统发现模式有所不同,在电气信息处理的过程中提出了诸多的要求。相关电气信息类专业从业者不仅要具备完善的理论知识,还要具备创新性的思维能力,能够面对当前变化多端的人工智能时代,具备新的技术和新的思维,灵活地运用在实际工作中所存在的问题。因此对于电气信息类专业教育来说,要对人才培养目标精准定位,实现良好的变革。其次,电气信息类专业要着眼于当前国际发展方向和新业务的特征,了解有关业态产品和专业能力方面的内容。从这些问题入手提出正确的人才培养目标,并且对原有课程教学进行改革和创新,从而促进学生能够在课堂学习的过程中加深对人工智能技术的了解,提高学生的专业素质和创新能力。

(二)升级人才培养模式在人工智能背景下对电气信息类专业教育进行改革时,要在原有育人模式的基础上实现有效的升级,改变传统的课程教学设置。当前大部分电气信息类专业院校还是采用之前偏理论的课程来对学生进行知识内容的讲授,虽然这些理论知识是学生在学校学习期间必须要掌握的内容,但是假如仍然向学生讲述这些课程的话,也没有将理论和实践进行相互的结合,使得学生无法在人工智能时代下得到良好的发展,因此相关负责教师在实际教育工作中要对原有人才培养模式进行转型和升级。电气信息类专业教师要根据当前电气信息行业的发展和对人才的要求,对课程教育内容进行重新的调整。首先,在实际教育的过程中要向学生全面地展示先进的人工智能技术,技术是推进电气信息专业前进的动力之一。但是在原有的电气信息类专业教育中,教育技术的实施和教学并没有受到相关负责教师的重视,教师在班级教学的过程中,也没有为学生融入当前先进的人工智能技术和运用案例,提高学生的专业素质。在人工智能时代下,人机协作是当前主要的工作模式和发展模式,因此对于电气信息类专业教育来说,要对人才培养课程结构和课程重点进行有效的调整和创新。教师在教学中不仅要加入有关以往课程的教育内容,还要对课程进行有效的扩展,融入新媒体和人工智能技术应用相关的课程。比如教师可以立足于教材中的内容,为学生创设多样化的实训活动和实践操作平台,在学生实践的过程中要融入先进的人工智能技术,这些教学模式的运用不仅可以让学生了解人工智能技术的实际应用情况,还可以多方位的锻炼学生的创新能力和实践应用能力。所以相关高校要适当的借鉴这一教学经验,提高课程教学的针对性。其次,在育人模式中还要加强对学生创新思维和操作能力的培养,在人工智能背景下,电气信息的发展模式和主要的发展方向都发生了一定的改变。在当前电气信息领域发展的过程中,为了使自身能够在人工智能背景下得到有效的发展需要创新和创意的人才,并且要求这部分人才能够掌握先进的人工智能技术,根据电气信息发展的实际需求和人们对电气信息的要求,从而生产出个性化和特色化的产品。在育人模式升级中,教师要将专业和特色进行有机的融合,构建新的教育思路,过硬的专业素质才是人才升级的重要基础。在人工智能时代下,信息的来源和途径逐渐朝着多样化的方向发展,在这些繁杂的信息中既有重要的信息也有多余的信息,所以要使学生能够对这些信息进行有效的辨别。高校在制定人才培养模式中,要专业性的锻炼学生的工作能力和专业素质,从而使学生能够在这些大量的信息中提取有用的信息,提高电气信息类专业的有效性。

(三)引入任务驱动的实验模式在人工智能背景下对院校电气信息类专业进行教学时,教师要在保留原有学习项目的同时,立足于学生当前的理解能力,开发新的教学内容。在教学中教师要求学生进行独立性的思考,并且教师还要对学生的学习思路进行适当的引导以及启发,使学生可以运用课堂中所学到的知识内容灵活的解决实际实验过程中所存在的问题。教师要引导学生运用不同的方法进行学习,鼓励学生进行大胆的设计以及验证。教师在班级教学的过程中,可以为学生引入任务驱动式的教学模式任务,驱动式的教学模式主要是以学生为中心,教师要立足于教材中的内容和课堂教学的目标为学生布置相关的学习任务,实现综合性的学习效果。在为学生布置学习任务时,要融入当前先进的人工智能技术,让学生充分的发挥人工智能技术的优势来完成教师所布置的任务。教师要在任务驱动式的教学模式中增加一些设计型和创新型的学习活动,让学生直接深入到实践学习中进行方案的设定以及验证,并且对最终的实验结果进行多方位的分析以及讨论。在班级教学的过程中,教师要让学生围绕着一个教学目标来开展日常的学习,并且学生在学习和验证的过程中,教师还要加强和学生之间的互动和交流,从而对学生的实验方向和实验思路进行有效的引导,使学生可以在强烈的学习兴趣和学习动力的驱动下进行自主性的探索以及学习,并且也可以在班级中形成良好的互动。

(四)利用人工智能技术进行辅的教学在电气信息类专业教学课堂中,教师在利用人工智能技术进行教学时,要在原有课程的基础上充分地发挥人工智能技术的优势,从而对实际教学起到一个良好的辅助作用。比如,在实际教学的过程中,教师需要将理论知识和学生的实践学习进行相互的结合,提高课堂教学的真实性和有效性,在课程内容中要围绕着各种企业的实际项目来让学生进行知识内容的学习,教师要利用人工智能技术的优势为学生展现真实的一线工作现场,让学生全面的感受工作的环境,不仅有助于提高课堂教学的效果,还可以让一些抽象的理论知识变得生动和直观,促进学生学习效率的提高。

(五)在电气设备故障诊断中的应用在电气设备故障诊断中,人工智能技术中的模糊理论、人工神经网络和专家系统的应用比较广泛。以前我们常常面临的问题是,当电气设备出现问题或故障时,总是表现出比较复杂的症状,采用传统处理手法难以对问题做出准确判断和查找,人工智能技术则很好地解决了上述问题。比如发电机的设备故障具有非线性、不确定和复杂性的特征,传统论断方法准确率非常低,而通过人工智能技术中模糊理论和专家系统的综合应用,能大大提高故障论断的准确率。

篇2

随着信息技术的不断发展,计算机科学渗透生活的各个领域,改变了人们的生活方式和学习方式。其中,人工智能作为计算机科学中迅猛发展的一部分,正在以其独特的魅力走进人们的视野。“人工智能”(Artificial Intelligence),顾名思义,即通过应用计算机来模拟人脑的信息接收、思考、判断以及决策等思维行为过程,进而扩展人脑的思维和行动,帮助人们高效智能化地解决特定问题。近年,人工智能在教育领域中发挥的作用越来越显著[1],其与众不同的特点决定了其在教育培训中的地位,将人工智能应用在农业知识培训中的可行性也成为教育界热议的新话题。

1我国农业发展背景和农业培训必要性分析

11我国农业发展背景

我国是传统的农业大国,农业对我国的经济发展具有极其重要的影响,一方面是由于我国人口基数大;另一方面是由于我国进出口贸易主要依靠农产品,农业发展成为影响我国经济发展最重要的因素之一。但由于各方面原因,我国农业发展还比较落后,尤其与发达国家的现代化农业相比,依旧有较大差距。

12开展农业知识培训的必要性

反思其他发达国家在?r业发展上实施过的举措,包括重视农业教育、科研和技术推广,注意提高劳动者素质;推广现代农业机械和高技术,重视农场管理;经营集约化、产业化;生产专业化;服务社会化;市场机制与政府扶持相结合;加强农业基础设施建设等,可以看出,我国在农业知识培训、素质教育、技术推广方面与发达国家差距明显。为发展我国农业,培养一批高素质、懂技术、会经营的农民以及一批愿意为农业发展做出自己贡献的高学历人才成为关键。农业的发展离不开农民的发展和进步,也离不开受过高等教育的精英人才的共同努力,而开展农业知识培训,则是为他们的发展奠定了一条夯实的道路。

2人工智能在教育中的应用与发展

近年来,伴随着人工智能在各行业的应用和发展,人工智能在教育领域中发挥的作用也越来越显著。例如,智能化的作业批改可以大大减轻教育工作者的沉重负担,在线学习等网络教学模式可以让人们更灵活地接受教育。从人工智能诞生伊始,其就与教育产生了密不可分的联系,延续发展至今,人工智能在教育领域中的应用主要包含以下几个方面。

21基于人工智能的计算机网络课程

计算机网络教育是对传统教育方式的一次革新,而人工智能对网络教育的渗透,又将其推向了新的发展高度。[2]学生可以自主地登录网络平台进行在线学习,根据智能导学系统制订学习计划,进行在线测试。例如近年来大为流行的MOOC课程,学生可以便捷地通过网络获取全球最高质量的教学资源,并可以量身打造自己的学习计划。

22基于人工智能的教师辅助系统

近十年来,智能传感器、语音识别、图像识别、深度学习、大数据等方面的蓬勃发展令信息的采集及处理越来越准确高效,这无疑使得人工智能与辅助教学系统的融合变得越来越深入。借助于语音识别、图像识别等技术,学生可以将学习过程中遇到的问题上传至系统,借助于数据库系统对信息准确的搜素和整合能力,实时地为学生提供答案或相关信息,答疑解惑。目前此类应用软件的应用广泛,例如小猿搜题、百度作业帮等。

23基于人工智能的教育数据库系统

随着信息化时代的到来,如何高效地搜集、分类和检索碎片化的教育信息和教学资源,无疑是一项巨大的挑战。为了更有效地分配和管理信息,在教育中引入智能化的数据库系统势在必行。现如今数据挖掘和深度学习的研究成果不断深入,依托知识库系统对教育信息的整合与构建,学生可以将已习得的零星的知识点进行扩充,由点至面的不断学习新知识;依托教育资源管理系统中来,教育管理工作者可以合理分配教学资源,让人们从爆炸式的高密度信息中解放出来,真正做到物为己用,因材施教。

3人工智能与农业知识培训的结合

新时代社会经济的发展为国家农业产业的发展翻开了新的篇章,如何加快社会主义农业现代化,促进农业转型,这为新时代的农业知识教育提出了新的要求。另外,近年来劳动力转型的趋势日益显著。随着农业劳动人口数量的减少,为了提高农业生产效率,需要有素质、懂知识的农民投入农业生产中来。因而,对于农业知识培训的革新作为农业现代化建设的重中之重,已被提上日程。

人工智能技术和教育领域融合的不断完善成熟,基于人工智能的农业知识培训正如雨后春笋般涌现,在农业教育培训领域崭露头角。

31人工智能应用于农业知识培训的优势

从我国农业发展的现状看,较之于发达国家,我国农业从业者的基数巨大但是整体受教育程度偏低,农业专业领域的知识匮乏,农业知识教育的推广不仅薄弱,而且效率低下。因此,伴随着信息化时代“互联网+”的新型教育模式对传统教模式的强有力革新,基于人工智能的农业知识培训展示了其强大的威力和优势,具体可以总结为如下两个方面。

311个性化教育针对性强

相比于课堂教学的传统模式,基于人工智能的网上在线教育模式能够为学生个性化地制订学习计划,灵活安排学习时间。这有力地解决了学生参加农业知识培训的时间成本问题,农业从业者可利用闲暇时间自主安排学习。另外,针对于培训者的当前知识水平和培训需求,培训平台可以个性化地安排教学相关领域的专业知识和操作技能。

312教育资源利用率高

我国当前的农业知识培训,教育教师需求数量和实际在岗教师资源极不匹配,具备丰富农业专业知识和农业生产经验的教师数量缺乏,这是导致农业知识培训推广速度缓慢的重要原因。而人工智能为这一问题的解决带来了福音,智能化的教学进程得以让教师从繁重的教学负担中解放。同时,基于网络的课程资源共享可以让先进的农业技术走进千家万户,让学生与优秀农业知识的距离不再遥远。

4平台开发的系统架构

基于人工智能技术,一个合理的农业知识培训平台能够像一个优秀的教师那样具备完备的农业专业知识和优良的教学技能知识,并且能够模拟及扩充教师的教学过程。除此之外,该培训平台还能够准确实时地与学生进行信息交互,有针对性地开展个性化教学,并可以自适应地完成教学效力评估和反馈,不断更新和完善教学内容和教学策略。基于以上分析,该开发平台的系统架构分为学生模型、教师模型、综合数据库模型和人机交互接口四个组成部分,结合下图对每一部分分别进行详细阐述。

41学生模型

学生模型应针对不同的学生,准确地评估学生当前的学习水平,对学生的学习背景、知识水平、知识架构进行诊断和评定,以便有针对性地制订教学方案,进而实施个性化教育。

另外,学生模型需要对学习过程中的学生的学习情况进行记录入库,对教育效果进行评定,从而诊断出当前教学计划是否合适,以便下述教师模型中对教学内容和教学策略的灵活调整。

42教师模型

教师是教学工作开展过程中的主体,一个合理的教师模型应该包括如下三个部分。

教师模型首先完成教学内容的选择,这要根据学生模型中对学生当前的学习水平的评定,并且针对学生既定的学习目标,并从下述知识库中调取对应的内容,为教学的开展做好准备。

在确定了教什么的问题之后,教室模型要确定如何教的问题,即选取合理的教学策略开展教学。教学方式的选择依附于学生模型,而又能根据学生学习情况记录进行反馈动态,不断完善和调整教学策略。

另外,在传统教学模式中,教师传授知识,并能为学生答疑解惑。当学生在学习过程中遇到问题和疑惑时,教师模型应该实时地提供信息支持,为学生提供针对性的帮助。因而教师模型要实现与人机交互接口的实时连接,在问题到来时控制模块驱动应答部分为学生答疑解惑。

43综合数据库模型

综合数据库模块为农业知识培训系统提供数据库支持,主要包括以下三个模块。

知识库模块中分类别地存放着农业领域的专业知识,包括文本、图像、自然语言、多媒体等多个类型的学习知识。一旦教师模型中完成了教学内容的选择,便由此模块中调取相对应的文件开展教学。

专家评估模块用于处理教学过程中的教学效果评价和经验总结,为教师模型中的各个环节的反馈和更新迭代提供数据支持。在一个完善的教学过程,教师需要根据学生的学习效果进行总结和反馈,以此指导下一步的教学内容和策略的更新。

为了对学生阶段性学习的效果进行评估,还需要引入测试考核模块对学生的成绩进行量化考核。测试考核模块中包含学生答题库和成绩测评库,准确检测出开展农业知识培?的作用与效果。

44人机交互接口

基于人工智能的农业知识培训的过程是学生和系统进行交流的过程,所以一个友好的人机接口是系统必不可少的组成部分。在这一模块中,友好的图形用户界面的设计能够帮助学生流畅地接收信息,提高学习效率。同时,借助于人工智能中对语音和图像信号的先进识别技术,人机交互接口可以智能化地接收分析和理解学生的自然语言信息和动作信息,进而为系统提供宝贵的输入信息。

篇3

关键词:人工智能;计算机网络教学;现状;运用

中图分类号:TP393-4

所谓人工智能,就是利用人工方法在计算机上实现智能,也可以说是人工智能在计算机上的一种模拟。人工智能广泛融合了神经学、语言学、信息论和通讯科学等众多学科和领域。目前主要存在三条人工智能研究途径:一是以生物学理论为支撑,掌握人类智能的本质规律;二是以计算机科学为支撑,通过人工神经网络进行智能模拟,实现人机互动;三是以生物学理论为支撑。

1 人工智能技术的特征

智能技术主要分为两类,人类和计算机智能,两者存在相辅相成的关系。利用人工智能技术能够实现人类智能向机器智能的转化,相反,机器智能也能够利用智能教学转化为人类智能。

1.1 人工智能的技术特征。首先,人工智能具备非常强的搜索功能。该功能是利用相关搜索搜索技术实现对海量信息的快速检索,满足个性化信息需求;其次,人工智能具备很强的知识表示能力。具体来讲,就是人工智能对信息的行为,能够像人类智能一样,对模糊的信息加以表示;最后,人工智能具有较强的语音识别和抽象功能。前者主要是为了对模糊信息加以处理。而后者主要是为了对信息重要度加以区分,以便提高信息处理效率。用户只需要智能机器提出具体要求便可,至于复杂的解决方案就交给智能程序了。

1.2 智能多媒体技术。首先,人机对话更加灵活。传统多媒体在人机对话方面极为欠缺,导致教学单调乏味,不能取得预期良好效果,但智能多媒体却不然,他能够实现人机自由对话和互动,同时还能结合学生实际对学生的问题给出不同层次的答案。其次,教学可行性更强。由于学生在认知能力和个人素养方面都存在差异,而且学习主动性也不尽相同,人工智能必须要结合学生实际学习状况,为每一位学生设计制定个性化的学习计划和学习目标,对学生进行针对性较强的教学,真正实现因材施教。再次,具有强大的创造性和纠错性。前者属于人工智能的显著特征,而后者属于人工智能的重要表现方面。最后,智能多媒体具有老师特征。在实际教学过程中,智能多媒体可以对教学双方的行为进行智能评价,以便能够及时发现教学中的薄弱点,有助于实现教学相长,全面提高教学质量和教学效果。

2 计算机网络教育的现状

随着现代科学的进步,网络信息的发达,人们的教学观念和学习观念都发生了前所未有的改变,网络时代正全面到来。为了满足现代社会对人才的实际需求,培养大量现代化优秀人才,计算机网络教学模式业已成型并不断完善。目前,高校正规教学模式依然是现代教学主流,尽管在系统传授知识和规范培养人才方面具有无可比拟的优势,但在资金投入、效益创收和时空限制等方面具有很大的弊端,灵活性不足,无法有效满足现代教育的发展要求。

计算机网络教学对传统教学形成了巨大挑战,并产生了深远影响。它不仅有效弥补了传统教学的时空限制缺陷,而且赋予了教学极大的乐趣性,吸引了越来越多的人积极投身到网络教学建设中去,任何人无论何时何地都能够通过网络课堂去学习和提高。但目前计算机网络教学发展仍处于探索期,在实际运用方面还存在许多问题:第一,计算机网络教学中的学习支持服务体系尚不健全,导学手段和答疑方法还非常落后,由于各种原因,在服务方式上缺乏针对性、策略性和积极性;第二,计算机网络实验教学中存在着空间分散、时间流动和自主性差等问题和弊端;第三,计算机网络的系统承载能力和信息查询能力还十分有限;第四,如何实现计算机网络考试的开放性,确保考试的客观性、公正性、权威性,已经成为网络教学发展的瓶颈;第五,计算机网络教学中的核心支撑系统――CAI,还无法有效满足和适应网络教学的实际需求和发展要求。

主流CAI课件主要有两种,一种是单机版的初级课件,包括简单的Authorware课件、PPT幻灯片和图文网页等。一种是高级的网络版课件。该类课件主要以静态图文和动态演示组成的网页为主,以聊天室、电子邮件和QQ群等形式为辅,实现师生互动、网络答疑的一种改进型课件。初级课件在实际教学中以操作容易、更新及时和维护方便著称,但实际上就是传统教学手段的变相挪用。还有些课件,尽管在互动性方面有着不错的效果,但是制作繁琐、更新较慢和维护复杂。因此,高级网络课件是目前网络教学中的主流课件,已经成为了计算机网络课件的固定模板。改进型的网络课件有效地解决了传统多媒体在师生互动不足的问题。上述两类课件是现在最为常见的两种CAI课件,尽管两者都有各自的优势,但作为网络教学的重要手段,仍存在许多问题和弊端:无法实现因材施教,无法开展层次教学;作为教学的一大主体,学生在个性化交互操作方面仍有很大不足;对学习过程中出现的普遍问题无法进行智能统计、分析和评价等。

3 人工智能技术在计算机网络教学中的运用

3.1 人工智能多媒体系统。(1)知识库。智能多媒体已经不再是用来进行纸质媒体数字转化的工具了,它应该具备相应完善的知识库,而知识库里的教学内容要结合教学实际和学生现状进行针对性、个性化设计。同时,要实现知识库资源的高度共享,并及时加以更新和补充,如此才能充分发挥知识库的教学服务作用。(2)教学板块。教学板块的设计主要是出于教学综合性考虑的,教学方法的创新是其关注的重点内容。该模块的实现要以掌握专业知识、教学策略和人机对话等领域的知识为前提,结合学生实际学习现状和特点,利用智能系统的现代化技术手段对知识和相关教育措施加以高效搜索。(3)学生板块。及时掌握学生心理动态和学习状况是智能网络教学的一大特征,结合学生实际状况加以智能评判,进而加以针对性指导和个性化辅导,实现因人施教和因材施教,全面提高学习效率和学习质量。(4)用户模块。用户模块是智能系统无法忽视和省略的关键模块,整个智能系统的正常运行离不开人工程序操作,用户需要通过用户终端将教学内容上传到网络教学平台,才能顺利完成教学。

3.2 人工智能多媒体教学的发展。(1)加强与网络的结合。随着网络技术的成熟,智能网络教学与网络之间的关系日益紧密,多元化、多维度网络空间日益成为一种趋势。互联网具有信息量大、更新速度快、超时空性等优势,加强与网络的结合是人工智能计算机网络教学未来发展的重要方向。(2)加强智能的应用。人机对话、机器指导的教学模式将成为未来网络教学的核心模式,传统教师的角色将逐渐被计算机取代。最为典型的就是现代智能导航系统。(3)加强系统软件的研发。系统软件的更新日新月异,旧的系统软件已经无法有效满足网络发展的时代要求,加强系统软件的研发以便充分满足网络要求,更好地帮助学生解决实际问题,进而提高学习效率和教学质量。

4 结束语

人工智能技术在计算机网络教学中的运用将为现代化教育提供新的发展思路,将全面改善网络教学环境,拓展学习服务渠道,提高计算机网络教学质量,并有可能彻底打破计算机网络教育的时空限制,全面加强网络教学的开放性,实现网络学习的个性化、人性化和智能化,充分落实以学生为本的教学理念。未来CAI技术的进一步成熟将全面提高网络教学的整体格局,我们有理由相信,智能网络教学将迎来全新的发展春天。

参考文献:

[1]刘广钟,高军,刘,李吉彬.报文分析技术在计算机网络教学中的应用[J].计算机教育,2014(01).

[2]赵冉,朱西方.仿真技术在高职计算机网络教学中的应用探讨[J].河南科技,2014(01).

篇4

 

政策催化进一步加强

 

国内AI有望“弯道超车”

 

目前,各国政府都高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入。美国主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。可以说,人工智能成为各国“大脑”计划的重要内容。

 

当下我国社会面临老龄化压力、经济转型和制造业升级,对此,国务院在印发的《中国制造2025》中明确指示,要把智能制造和高端技术创新作为重点建设工程,特别提出要发展和培育一批产值超过100亿元的人工智能核心企业。

 

国内市场的扶持政策频出。2015年7月,国务院印发《“互联网+”行动指导意见》,将发展人工智能提升到国家战略层面;2016年1月,科技部部长万钢提出“科技创新-2030项目”,智能制造和机器人成为重大工程之一。

 

在2016年3月两会召开期间,《国民经济和社会发展第十三个五年规划纲要(草案)》正式出炉,其中提到,要大力推进先进半导体、机器人、智能系统、智能交通、精准医疗、智能材料等新兴前沿领域的创新和产业化,形成一批新增长点。

 

政策和资金的支持、人才储备、技术的积累和突破等都为人工智能的发展提供了基础条件。科技部高技术研究发展中心研究员刘进长认为,我国人工智能与机器人技术的快速发展,一是因为国家的高度关注与政策支持,二是得益于金融界的重视与大企业的不断进入。

 

“2014年,中国市场的工业机器人销量猛增54%,我国智能语音交互产业规模达到100亿元,指纹、人脸、虹膜识别等产业规模达100亿元。”广证恒生副首席分析师赵巧敏向《经济》记者分析称,在利好因素的促进下,我国人工智能技术攻关和产业应用发展势头良好。

 

在她看来,目前国际巨头在人工智能技术上还没有完全形成垄断。我国在人工智能的研究上与发达国家相比,甚至与美国相比都不算落后,这是难得的历史机遇,是提升综合国力和影响力的绝佳机会。

 

“我国完全有可能利用市场需求优势、用户数据优势等,抢占人工智能技术和产业的制高点,实现人工智能技术‘弯道超车’。”赵巧敏称。

 

人工智能大潮来袭

 

千亿市场规模可期

 

人工智能已经开始进入一个新的阶段。从Siri识别到无人驾驶,都是人工智能的实现载体,涉及到的技术和领域跨越多学科,包括深度学习、智能识别、专家系统、神经网络、智能机器人等。

 

未来,人工智能需求将会激增。据BBC预计,到2020年,全球人工智能市场规模将达到183亿美元,约合人民币1190亿元。

 

“目前人工智能的应用领域主要还是以工业制造为主,但是随着经济结构的转型,以及不断攀升的劳动力成本,未来包括机器人在内的人工智能产品的市场需求将会不断扩大。”爱建证券研究所研究员刘孙亮向《经济》记者表示,随着人均可支配收入的增加,以及人口老龄化时代的来临,人工智能家庭化的现象将会普及,届时家用助老服务机器人、医疗机器人以及家用清洁机器人的市场需求将会激增。

 

国内著名的咨询机构艾瑞咨询在参考人工智能行业全球市场规模后预计称:在不包括硬件产品销售收入、信息搜索、资讯分发、精准广告推送等的情况下,预计2020年中国人工智能市场规模将达到91亿元人民币。

 

而目前市场的关注点还只是在智慧金融、智能家居等应用领域,对于人工智能的发展空间来说,这只是冰山一角。

 

赵巧敏表示,由于人工智能属于基础型技术,与机器人和大数据联系紧密,其水平的提升将带来多领域的应用扩展,大幅拓宽传统产业的发展之路,造成未来5-10年的巨大颠覆性影响,产生10-100倍的溢出效应,由此将打开万亿规模的市场空间。

 

“仅仅以工业机器人领域为例,在智能化水平提高后,将降低固定资产投资成本近30%,降低人工成本近60%-70%,在汽车整车、零部件制造、食品工业及物流等行业产生8-10倍的产业集群带动作用,对应着800亿-1000亿元的市场规模。”赵巧敏说。

 

实际上,中国人工智能的商业化应用环境甚至能创造更大的市场空间。我国人工智能的商业应用水平已经十分繁荣,这一概念已经渗透了教育、金融、医疗、文体娱乐等领域,且获得了很好的市场反响。

 

“市场关心的IT和互联网领域几乎所有的主题和热点,例如智能硬件、O2O、机器人、无人机和工业4.0,发展突破的关键环节都是人工智能。”赵巧敏表示,人工智能的发展是必然趋势,它将成为未来30年内我国技术发展的重心,也会给互联网领域带来新的突破,给人们的生活带来翻天覆地的变化。

 

在人工智能应用领域,我国已经发展得较为全面,包括家居领域、安防领域、医疗领域、企业领域、金融领域和教育领域。

 

然而尽管目前我国自主知识产权的文字识别、工业机器人、娱乐机器人等智能科技成果已经进入大规模实际应用,但市场空间仍然很大。中泰证券首席宏观策略师罗文波向《经济》记者表示,我国机器人的“密度”只有德国、日本的1/10,行业发展空间巨大。

 

VC青睐人工智能

 

巨头加速并购

 

人工智能一直是硅谷大佬们疯狂追求的领域,谷歌、Facebook、IBM均重金投资人工智能,是目前AI领域的领导者。微软、谷歌和Facebook等全球科技巨头都认为2016年是AI迅速进化的关键节点。

 

Google希望在人工智能领域复制Android的成功,并力图打造一个机器人帝国;Facebook计划在2016年制造出能够在家务和工作上帮助自己的人工智能;苹果4天内接连收购两家人工智能初创公司……

 

据罗文波统计,目前全球人工智能企业已经超过了900家,大多集中在北美和西欧。这些人工智能初创企业总估值超过87亿美元。“随着日本、北美、欧洲的‘大脑’计划大规模布局人工智能,2040年全球很有可能实现广义的人工智能。”

 

除互联网巨头外,敏锐的资本方也在积极布局人工智能领域,近年来风投不断加大对人工智能初创企业的投资,持续布局人工智能这个重要风口。

 

“2014年人工智能企业融资总量首次超过10亿美元,2015年融资总量更是超过12亿美元。2016年到现在,全球在人工智能领域的投资已经超过4亿美元。”渤海证券研究所证券分析师齐艳丽向《经济》记者表示,随着科技巨头在人工智能领域的布局将提速,VC/PE在人工智能领域的投资也将随之爆发。

 

“反过来,资本层面的爆发也将持续带动人工智能行业加速爆发。”齐艳丽认为,虽短期看人工智能仍处于大规模投入期,较难变现,但未来人工智能应用于无人驾驶汽车、辅助诊断、刑侦监测等领域将会产生巨大的商业价值和社会价值。

 

在全球市场火爆的背景下,国内市场也充满了巨头和风投的博弈与布局。

 

出于对人工智能行业商业前景的看好,国内巨头纷纷进军人工智能领域,百度、阿里、腾讯均在人工智能领域发力。

 

其中,百度2014年研发投入接近70亿,同时涉足了深度学习与自动驾驶领域,并推出了“百度大脑”计划;阿里巴巴推出了国内首个人工智能平台DTPAI;腾讯推出了撰稿机器人Dream writer,开放了视觉识别平台腾讯优图,同时成立了腾讯智能计算与搜索实验室。一些具有创新性眼光的巨头公司也相应进入,让整个行业迎来了爆发的机会。

 

“互联网巨头公司和创业公司是我国AI技术基础研究主力军。在国家政策大力支持下,无论是科研机构还是企业都在加大人工智能研究的力度,由此也取得了较为不错的成绩。”据罗文波介绍,截至2015年底,我国人工智能领域已有近百家创业公司,约65家获得投资,共计29.1亿元。人工智能领域布局如火如荼。

 

巨头的基础层切入为人工智能基础领域的研究带来了巨大的资金优势和人才支持,使得部分技术达到世界一流水平。例如,我国的视觉、语音识别的技术已经处于国际领先水平。

 

而近两三年,风投也开始加速了在这一领域的投资步伐。2014年开始,我国人工智能领域投资金额、数量、参与投资机构数量均大幅增加,2015年更是实现了跨越式的增长。“2015年我国投资人工智能的机构数量已经高达48家,是2012年投资机构数量的6倍;投资额为14.23亿元,是2012年投资额的23倍。”赵巧敏表示。

 

短期看好应用开发

 

长期关注技术研究

 

二级市场一向是搜寻热点的风向标。人工智能市场的火爆也催热了资本市场的相关行业。在市场空间巨大、产业前景明朗的背景下,占据资金优势的上市公司纷纷瞄准人工智能领域,分享广阔蓝海。

 

随着人工智能的不断进步和发展,最先实现产业化的AI应用层将最早迎来投资机会。银河证券分析师杨华超向《经济》记者分析称,无人驾驶、工业4.0、智慧医疗等主题将成为未来中长期的热点,建议关注相关主题的优质标的。“同时,AI数据层和应用层作为准入门槛较高的环节,之前具有技术积累和数据资源的公司将优先受益,可以关注目前已经在人工智能领域已经有技术和规模优势的公司。”

 

对此,罗文波则建议投资者,选择人工智能领域的标的,要分长短期来考量。“短期可关注在人工智能商业化应用有所突破的企业,长期可关注具备技术研究实力的公司。”

 

在他看来,具备竞争力的上市公司主要有两类,一是与机器人硬件制造相关的公司,它们一般拥有较好的智能制造业基础,在未来产业升级过程中,拥有强大的竞争优势;二是在人工智能商业化应用有所突破的公司。

 

对此投资逻辑,赵巧敏也表示认同,“短期看好应用开发领域,特别是基于当下较为成熟的感知智能技术如语音、视觉识别的服务、硬件产品等的应用开发将是短期的投资亮点”。

 

“目前下游应用领域也面临着大量需求,如人口老龄化对服务机器人的需求、定制化生产对3D打印的需求、物流配速对无人机的需求等。”赵巧敏分析称,穿戴设备、3D打印、无人驾驶、服务机器是最值得看好的应用场景。

 

而从长期来看,在以现有技术为基础的应用领域基本饱和之后,只有技术研究才能推动新一轮的应用创新,赵巧敏称。技术研究是长期的投资关注点,“应该关注核心技术模块提供商和数据传输、运算、存储过程所涉及的基础设施运营商”。

 

与此同时,在主板之外,一些新三板标的同样值得关注。从2015年起,挂牌新三板的人工智能企业数量明显增加。以机器人子行业为例,仅2015年一年就有35家机器人企业在新三板挂牌,还有10家机器人企业在待挂牌状态,20多家公司在审查待挂的状态。投资者可以有选择地关注其中较好的标的。

篇5

自前不久围棋机器人阿尔法狗(AlphaGo)以4:1的战绩击败了世界冠军李世石之后,AI(人工智能)开始了新一轮对地球人的挑战。研究表明,近两年,人工智能的智商提高了近一倍,包括欧美、日本等在内的不少国家都在砸重金投入研究相关应用。

不过,让考生和家长稍稍放心的是,此高考机器人的成绩并不会进入全国高考分数排名,这意味着它即使考出了满分,也不会影响当年的分数排名和重点线划分。根据媒体报道,科技部在立项时已明确目标,机器人首次应考将力争数学单科超过130分,并一举超过一本分数线。项目计划机器人要在2020年考上北京大学、清华大学。而在邻国日本,国立情报学研究所一直在研究人工智能AI机器人项目,自2011年起让其参加每年的日本高考,但一直表现不佳;2013年和2014年的成绩都低于平均分,但也提出在2020年,高考机器人要考上东京大学。

据悉,机器人参加高考来源于我国“十二五”规划的重大专项――“类人答题机器人项目”规划。在此前进行的测试中,“高考机器人”解答近几年的高考北京数学试卷,最难的一道压轴题都能在两分钟之内解出。其实,这也不奇怪,如果普通学生一天做100道题,人工智能一天就能做几万道题,通过在这个过程中不断学习,还能分析出人类难以关注的规律,这自是人工智能的优势。

可以预见,随着技术的进步,高考机器人“考入”重点高校指日可待。对比日本等国高考机器人信息,有人提出疑问,如果智能机器人第一次参加中国高考就实现了突破一本线的目标,是说明机器人太聪明还是高考试题需要改革?

这真是一个好的设问!

对于通过高考来选拔人才,要把对学生能力的考查放在首要位置,通过考核知识及其运用来鉴别考生能力的高低,这已成为社会共识。

以机器人即将参与考试的文科综合为例,这属于比较开放的高考内容,出题是以能力立意为核心,考查学科主体内容,突出考查四项基本能力:一是获取和解读信息的能力(即审题能力);二是调动和运用知识的能力(即理论联系实际能力);三是描述和阐释事物的能力(即分析概括问题的能力);四是论证和探讨问题的能力(即逻辑思维和创新能力)。如果我们的高考试卷能够按照这些要求制定,要考出高分,需要相当的创造力和想象力,而这恐怕正是有创造力的人优先于机器的地方。

篇6

关键词:人工智能发展;会计工作;挑战分析;应对探讨

目前,人工智能在会计管理工作中不断普及,人工智能的使用不仅在很大程度上提升了生产单位的工作效率,还能更加准确地处理财务信息。未来,人工智能将逐渐地应用到每一个角落,因此,我们应该正确看待人工智能所带来的一些问题,对于应对人工智能的替代工作要提早做出准备。

1人工智能发展对于会计的挑战

对于会计工作而言,人工智能带来的挑战主要包括以下两个方面:一是部分会计工作将被具有人工智能的机器取代。随着计息机信息技术的不断发展,会计行业的工作方式其实早就已经开始发生变化。到目前为止,最早的手工核算几乎已经全部被会计电算化所代替。随着人工智能的迅猛发展,会计行业中的很多工作都会被人工智能取代,例如填制会计凭证、登记会计账簿、编制会计报表、管理会计档案、会计科目分类等等,凡是具有规律性的基础工作到最后会全部被人工智能代替。根据相关研究统计,在未来二十年之内,人工智能将会取代50%以上的会计岗位。二是人工智能在会计工作中的大规模应用可能引起失业危机。从社会和技术进步来说,人工智能在会计工作中的大量应用可以大幅提升工作效率,同时还能够利用计息机统计汇总和数量的优势,为生产单位的经营决策提供准确有效的数据,并籍此提升生产单位的整体效率和经济效益。但是,根据相关统计,目前从事会计基础性工作的人员比重占会计人员总数的50%至70%,对于这一部分人员来说,人工智能的高度发展会产生巨大的替代效应,当人工智能在会计工作中应用越广泛,引发的会计失业人员就会越多。因此,人工智能大量应用的时代,也是从事会计基础工作人员产生失业危机的时代。

2人工智能发展背景下会计工作的相关应对措施

2.1适应时展,积极利用人工智能

科学技术是第一生产力。人工智能虽然对会计工作构成了挑战,但是时代的发展和进步不可逆转。因此,在人工智能高速发展的今天,从事会计工作的人员不仅不应该拒绝和排斥人工智能,相反地,应该转变观念,认清形势,努力去学习掌握人工智能在会计工作中的应用方法,提高工作效率和工作质量。让人工智能工具成为自己工作中的得力帮手,利用这些工具来高效完成会计基础性工作。同时,加强专业理论学习,提高工作能力,利用节省下来的时间集中完成难度大、情况复杂的会计工作,在人工智能来临的时代实现自身的进步。

2.2提升工作层次,实现升级转型

从目前情况来看,人工智能在会计工作中的应用还只停留在于基础性、重复性高的工作方面,而对于需要较高思维能力的会计工作,人工智能还难以胜任。例如人工智能虽然能够快速整理出财务数据,但是读出财务数据背后的信息,准确评价生产单位的整体发展能力,结合财务数据对企业战略、运营质量、竞争能力、风险价值等作出评判,人工智能还难以做到。即使是人工智能与大数据技术结合,目前也无法做到对高级财务管理人员的替代。基于此,会计工作人员在人工智能发展的时代,可以打破本专业的限制,在掌握财务专业知识的同时,多涉足企业管理,由传统的会计向管理型会计转型。另外,还应该利用各种工作机会,站在单位发展的高度,进行财务分析、出谋划策,提升自己在生产单位的价值和层次。

2.3围绕专业发展,变更工作内容

会计工作人员必须认识到,相对于人工智能而言,人的思维具有独创性。人工智能归根到底,也只是对于人的思维的模仿和拓展,控制和决定人工智能的最终仍然是人。在人工智能得到发展的时代,会计专业学科本身也会同步实现发展。随着会计学原理的不断丰富和完善,会计方法应用也将发生很大改变,会计人员的工作内容也会随之改变。一是随着会计原理和会计方法的调整,会计人员在利用人工智能的时候,必须进行相应的调整,以达到工具使用与工作目的的统一;二是随着人工智能工具的发展,除了一些具有固定模式的工具以外,提供给会计人员由其结合实际需要,自主开发利用的软件工具将会越来越多,会计人员应该加强学习,掌握人工智能工具,使其变成自己工作的利器。

2.4关注行业动态,自我优化升级

作为会计人员,在人工智能快速发展的背景下,必须时刻关注行业动态,树立终生学习的理念,不断实现自我优化升级。会计人员应认识到,会计专业作为一门学科,在国民经济发展中具有不可替代的作用,不管人工智能如何发展,改变的只是工作方式和内容,会计专业本身不会消亡。因此,会计人员在工作的同时,要密切关注本行业的发展动态,按照行业发展方向来调整自己的职业目标,并根据职业目标进行规划,学习相关的知识和技能,在工作中多掌握一些管理技能,努力提升财务分析能力和预判能力,以自我优化升级来应对专业变化和人工智能发展。

3结束语

在人工智能快速发展和应用的背景下,会计工作人员必须适应时展,积极利用人工智能,不断提升工作层次,关注行业动态,实现升级转型;高等教育中的会计专业也应面向人工智能,改革教育模式,培养出适应新时期发展的会计人才。

参考文献

篇7

纵观今年的AI行业,说不上风起云涌,谈不上拼得头破血流,但光从“巨头云集”四个字来看,就可窥见风平浪静之下其实暗流涌动。国外有谷歌、苹果,国内则有百度、阿里、腾讯、华为等多家企业入局。从拼技术到拼产品,从拼入口到拼布局,各个企业在AI领域大放异彩,展现着自身的独特魅力。

AI基因上:BAT各有优势,大数据算法全面更胜一筹

论AI基因,这个支撑企业整个AI战略构想的核心基础优势,可以说是不可或缺,它着实能为企业在AI领域的布局带来极大帮助,也是一家企业进军AI最大的底气。总体看来,BAT三家互联网巨头在布局AI领域均有优势,但因自身业务的不同,其AI基因的优势又表现在不同方面。

百度:AI基因意味着拥有先天的优势,依靠搜索引擎业务起家的百度,在掌握与人密切相关的数据算法领域算得上是得心应手。同时,作为人工智能的雏形搜索引擎业务,拥有它就相当于掌握了人工智能的钥匙,只需依据数据内容付诸实践便能打破许多关卡,拥有比其他企业更多的机会。

一方面,数据是企业做AI的源头,也是引领AI走向的一大支撑点,拥有数据便于掌握AI大致的发展方向;另一方面,百度搜索的数据样本较为全面复杂,范围涉及场景较为广泛,涵盖从天文地理到日常的生活信息,累积了丰富多样的样本数据,这一切,都是基于百度算法技术的支撑,也为其在AI领域的全布局上提供了最基本的算法和数据支持。因而,AI基因这一方面,百度比其他企业有了更多的发展机遇。

阿里:依靠电商起家的阿里,虽然不具备像百度一般的海量大数据,但是阿里在掌握电商消费者数据层面也有着自身的优势。与百度一样,阿里在AI领域也早已开始布局,其有着百万级用户规模的云计算业务,同时也凭借在电商领域的丰富场景应用,阿里在大数据层面也有着自身的实力所在;此外,阿里在商业场景上所得来的数据,也是支撑其人工智能产品最终落地的基石。

腾讯:虽然在先天技术上略逊色于其他两家,但腾讯也有着丰富的应用场景。依靠在社交网络、媒体等业务的深耕,加上微信、QQ的庞大用户体量,使得腾讯在开发AI业务上更多基于提升用户体验上入手。从这方面看来,腾讯的AI基因更多倾向于丰富场景上的驱动,还有其庞大的用户数据体系支撑。

综合来看,三家互联网巨头在进军AI领域上有着天然的AI基因,只是因各自所涉及业务的不同,AI基因也各不相同。但从综合实力来看,拥有全方位的技术支持和丰富的场景应用,以及掌握算法功能才是开启AI领域的最佳起点。

AI产品上:场景出现重合,涉足范围广泛者博得头彩

人工智能领域虽说涉及的场景丰富,但最终还是无法脱离人们的衣食住行等各个方面。无论各企业在AI领域的构想如何丰富多彩,最终的成果检验还是要看产品的落地。因而,人工智能概念出现了这么多年,近两年终于加快了产品落地的步伐,国内尤以BAT为首的人工智能产品现已扎堆面世,为人们开启了新一轮的AI产品检验潮。

百度:借助先发优势,百度现已有多款人工智能产品落地,涉及的场景范围广泛且全面。其中,百度研发的一款智能音箱产品raven H搭载旗下的人工智能操作系统DuerOS 2.0,在这项系统的加持下,raven H在语音对话交互方面达到高度智能化,同时在与人类交互的功能上还能不断学习和进化,以达到与用户使用习惯的高度融合。这款智能音箱产品拥有很强的唤醒率,即使相隔一堵墙也能被轻易唤醒服务,还能用于控制家居产品如灯光、电视等家居产品,相当于掌握了智慧家庭入口。

同时,在人工智能产品发展逐渐步入正轨,许多人工智能场景如智慧生活、智慧出行等方面急需语音系统支持的情况下,百度的人工智能操作系统DuerOS应运而生,为赋能上下游产业链付诸行动。在上游,百度DuerOS与紫光展锐、ARM等芯片厂商达成合作,提升硬件基础以最终赋能于人工智能产品上;在下游,百度DuerOS与海尔、美的、TCL等传统家电厂商同样达成战略合作。有了DuerOS的支持,用户将能通过DuerOS,实现对电视、冰箱等智能家电产品的操控。

另外,百度研发的深度语音识别系统Deep Speech,在高精度的语音识别领域展开部署。当下的AI领域,语音识别涉及的场景也较为广泛,人工智能的初衷就是带给人们无处不在的便捷体验,“能动嘴尽量不动手”的语音识别更是深受AI研发企业的欢迎,也深受消费者的追捧。在这项语音识别系统的加持下,相关产品不仅为用户提供了多国语言的互译功能,也为用户带来了便捷的翻译体验。

除此之外,百度还研发了无人驾驶技术平台Apollo,旨在建立多方合作的生态体系,为汽车企业和用户搭建一套新的完整的自动驾驶系统,推动无人自动驾驶技术发展和普及。目前,Apollo已经开放两款落地产品,其中一款小度人车交互系统,不仅拥有智能语音助手和人脸识别功能,还能实现疲劳检测和AR导航,目前小度车载系统已与多家车企达成合作,多款车型将进入量产阶段。

阿里:同样,语音这项连接人工智能与人类频率颇高的交互接口,阿里也有涉足。其中,阿里云研发的一款人工智能产品ET大脑,在智能领域实现了新的突破,除了具备智能语音交互和生物识别等技术,还能帮助人们在复杂的情况下快速做出最佳选择。

同时,在智慧家庭领域,阿里研发的一款智能音箱产品天猫精灵,在语音识别上也拥有多项功能,此外通过内置人机交互系统开放给业界,已有多家产品链接到天猫精灵,为布局全局的智慧家庭入口夺得先机。

腾讯:在人工智能领域后入局的腾讯,在人工智能领域的开发更加注重提升自家产品的用户体验上。围绕智能语音识别和自然语言处理等板块,腾讯目前已提供了多种人工智能服务,为自身产品在语音识别上进一步提升用户体验。

此外,腾讯拥有为智能音箱厂商提供后台支持的云小微,在微主机Ministation衍生的智能家居设想上,逐步拓展到在线教育和家庭控制中心等。

综合来看,BAT三家所研发的人工智能产品虽有不同,但都涉及了同一个生活场景,那便是智慧家庭领域。尤其是涉及多个人工智能领域场景维度的语音交互系统,包括冰箱、空调、智能音箱等家用电器。在这方面,谁能拥有强大的语音操控系统,谁就能牢牢把握这一出现频率较高的交互接口。同时,为人类带来丰富惊喜体验的人工智能领域,同样需要丰富的产品加以支撑,才能为往后智慧生活的进一步实现提供有力的产品支撑。

AI理念上:与自身业务紧密结合,取得先机者得天下

AI理念,即企业做AI的核心思想。从最初的产品定位,到产品的生产和落地,均离不开最初的理念支持,即产品将要成为什么样、将为人类带来何种便利,每个阶段都围绕最初的理念开展。总体看来,BAT的人工智能理念是在自身原有业务的基础上,围绕AI领域展开构想,并将这一设想付诸实践。

百度:从百度的人工智能理念来看,人工智能在未来会涵盖其所有的产品和服务,成为新的增长引擎。而事实上,百度在人工智能领域早已从七、八年前开始,从基础层到感知层以及生态层和应用层等,百度均有着明晰的战略规划方向。此外,经过一段时期的打磨和经验总结,百度的人工智能理念开始跟随产品一同落地,整个人工智能战略规划也从理论开始走向实用阶段。

阿里:电商起家的阿里,在人工智能的布局比百度稍晚一些,其人工智能理念多围绕电商这一核心业务,从仓储到物流,从产品到制造,阿里在零售业的人工智能轨迹很清晰,并且与自家业务紧密结合。同时阿里发挥所长,全面赋能零售体系。

腾讯:在AI矩阵布局上,腾讯目前拥有人工智能实验室、微信智能语音团队等技术的支持。同时其人工智能领域更关注场景、计算能力等,腾讯同样也是从自身业务出发,布局游戏、社交和内容AI,对比其他两家来说起步较晚,但初涉人工智能领域的腾讯也不甘落后,建起了人工智能实验室,用于人工智能方面的研究和开发。

综合来看,在人工智能的战略布局和理念构想上,百度已经抢占了先机,从技术优势到场景落地,战略规划进一步照进现实。因而在人工智能领域,必然是取得先机者拥有绝对的话语权,在未来的业务范围拓张上也卯足了底气。

AI基因、产品、理念的加持下,未来的AI行业谁将剑指巅峰?

综上所述,人工智能产业最终的走向必然是加快产品落地的同时迈向高度商业化的未来。无论是阿里的智慧新零售,还是腾讯的场景重要性,抑或是是百度的从出行,到赋能实体制造业的全方位操作,都在各自的领域有着明确的产品构想。

因而,在AI基因、AI产品以及AI理念的加持下,接下来的人工智能产业,各个企业都将在自身基础的战略布局上,进一步将计划落地实施。不过需要注意的是,人工智能这个庞大的产业,并非一家企业就能独自撑起,而是需要各行各业的相互协作共同推动,才能将企业的人工智能核心理念从理想照进现实。因此,在企业界的共同推动下,未来的人工智能社会化场景中,人工智能所带给人们的便捷将得到更大化的展现,人类的生活是无处不在的方便和舒适。

这种便捷或许将在以下两个场景中得到高度化的体现。日常家庭生活上,只需“开口说话”这一个动作,便能顺利操控各个家居产品工作,实现家居产品与用户需求的高度融合;日常交通出行上,也无需用户亲自“动手”,汽车便能自动上路,不仅从一定程度上解放了人的双手,同时也“解放”了“脑袋”,留给用户足够的思维空间专注其他工作,方便又安全。

篇8

2016年是世界围棋界极不寻常的一年,3月份在“阿尔法围棋”(AlphaGo,一款围棋人工智能程序)与围棋世界冠军、职业九段选手李世石之间展开的一场人机大战中,“阿尔法”的胜出震惊全球。7月份世界职业围棋排名网站公布了最新世界排名:“阿法围棋”以3612分,超越3608分的柯洁成为新的世界第一。

2016年12月29日到2017年1月4日,一个名叫 “Master”的神秘网络围棋手横扫中、韩、日围棋界。它凭借惊人的稳定性一路高唱凯歌,获胜60场,没有败绩。最终神秘的“Master”揭开了庐山真面目,宣布自己就是“阿尔法围棋”。

2017年1月,谷歌Deep Mind公司宣布推出真正2.0版本的“阿尔法围棋”,成为第一个不借助让子,在全尺寸19×19的棋盘上击败职业围棋棋手的电脑围棋程序,其特点是摈弃了人类棋谱,只靠“深度学习”的方式成长起来挑战围棋的极限。

围棋是人类最具智慧的竞技之一,而人工智能(Artificial Intelligence,简称AI)研发是人类最具挑战性的科技探索。人机大战的经典对决将被同时载入围棋史册和科技史册。它的意义已经远远超出围棋本身,人们热衷谈论“阿尔法围棋”更多是出于对AI技术的关切。从诞生到日益成熟,AI理论和技术的应用领域在不断扩大,不知不觉间渗透到人类当代生活的各个方面。AI时代,互联网、金融、医疗、教育、物流、娱乐、传媒等行业都在加速自己智能化的进程。可以想见,未来人工智能带来的科技产品,将会是人类智慧的“容器”。 而与此同时,人类命运和机器智慧的冲突与共存,已经由人机大战开始不断升温。

“人工智能百年研究”项目

2014年秋季,美国斯坦福大学开启了“人工智能百年研究”(AI100)项目。这是一个超大型长期项目,该项目发起人――美国人工智能发展协会会长、前微软研究员埃里克・霍维茨博士表示,“我们的职责是研究人工智能在2030年前对人类社会生活方方面面所产生的影响,尤其是在北美地区”,而“研究的核心是,人类不能丧失对人工智能的控制能力”。 “人机大战”

2016年9月1日,“人工智能百年研究”项目的第一项成果《人工智能与2030年的生活》。这是一份试图定义北美城市在未来10多年间将要面临的可以模拟人类行为的计算机和机器人系统 (即人工智能)问题的报告,涉及交通、家庭/服务、健康医疗、教育、低资源社区、公共安全与防护、就业、娱乐等关注领域,目的是推动相关政策的制定。业内人士认为,工业界和学术界目前正在联手倒逼政府出台人工智能的相关政策,希望可以获得更大力度的资金和法律扶持。

《人工智能与2030年的生活》所列举的关注领域,均面临着人工智能的影响和挑战。例如开发安全可信赖的硬件的困难(交通工具和服务机器人),获得工作信赖的困难(低资源社区和公共安防),对劳动力可能被边缘化的担忧(就业和职业),以及人际交往减少带来的社会副作用(娱乐)等等。

1.交通:自动驾驶的汽车、卡车、无人机投递将改变城市里的工作、购物和休闲娱乐模式,但需要增加可靠性、安全性和用户接受度,并根据新的交通模式改进当前的相关法规和基础设施。

2.家庭/服务机器人:现在进入家庭的扫地机器人或特种机器人能够为家庭和工作场所提供清洁和安保服务,当务之急是技术方面的挑战和机器人成本过高的问题。

3.健康医疗:个人健康监测装备与手术机器具有极大的发展潜力,人工智能软件将最终对某些疾病自动进行诊断和治疗。目前的关键是获取医疗从业者的信任。

4.教育:互动辅导系统在帮助学生进行语言、数学以及其他技能的学习方面已经发挥出作用,自然语言处理的发展将为这一领域的应用带来全新的方式。当务之急是教育资源分配不均的问题,以及教、学双方直接互动的减少会带来哪些消极影响。

5.低资源社区:投资最新技术领域有助于更充分地发挥人工智能的优势,比如避免铅污染和改进食品分配等,重要的是让公众参与进来以增强相互信任。

6.公共安全与防护:利用相机、无人机和软件进行犯罪模式分析,应用人工智能技术来降低人类判断的主观偏见,与此同时在不侵犯个人自由和尊严的情况下增强安全性。目前需注意的是如何保护隐私和避免固有偏见。

7.就业和职业:随着全球经济的快速发展,传统岗位开始被新岗位取而代之,有关人类如何适应这种新变化的相关工作需要立即展开,比如如何妥善处理劳动力下岗以及人工智能对新工作岗位不适应的问题。

8.娱乐:内容创建工具、社交网络和人工智能的结合,将开创全新的媒体内容收集、组织和分发模式。但问题是新的娱乐方式如何在个人价值和社会价值之间取得平衡。

《人工智能与2030年的生活》在回顾发展历程和展望发展趋势时指出,人类正加速在人工智能领域的研究,试图建立一个能与人高效协作的智能系统。其中最重要的是机器学习的成熟,它受到了数字经济崛起的部分影响――数字经济为机器学习提供了大量数据。此外其他影响因素包括云计算资源的崛起,以及消费者对语音识别和导航支持等技术服务的需求。研究人员认为,不管是从基本方法上还是应用领域,包括大规模的机器学习、深度学习、增强学习、机器人、计算机视觉、自然语言处理、协作系统、众包和人类计算、算法游戏理论和计算的社会选择、物联网、神经形态芯片在内的研究趋势,共同促进了人工智能研究的热潮。

这份报告试图严肃地讨论这样一个问题:如何更好地引导人工智能来丰富和服务于人类生活,同时推动和激励这一领域的创新。因为人类目前并不能清晰而完美地预测未来的人工智能技术及其影响,所以一定要对相关政策进行评估。未来几年公众在交通和医疗等领域内应用人工智能的机会日渐增多,因此必须以一种能构建信任和理解的方式将其引入,确保在尊重人权和公民权利,保护隐私和安全,维护广泛而公正的利益分配等方面措施周备。 世界经济论坛说,机器人和人工智能到2020年可以取代510万个工作岗位。

研究人员指出,传统的人工智能范式已被数据驱动型范式成功取代,对于定理证明、基于逻辑的知识表征与推理这些程序的关注度在降低。作为20世纪七八十年代人工智能研究的一根支柱,规划( Planning )强烈依赖于建模假设,难以在实际应用中得到满足;视觉方面基于物理的方法和机器人技术中的传统控制与制图,正让位于通过检测手边任务的动作结果来实现闭环的数据驱动型方法;还有曾颇受欢迎的贝叶斯推理和图形模式,在数据和深度学习的显著成果前也显得相形见绌。在未来15年中,针对人类意识系统开发,按照能够互动的人类特点进行建模和设计人工智能系统成为人们的兴趣点。在考虑社会和经济维度的人工智能时,物联网型的系统变得越来越受欢迎。数据驱动型产品的数量及其市场规模将会扩大。

“为机器人安装‘死亡开关’”

2017年1月,欧洲议会法律事务委员会召开会议,呼吁制定“人类与人工智能/机器人互动的全面规则”。议公布的报告对机器人可能引发的安全风险、道德问题、对人类造成的伤害等情况进行了讨论,探讨是否需要为机器人安装“死亡开关”、研究机器人抢走人类工作的应对措施等等,要求欧盟为民用机器人制订法律框架。专家认为,这或将是首个涉及管制机器人的立法草案,将有利于人类应对机器人革命带来的社会震荡。

会议认为,人工智能和机器人发动的新工业革命可能影响到所有的社会阶层。机器人可能创造无限的繁荣,与此同时将影响人类未来的就业情况。机器人取代人类在许多行业是大势所趋。在德国,每1万个雇员中就有301个是工业机器人。报告要求欧盟委员会对各国民众的就业情况进行调查,重点关注极易被机器人取而代之的职位。如果机器人成为职位“杀手”,欧盟各成员国应考虑为国民提供基本的生活保障。埃里克・希尔根多夫是一名德国法律教授,他非常认同欧洲议会讨论的这项议题。“这不仅在政治上是可取的,从法律角度也是必要的,这样我们才能及时应对机器人革命带来的社会震荡。”他指出,“即使是银行顾问、教师和记者等要求严格的职业,未来也无法在这场科技洪流中幸免。”

会议强调,因为人工智能在几十年内可能超越人类的智力,将对人类控制机器人构成挑战。随着机器人自我意识的崛起,甚至可能威胁人类的生存。近年来,机器人“杀人”的事件时有发生:2015年6月,在德国大众汽车公司,一名工人安装机器人时反被它抓起推向金属板压死;2016年6月,美国一家汽车零件生产商的一名女员工正在修理出现故障的机器人时,它突然启动,将修理女工活活压死。

报告参照美国科幻小说作家艾萨克・阿西莫夫提出的“机器人学三大法则”,将其作为立法框架,对机器人自我意识觉醒后的行为规范做出规定。“机器人学三大法则”包括: 1.机器人不得伤害人,也不得见人受到伤害而袖手旁观。2.机器人应服从人的一切命令,但不得违反第一法则。3.机器人应保护自身的安全,但不得违反第一、第二法则。由于规则无法转化为代码,欧洲议会正在着手建立一个针对机器人和人工智能研发的机构,为设计、生产和操作机器人的人员提供技术、伦理和监管方面的专门知识等。

报告还提出:1.在设计新型机器人时,设计师应该尊重人类的基本人权,事先获得道德研究委员会的批准。2.必须为机器人注册,以便在调查事故时查找涉事的机器人。3.确保机器人安装有“死亡开关”,可以随时被关闭。4.机器人不能对使用者造成“身体或心理伤害”。如果酿成事故,机器人不能逃脱责任。机器人所负担的责任应该与其接收的实际指令及其自主程度相对应:它的学习能力和自主性越高,那么人的责任就较低;倘若它“受教育”的时间越长,教它的“老师”负的责任就越大。报告还指出,机器人的生产商或拥有者将来需要购买保险,来承担机器人可能造成的损失。

人类与机器人的关系将会引起一场涉及私隐、尊严和安全的大讨论,在欧洲议会投票赞成立法之前,各成员国政府将对此做进一步的辩论和修正。

“机器人应当纳税”

英国牛津大学近期一项调查结果显示,今后数十年间,自动化改变生产线的速度将超过20世纪。在经济合作与发展组织(OECD)成员国,57%的工作岗位有被自动化取代的风险。英国中央银行英格兰银行预测,在自动化浪潮中,危在旦夕的英国工作岗位多达1500万个。美国白宫2016年预测,机器人取代时薪低于20美元以下岗位、介于20~40美元岗位和时薪40美元以上岗位的概率分别为83%、31%和4%。

在美国微软公司创始人比尔・盖茨看来,为暂时性减缓自动化蔓延速度,很有必要向企业为雇用机器人员工而征税,税单将是阻止机器人取代人类工作岗位的杀伤性武器。如果机器人将大范围取代人类工作岗位,那它们至少应为此买单。“目前一个人类员工在工厂中创造了5万美元的价值,这个价值会被征税。人类员工需要缴纳各种税,如所得税、社会保障税以及其他税款。如果一个机器人在工厂做与某个工人同样的事情,我们也应按同等水平向它征税。”

盖茨同时认为,尽管一些工作岗位可能被机器人取代,但人们可以在那些所需技能是机器人无法复制的领域里继续工作。世界需要抓住机遇解放劳动力,让人们从事更好的工作,例如关爱老人和帮扶特需群体。在这些领域,人类具有独特的同情心和理解力。

法国社会党总统候选人伯努瓦・阿蒙也呼吁法国对机器人征税,部分税收用于补贴全民基本收入保障。越来越多的政界人士和硅谷富翁支持推出全民基本收入保障,以化解自动化引发的大范围失业。而反对机器人税的人士则持这样的观点:自动化即使在短期也可以借助提高生产率创造新的就业岗位。

“人类需要成为‘半机器人’”

美国特斯拉汽车公司首席执行官伊隆・马斯克在2017年2月13日迪拜举行的 “世界政府峰会”上表示,未来20年,驾驶人员的工作将被人工智能所颠覆,之后全球12%~15%的劳动力将因为人工智能而失业。“从技术角度讲,最迫切的影响会来自自动驾驶汽车。它到来的速度将远快于人们的预期,当然它会为人类提供极大的方便。”

篇9

关键词:人工智能 情感 约束

中图分类号:TP18 文献标识码:A 文章编号:1007-3973(2013)001-085-03

1引言

人工智能(Artificial Intelligence,AI)自从20世纪50年代产生,经过长期发展,已经有了长足的进步,并且已经深入到社会生活的诸多领域,如语言处理、智能数据检索系统、视觉系统、自动定理证明、智能计算、问题求解、人工智能程序语言以及自动程序设计等。随着科学技术的不断发展,现在的人工智能已经不再是仅仅具有简单的模仿与逻辑思维能力,人们也越来越期待人工智能能够帮助或者替代人类从事各种复杂的工作,加强人的思维功能、行为功能或是感知功能。这就要求人工智能具有更强的情感识别、情感表达以及情感理解能力。通俗的说,为了使得人工智能对外界的变化适应性更强,需要给它们赋予相应的情感从而能够应对这个难以预测的世界。

在赋予人工智能“情感”的过程中,面临着许多的问题,有科技层面上的,也有社会学层面的。本文在这里只讨论其中一个比较基本的社会学问题:“人工智能情感约束问题”,即关注于如何约束赋予给人工智能的情感,不至于使其“情感泛滥”。情感指的是一种特殊的思维方式,人工智能具有了情感后的问题是:人工智能的情感是人类赋予的,人工智能自身并不会创造或者控制自己的情感。如果赋予人工智能的情感种类不合理,或者是赋予的情感程度不恰当,都有可能造成“情感泛滥”并导致一些灾难性的后果。例如,当人工智能具有了情感之后,如果人类自身管理不恰当,有可能导致人工智能反过来伤害人类。尽管目前我们只能在一些科幻作品中看到这种情况发生,但谁也不能保证未来有一天会不会真的出现这种悲剧。

本文第二章对人工智能情感研究进行了概要性回顾,第三章对如何约束人工智能情感进行了尝试性探讨,最后一章对全文进行了总结。

2人工情感发展情况概述

随着科学家对人类大脑及精神系统深入的研究,已经愈来愈肯定情感是智能的一部分。人工情感是以人类自然情感理论为基础,结合人工智能、机器人学等学科,对人类情感过程进行建模,以期获得用单纯理性思维难以达到的智能水平和自主性的一种研究方向。目前,研究者的研究方向主要是人工情感建模、自然情感机器识别与表达、人工情感机理等四个方面的内容。其中,尤以人工情感机理的研究困难最大,研究者也最少。

目前人工情感在很多领域得到了应用和发展,比较典型的是在教育教学、保健护理、家庭助理、服务等行业领域。在教育教学方面比较典型的例子是德国人工智能研究中心发展的三个方案:在虚拟剧场、虚拟市场和对话Agent中引入情感模型和个性特征来帮助开发儿童的想象力及创造力。在保健护理方面比较典型的是家庭保健与护理方向,如Lisetti等人研制的一个用于远程家庭保健的智能情感界面,用多模态情感识别手段来识别病人的情感状态,并输入不同媒体和编码模型进行处理,从而为医生提供关于病人简明而有价值的情感信息以便于进行有效的护理。服务型机器人的典型例子是卡内基梅隆大学发明的一个机器人接待员Valerie。Valerie的面孔形象的出现在一个能够转动方向的移动屏幕上时可以向访问者提供一些天气和方位方面的信息,还可以接电话、解答一些问题;并且Valerie有自己的性格和爱好,情感表达较为丰富。当然这些只是人工情感应用领域中的几个典型的例子,人工智能情感的潜力仍然是巨大的。

尽管关于人工情感的研究已经取得了一定的成果,给我们带来了很多惊喜和利益,但由于情绪表现出的无限纷繁以及它与行为之间的复杂联系,人们对它的运行机理了解的还不成熟,以致使得目前人工情感的研究仍面临着诸如评价标准、情感道德约束等多方面问题。所以必须清楚的认识到我们目前对于人工情感的计算乃至控制机制并没有一个成熟的体系。

3对人工智能的情感约束

正如上文所述,如果放任人工智能“情感泛滥”,很有可能会造成严重的后果。为了使人工智能技术更好的发展,使智能与情感恰到好处的结合起来,我们有必要思考如何对赋予人工智能情感进行引导或者约束。

3.1根据级别赋予情感

可以根据人工智能级别来赋予其情感,如低级别人工智能不赋予情感、高级别人工智能赋予其适当的情感。众所周知,人工智能是一门交叉科学科,要正确认识和掌握人工智能的相关技术的人至少必须同时懂得计算机学、心理学和哲学。首先需要树立这样的一个观点:人工智能的起点不是计算机学而是人的智能本身,也就是说技术不是最重要的,在这之前必须得先解决思想问题。而人工智能由于这方面没有一个严格的或是量度上的控制而容易出现问题。从哲学的角度来说,量变最终会导致质变。现在是科学技术飞速发展的时代,不能排除这个量变导致质变时代的人工智能机器人的到来,而到那个时候后果则不堪设想。因此,在现阶段我们就应该对人工智能的情感赋予程度进行一个约束。

根据维纳的反馈理论,人工智能可以被分成高低两个层次。低层次的是智能型的人工智能,主要具备适应环境和自我优化的能力。高层次的是情感型的人工智能,它的输入过程主要是模仿人的感觉方式,输出过程则是模仿人的反应情绪。据此我们可分别将机器人分为一般用途机器人和高级用途机器人两种。一般用途机器人是指不具有情感,只具有一般编程能力和操作功能的机器人。那么对于一般用途的机器人我们完全可以严格的用程序去控制它的行为而没必要去给他赋予情感。而对于高级层面的情感机器人来说,我们就适当的赋予一些情感。但即使是这样一部分高层次的情感机器人,在赋予人工情感仍然需要考虑到可能会带来的某些潜在的危害,要慎之又慎。

3.2根据角色赋予情感

同样也可以根据人工智能机器人角色的不同选择性的赋予其不同类型的情感。人类与机器合作起来比任何一方单独工作都更为强大。正因为如此,人类就要善于与人工智能机器合作,充分发挥人机合作的最大优势。由于计算机硬件、无线网络与蜂窝数据网络的高速发展,目前的这个时代是人工智能发展的极佳时期,使人工智能机器人处理许多以前无法完成的任务,并使一些全新的应用不再禁锢于研究实验室,可以在公共渠道上为所有人服务,人机合作也将成为一种大的趋势,而他们会以不同的角色与我们进行合作。或作为工具、顾问、工人、宠物、伴侣亦或是其他角色。总之,我们应该和这些机器建立一种合作互助的关系,然后共同完任务。这当然是一种很理想的状态,要做到这样,首先需要我们人类转变自身现有的思维模式:这些机器不再是一种工具,而是平等的服务提供人。

举例来说,当机器人照顾老人或是小孩的时候,我们应该赋予它更多的正面情绪,而不要去赋予负面情绪,否则如果机器人的负向情绪被激发了,对于这些老人或者小孩来说危险性是极大的;但是,如果机器人是作为看门的保安,我们对这种角色的机器人就可以适当的赋予一些负向的情绪,那么对于那些不按规则的来访者或是小偷就有一定的威慑力。总之,在我们赋予这些智能机器人情感前必须要周到的考虑这些情感的程度和种类,不要没有顾忌的想当然的去赋予,而是按分工、作用赋予限制性的情感约束,达到安全的目的。

3.3对赋予人进行约束

对人工智能情感赋予者进行约束,提高赋予者的自身素质,并定期考核,并为每一被赋予情感的人工智能制定责任人。

纵观人工智能技术发展史,我们可以发现很多的事故都是因为人为因素导致的。比如,首起机器人杀人案:1978年9月的一天,在日本广岛,一台机器人正在切割钢板,突然电脑系统出现故障,机器人伸出巨臂,把一名工人活生生地送到钢刀下,切成肉片。

另外,某些研究者也许会因为利益的诱惑,而将人工智能运用在不正当领域,或者人工智能技术落入犯罪分子的手中,被他们用来进行反对人类和危害社会的犯罪活动。也就是用于所谓的“智能犯罪”。任何新技术的最大危险莫过于人类对它失去控制,或者是它落入那些企图利用新技术反对人类的人的手中。

因此为了减少这些由于人而导致的悲剧,我们需要对这些研究者本身进行约束。比如通过相应的培训或是定期的思想政治教育、或是理论知识的学习并制定定期的考核制度来保证这些专家自身的素质,又或者加强对人工智能事故的追究机制,发生问题能立即查询到事故方等等,通过这样一系列强有力的硬性指标达到减少由于人为因素导致悲剧的目的。

3.4制定相应的规章制度来管理人工智能情感的发展

目前世界上并未出台任何一项通用的法律来规范人工智能的发展。不过在1939 年,出生在俄国的美籍作家阿西莫夫在他的小说中描绘了工程师们在设计和制造机器人时通过加入保险除恶装置使机器人有效地被主人控制的情景。这就从技术上提出了预防机器人犯罪的思路。几年后, 他又为这种技术装置提出了伦理学准则的道德三律:(1)机器人不得伤害人类,或看到人类受到伤害而袖手旁观;(2)在不违反第一定律的前提下,机器人必须绝对服从人类给与的任何命令;(3)在不违反第一定律和第二定律的前提下,机器人必须尽力保护自己。这一“机器人道德三律”表现了一种在道德忧思的基础上,对如何解决人工智能中有害人类因素所提出的道德原则,虽然得到很多人的指责,但其首创性还是得到公认的。尽管这个定律只是小说家提出来的,但是也代表了很多人的心声,也是值得借鉴的。

那么对于人工智能情感的约束呢?显然,更加没有相应的法律法规来规范。那么,我们就只能在赋予人工智能情感的道理上更加的小心翼翼。比如,我们可以制定一些应急方案来防止可能导致的某些后果,也即出现了问题如何及时的处理之。另外我们在操作和管理上应更加慎重的去对待。也希望随着科学技术的发展,能够在不久的将来出台一部相应的规章制度来规范人工智能情感的管理,使之更加精确化、合理化。

4结束语

人工智能的情感研究目的就是探索利用情感在生物体中所扮演的一些角色、发展技术和方法来增强计算机或机器人的自治性、适应能力和社会交互的能力。但是现阶段对这方面的研究虽然在技术上可能已经很成熟,但是人工智能情感毕竟是模拟人的情感,是个很复杂的过程,本文尝试性的在人工智能发展中可能遇到的问题进行了有益的探讨。但是不可否认仍然有很长的道路要走,但是对于人工智能的发展劲头我们不可否认,将来“百分百情感机器人”的问世也许是迟早的事情。

参考文献:

[1] 赵玉鹏,刘则渊.情感、机器、认知――斯洛曼的人工智能哲学思想探析[J].自然辩证法通讯,2009,31(2):94-99.

[2] 王国江,王志良,杨国亮,等.人工情感研究综述[J].计算机应用研究,2006,23(11):7-11.

[3] 祝宇虹,魏金海,毛俊鑫.人工情感研究综述[J].江南大学学报(自然科学版),2012,11(04):497-504.

[4] Christine Lisett,i Cynthia Lerouge.Affective Computing in Tele-home Health[C].Proceedings of the 37th IEEE Hawaii International Conference on System Sciences,2004.

[5] Valerie.The Roboceptionist[EB/OL].http://.

[6] 张显峰,程宇婕.情感机器人:技术与伦理的双重困境[N].科技日报,2009-4-21(005).

[7] 张晓丽.跟机器人谈伦理道德为时尚早[N].辽宁日报,2011-11-04(007).

[8] Peter Norvig.人工智能:机器会“思考”[J].IT经理世界,2012(Z1):331-332.

[9] McCarthy J.Ascribing Mental Qualities to Machines1A2. In Ringle M,editor,Philosophical Perspectives in Artificial Intelligence1C2,Humanities Press Atlantic Highlands,NJ,1979:161-195.

篇10

技术层面:以骨干企业为创新主体,结合高校、科研院所等智力资源,着力突破一批重大共性关键技术。

自然语言处理。研发自动分词、命名实体识别、词性标注等自然语言处理基础技术,开展语法分析、语义分析、对话管理、意图检测等深度技术研究,重点突破对话级别的语义理解及知识问答技术,语篇级别的语义理解分析技术和高精度的文本情感分析技术等。

计算机视觉。利用深度学习技术提升识别效果,研发面向电视遥控、手机遥控、汽车导航等交互领域的手势识别技术;研发面向人数估计、拥堵分析、目标跟踪、异常检测等的大规模人群视频监控与智能分析技术,形成具有国际先进水平的、完整的自主知识产权、可转移转化的计算机视觉软件系统。

机器学习。通过实现可以灵活变换的网络拓扑结构,应对不同类型数据的隐层模型、百亿级别的数据处理能力和模型尺度;赋予机器类人脑的时空认知能力,形成机器学习的时空建模框架和更接近人类感知系统的神经网络。

知识图谱。面向教育、互动娱乐、智能客服等特定领域,研究大规模知识图谱中不同类型知识的表示框架与学习机制,从非结构化或半结构化的互联网信息中获取有结构的知识,探索多源异构信息的知识获取与融合表示,自动构建知识图谱,并研究知识表示驱动的推理技术。

平台层面:依托统一平台实现智力、数据、技术和计算资源的高效对接,促进产学研用联合创新。

人工智能共性技术研发平台。加强智能语音处理、计算机视觉、生物特征识别、自然语言处理、机器翻译、知识图谱、智能逻辑推理、机器自主学习、智能机器人等重大共性关键技术研发,为行业及有潜力的应用创新开发企业和个人提供核心技术支撑,提供成熟的智能人机交互、自然语言处理、自动知识检索等共性技术引擎及产品。

人工智能开放支撑服务平台。基于面向人工智能领域的大规模分布式软硬件基础设施,汇聚企业、高校、科研院所以及创业者等社会多方力量,建设面向全行业和创新应用开发者提供人工智能算法和服务支撑的云服务平台,实现技术向产业活动和经济发展的高效转化,推动传统产业和社会服务向智能化方向发展。

人工智能产业公共服务平台。支持和鼓励业内政产学研用等单位,整合业内相关资源,建立涵盖战略研究、咨询服务、标准制定、评测认证、应用示范等功能于一体的产业公共服务平台,为行业发展提供全面支撑。

应用层面:结合共性技术研发和平台建设实际,优先推动在服务机器人、无人驾驶、信息安全等领域示范应用。

智能客服。研发面向智能客户服务的智能语音、语义理解等共性关键技术,构建特定领域知识库,研发自助客服、商业智能、生物特征识别认证等平台系统。

服务机器人。重点研发面向家庭环境的语音增强、室内定位和导航跟踪等共性关键技术,整合传感器和机械控制相关技术成果,实现软硬件一体化的服务机器人综合系统,并在家庭、教育、医疗等方面形成示范应用。