人工智能对教育的价值范文
时间:2023-08-24 17:40:56
导语:如何才能写好一篇人工智能对教育的价值,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
人工智能概念是20世纪五六十年代正式提出的,随着信息技术的不断发展,人工智能已成为一门新的技术科学。时至今日,人工智能技术的发展经历了人工智能起步期、专家系统推广期和深度学习期等阶段,而在应用领域也取得了重大突破,如Google的无人驾驶技术和运用深度学习算法的AlphaGo战胜围棋冠军等。除此之外,人工智能已被日益广泛地应用于经济社会各个领域,在教育领域亦是如此。2018年教育部就印发了《高等学校人工智能创新行动计划》,要求进一步提升高校人工智能领域科技创新、人才培养和服务国家需求的能力。因此,人工智能必将不断被融合到教育领域,并为大学教育变革提供新方式。基于人工智能的机器学习、人机交互与知识图谱等技术方法,可以为大学英语教师在课堂教学、备课与教学研究等多个方面提供支撑;可以为大学英语教学管理与治理提供决策支持;可以为大学生英语自主学习和教师备课提供智能推荐支撑。目前,学者们已对人工智能对英语教育的影响进行了相关的研究。如高华伟分析了外语作文智能评阅与形成性评价融合策略;刘洋针对人工智能技术与高校英语教学的相互关系,通过调查问卷和访谈等方式,分析了现有计算机辅助语言学习软件和系统的不足,并提出了相应的解决策略;张艳璐对人工智能在给英语教学带来机遇的基础上,探究了人工智能在大学英语教学中的应用;赵生学分析了人工智能时代大学英语教学的变革与策略;严燕分析了人工智能时代英语教学促进学生深度学习的路径。在人工智能时代,人工智能技术必将对大学英语教育领域各个方面产生重大影响,如大学英语人才培养目标、教学内容、教学计划、教学策略、教学模式、成绩评价体系与英语领域科研等方面。针对此,本文在现有研究的基础上,重点从教师和学生两个层面分析人工智能对大学英语教育的积极影响和消极影响,并提出相关建议,以期为大学英语教师教学与大学生英语学习提供参考。
一、人工智能的积极影响
人工智能技术在大学英语教育领域的应用,将对大学英语教学资源、教学模式与大学生二语习得等方面产生积极作用,主要体现为以下几个方面。
(一)丰富了大学英语教与学资源人工智能技术的发展与应用为大学英语教与学提供了丰富的资源。如互联网上含有丰富的英语视频与图片等资源;在线教育平台也提供了大量的英语课程资源,如中国大学生慕课、雨课堂等,它们各具特色,可为教师与学生提供多样化选择。因此,人工智能技术一方面可为大学英语教师提供丰富的教学素材,同时还可根据大学生学习目标与学习习惯等为其英语学习提供丰富的课外资料。同时,很多网络资源可下载或者回放,这样可以使得大学生的英语学习不再受到时间与空间的限制。特别是对于教育资源缺乏的地区而言尤为重要,可以在很大程度上解决教育资源不平衡问题。其中,百度教育大脑的智能备课系统便是典型应用案例。其依托百度人工智能、大数据和云平台的优势,整合了丰富的优质资源。对于教师而言,此平台可按照教学进度为教师提供经过筛选的教学素材,节省教师的备课时间,提高其工作效率。
(二)丰富了大学英语的教学方式传统的大学英语授课往往以线下课堂教学方式为主,而人工智能技术的使用丰富了大学英语单一的教学方式。可利用网络平台,如雨课堂、慕课平台等,开展大学英语线上教学模式或者线上线下混合教学模式。新的教学模式有利于教师在大学英语教学过程中采用不同的教学策略。使用新的教学模式和不同的教学策略可以提高大学生学习英语的兴趣,进而有助于提高大学生英语习得的效率。
(三)提高了大学生英语习得的效率由于英语习得是一个复杂的心理过程,与大学生的情感因素、学习动机等密切相关。采用人工智能技术的大学英语线上教学方式,使得教师与学生之间不是面对面的交流互动,可以在一定程度上缓解学生焦虑、害怕等情绪,有利于学生的英语学习。动机是英语习得中重要的非智力因素,也是影响大学生英语习得效率的重要内在因素之一。学习动机与使用另一种语言的兴趣密切相关。而人工智能技术采用丰富的英语学习资源以及英语教学方式的多样化,这些有助于提高学生学习英语的兴趣,进而增强学习英语的动力。
(四)形成了大学生英语习得分析数据库人工智能技术是以大数据为依托,可以跟踪和记录大学生英语课堂学习和课后学习等各种信息数据,进而可形成大学生英语习得数据库。基于大数据分析与人工智能技术方法,如数据挖掘、关联性分析和回归预测等,可以挖掘大学生英语学习背后的规律特征,了解到每个学生的具体情况。进而构建每个学生的英语学习画像,如学生的线上学习状态、课程作业完成情况、测试成绩和学习方式等。可为教师形成可视化的学生个体和班级整体的学情分析报告。因此该数据库有利于教师掌握每位学生的英语学习状态,掌握学生个体差异,为调整教学方式、教学方法与策略提供支撑。同时,上述数据为大学英语教学与大学生英语习得的研究也提供了数据支撑。
二、人工智能的消极影响
人工智能在大学英语教育领域对教师与学生发挥着积极的作用,同时对他们也产生了一些消极的影响,主要体现为以下几个方面:
(一)对教师的消极影响由于大学英语课堂教学存在一定的缺陷,往往需要改进此教学方式。而人工智能技术的应用,虽有助于大学英语教学改革,但还需要教师熟练掌握人工智能相关技术的使用,会给信息技术能力比较薄弱的教师造成压力。借助人工智能平台,大学英语教学不受时间、空间和学生人数等影响,势必会减少大学英语教师的需求,造成大学英语教师面临失业的压力。进而影响大学英语教师的工作积极性,以及大学英语教学质量。
(二)对学生的消极影响根据语言资本理论与期望价值理论,大学生英语学习的期望价值主要是经济期望价值。而大学生英语学习的期望价值与学习目的和行为密切相关。比如大学生英语学习经济期望价值主要体现为学习英语对未来找工作很重要,可以增加经济收入。而人工智能技术在语言领域的应用,势必会影响大学生对英语学习的期望价值。如人工智能翻译机的出现,使得各种语言之间翻译非常容易。即使不懂英语,也可使用它进行英语交流。因此,人工智能技术在英语领域的应用,将降低大学生英语学习的期望值,进而影响他们英语学习的兴趣与目的。
(三)对师生关系的消极影响基于人工智能技术的大学英语教学,将改变传统的以教师为中心的模式,使得教师在教学过程中的中心地位得到弱化。学生通过人工智能技术,可以很好地收集到自己需要的各种英语学习资源,如在线课程、英语讲座视频和英语文本资料等,甚至可以通过自学的方式完成英语学习任务。但这些将弱化教师与学生之间的互动以及情感,从而隔阂了教师与学生之间的关系。
篇2
关键词:人工智能;传统绘画艺术;艺术审美;大数据
传统绘画艺术从地域上来说可以简单的分为中国传统绘画艺术以及西方传统绘画艺术。中国传统绘画多讲究神韵,跃然纸上的色彩和线条都颇具象征性,画家所呈现出的往往是一种意境。传统的西方绘画在文艺复兴时期达到了鼎盛的状态,从画面结构来说比中国传统绘画更注重科学与现实的结合。透视,几何,材料等概念的灵活运用使画作在画家笔下达到了一种均衡的美。无论是中西哪种绘画都需要借用笔,刀等工具,通过墨,颜料等绘画材料,在纸,木板,织物等平面工具上,通过构图、造型和颜色等表现手法,创造出可视的形象。
人工智能(Artificial Intelligence AI)是一门技术科学,主要研究用机器模仿人类的思维、感知等智能活动,用理论、方法、技术及应用系统使机器能够代替人类做复杂的智力劳动。
传统绘画与人工智能作为人类智慧活动的两个方向有着各自不同的特性,但随着科学技术的大力发展,艺术家与科学家在各自不同的领域越来越意识到两者的共同性。人工智能技术在传统绘画上的应用,把科学技术与传统绘画有机地结合在了一起,为创造和传播传统绘画艺术提供了先进的方式,大数据的支持,为传统绘画领域带来了新变革。
一、人工智能下传统绘画艺术的发展与创作
早期用来表现传统绘画的新媒体方式多采用了数字化复刻绘画,或者通过动漫、电影、摄影等方式来表F。融入人工智能技术后,传统绘画艺术就范围来说仍然属于新媒体艺术的一个组成部分,但却呈现出了多样的变化。
自1973年始,Harold Cohen(画家,San Diego加州大学教授)所编译的电脑程序“AARON”就开始了自动绘画的过程。
2013年,电脑程序“The Painting Fool”,在巴黎举办了展览会,新闻媒体竞相报道,其中部分作品花了多年时间创作。从形式上来说这就是一场传统意义上的艺术作品展。
年初Google旗下的深度学习神经网络研究小组通过算法教会计算机自主创作绘画的能力。Google称其为Deep Dream。本次绘画作品展引来了大批对科技与现代艺术感兴趣的观众。最终,由人工智能创作的绘画被一位专业的拍卖商拍下,最高单幅的价格甚至达到了八千美元。在Deep Dream的创作中主体内容包括了各种天马行空的海景,漩涡;风格奇幻的城堡以及各种拥有三头六臂的动物。从风格上看接近法国的后期印象派,有轮廓但不具体,有缤纷的色彩,但却不是客观物体原来的色彩,然而整幅画面的跃动感却似乎能表达出作者的主观情感。
此外,受众们可以利用公开的代码,编译出属于自己的Deep Dream图像,艺术家的灵感有时来源于对某一物体的想象。Deep Dream正是从这个方面折射出了人类的创造力和想象力。
人工智能创作传统绘画不得不提到两个概念,即深度学习和神经网络。2006年,杰弗里・希尔顿等人提出了深度学习的概念。深度学习是人工智能学科下的一个分支,通过编译教导计算机进行无监督学习,以此来解决深层优化的问题。深度学习概念是目前人工智能像人脑一样处理数据的关键算法。
人工神经网络,它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。(百度百科)
Deep Dream中的画作即是由人工神经网络创作,也就是用软件模拟大脑神经元处理信息的方式。软件先要接受大数据训练,通过分析数百万个大数据后才能识别图像中的物体。在Deep Dream创作绘画的过程中,程序先向神经网络输入一张图片,然后由神经网络进行自我调整,软件之前已经有了数据库,神经网络要从中寻找出与数据库中物体相似的地方再进行编译,于是一幅人工智能画作就完成了。
二、人工智能下的传统绘画艺术传播的文化价值
人工智能创作的绘画在传播时呈现了两级分化的局面,一方面有人高价收购人工智能绘画,而另一方面,有人却对这样的迷幻风格难以接受。暂不论人工智能绘画的画作质量,在文化价值上,人工智能绘画是否能算是创作并且富有感染力吗?
绘画创作就其动机来说存在多种类别,有的是有感于情境而创作,作者将情感上的汇集融入绘画作品;有的是为特定目的而创作,比如早期石刻的农耕渔织狩猎图等;还有的画作则是为了宣扬宗教观念,教育宗教信徒而创作。由此可见,在这些创作动机中,既存在单纯表达情感思想的艺术,也有为传播特定信息的艺术,还有为将宗教观念具象化,通过绘画创作更直观的进行表达的艺术。在评论艺术的本质时,有感于情境而作的绘画创作更接近绘画艺术的本质,在这种绘画艺术作品中可能包含了普遍的对人类情感及相关价值观的探索。或许,人工智能下的绘画艺术应该独立成为一个门类,毕竟相较于人工智能的逻辑化、程序化。绘画艺术应是属于人类展现天赋,表达情感的领域。
传统绘画艺术诞生至今,文化价值的体现皆是因为画作中的主体性、不确定性、奇思妙想,抽象感知展现了人类灵魂深处的情感。
三、人工智能下传统绘画艺术的传播
绘画作品具有其独特的传播的功能,首先绘画是一种是具备信息承载能力和传播能力的传播介质。其次,绘画作品中的内在感染力以及受众欣赏过程中能动的二次创作也为传统绘画作品的传播提供了动因。此外,经济基础决定上层建筑,随着人们物质水平的逐年提高,越来越多的人们走进博物馆,美术馆,艺术长廊等多种艺术场所,借由这些渠道了解艺术,欣赏艺术,以此来满足精神需求的增长,由此可见,当下艺术产业领域正受到各方的重视。然而现代社会,艺术生产与艺术消费市场分离的局面,也使传统绘画作品的传播成为必然趋势。
对艺术信息产生情感反馈是人类独有的思维和能力,通过人工智能的神经网络以及大数据分析不仅能创作绘画,还能对传统的绘画艺术作品进行分析判断,继而整理出一套基于大数据分析的传播方案。这样的方案是否可行呢,在当今这个信息爆炸以及媒介去中心化的时代下,越来越多的受众通过各种方式接触到传统绘画艺术,因此当受众面临绘画艺术鉴赏时,便产生了选择障碍。
传统的绘画艺术传播是指在艺术创作和鉴赏阶段所形成的人内信息交流。它的传播模式分为人际传播,把关人推荐和群体传播等。这些传统的传播方式经过多年来的验证确实具有一定的实际意义的,但在针对个体差异上的分类推荐却不是很明显,面对庞大的信息量以及高度差异化的传播需求,如今传统的艺术传播方式,其可行性正在逐渐下降。而人工智能应用于艺术传播,通过云计算可以精确而高效地分析和处理艺术信息。并且通过庞大的大数据资源加强索引优势,速度与精度的大幅度提升正是传统的艺术传播过程中所缺失的。
τ诨婊艺术来说,千人千面,每个人都有自己独到的理解,同一件作品可能有的人喜爱,而有的人无感,在海量绘画作品中筛选出针对目标受众的艺术作品,尤其是不具备绘画专业知识的受众在面对诸多绘画作品时,往往会没有头绪,不知如何进行选择和鉴赏。
四、结语
在人工智能传播传统绘画作品时,受众并不纯粹只是受者,而是具备了双重身份,由被动的欣赏者转变为了主动的创作者。借助神经网络,每个人都具备通过绘画表达内心情感的能力。虽然当前的人工智能下传统绘画艺术的发展还存在这一定的不确定性,但是相信随着人工智能技术的高速发展,今后人工智能创作的绘画一定会在现今的绘画领域独树一帜。此外人工智能的神经网络尚不能对所有绘作品充分理解,但是在速度和精度方面却得到了很大的提升,如果再结合当下其他一些完善的学科,比如结合个体信息,设计心理学,消费学,历史学,哲学等多方位的研究。人工智能系统就能根据受众的个人信息等预测处其的欣赏层次以及需求推荐给受众相应的作品。
人工智能使传统的绘画艺术具备了无限延伸的维度空间和各种难以预料的不确定性,颠覆了传统的绘画传播体系,实现了传统绘画艺术最本质的创作与传播。
【参考文献】
[1]陈端端.艺术传播的人工智能应用需求研究[D].东南大学,2014.
[2]刘峰.传统绘画艺术的新媒体传播研究[D].山东大学,2012.
[3]李连德.一本书读懂人工智能(图解版)[M].北京:人民邮电出版社,2016.
[4]李同娟.人工智能能否创造艺术[D].中国传媒大学,2015.
[5]郭全中.大数据时代下的智能传播及其盈利模式,2015(01):15-19.
篇3
关键词:人工智能;教学改革;教学方法
引言
人工智能(ArtificialIntelligence)是一门研究和模拟人类智能的跨领域学科,是模拟、延伸和扩展人的智能的一门新技术。由于信息环境巨变与社会新需求的爆发,人工智能技术的日趋成熟。随着AI3.0时代的到来,大数据、云计算等新技术的应用也愈发广泛,对于管理类人才来说,加强对人工智能知识的深入学习,不断将人工智能技术与管理知识结合起来,对其未来职业生涯的发展有着重要作用。人工智能是一门前沿学科,管理学院开设人工智能课程的目的是为了更好地培养学生的技术创新思维与能力,基于其覆盖面广、包容性强、应用需求空间巨大的学科特点,通过概率统计、数据结构、计算机编程语言、数据库原理等基础课程的学习,加强学生解决实际问题的能力,为就业打下基础。本文基于社会对于人工智能领域的人才需求,结合诸多长期从事经管类专业课程教学的老师意见,针对管理类人才的人工智能课程教学内容与方法进行探讨,以期对中国高校人工智能课程教学改革研究提供帮助与借鉴。
1、教学现状与问题
作为一门综合性、实践性和应用性很强的理论技术学科,人工智能课程内容及内涵及其丰富,外延极其广泛。学习这门课程,需要较好的数学基础和较强的逻辑思维能力。针对管理类人才,该课程在课程教学过程中存在几个较为突出的问题。(1)课堂教学氛围枯燥目前,中国大多数大学仍采用传统的课堂教学模式,在教学过程中照本宣科,忽略与学生的互动,并且缺乏能够有效引起学生学习兴趣与加深知识理解的教学环节设置,如此一来大大降低了学生自主思考的能力。在进行人工智能相关课程知识讲解时,随着章节的知识难度不断增加,单向介绍式的枯燥教学方式无法反映人工智能学科的全貌,课堂讲解难以同时给以学生感性和理性的认知,部分学生因乏味的课堂氛围渐渐无法跟上教学进度,导致学习动力不足。(2)基础课程掌握不牢管理类专业的学生大部分都会走向更加具体化的管理岗位,具有多学科的素养,但这也导致很多学生所学知识杂而不精。学生在基础不夯实的情况下去学习更高层面的知识,给学生学习与老师教学都造成了很大困扰。人工智能课程知识点较多,涵盖模式识别、机器学习、数据挖掘等众多内容,概念抽象,不易学习。一些管理类专业的学生未能熟练掌握高等数学、运筹学、数据结构、数据库技术等先修课程,缺乏一定的关联思考和研究意识,导致课程学习难度增加,产生学时不足和教学内容难点过多的问题。(3)教学与实际应用脱节当下,人工智能广泛应用于机器视觉、智能制造等各个领域,给学生提供了大量的现实案例,使得人工智能不再是高深莫测的理论,而是现实中可以触及的内容。例如,在机械学科领域,人工智能技术是电气工程、机械设计制造、车辆工程等方向的重要技术来源;在医疗领域,是医疗器械的创新生产源动力;在能动领域,是高端能源装备与新能源发展的重要驱动;在光电信息与计算机工程领域,技术的发展时刻推动着智能科学与技术核心价值的提升。然而,对于管理类专业的学生来说,现阶段的人工智能教材涵盖许多智能算法及相关理论,在教学过程中常常涉及到很多从未接触过的抽象理论和复杂算法,书本中的应用实例大多纸上谈兵,缺乏专门适用于管理类专业知识与人工智能技术相结合的教学实践,加上一些教师授课方法单一,不利于引导学生将人工智能算法应用于现实生活。另外,大学生对知识的理解能力差异很大,教师采用统一的方式教给他们,这使一些学生无法跟上和理解,教师也无法控制学生的学习状况,导致学生缺乏动力。因此,如何结合学生的现实情况,提高他们的动手能力和实践经验也是人工智能课程教学要考虑的问题。
2、管理类人才的人工智能课程教学改进策略
课程教学改革是一项提高大学教学效果和人才培养质量的重要手段。如何在时代背景下应用新技术和新思想进行实施课程教学改革是高校亟待解决的问题。对于高校的教学工作而言,教学目标、教学内容和教学方式的变化不再是课程资源的简单数字化和信息化,而是充分利用时代信息资源优势的新型教学模式。针对管理类专业人工智能课程教学过程中存在的问题,可以从教学方法改进和教学内容设置两个方面进行课程教学改进。
2.1教学方法改进
教师对学生具有引领作用,其教学方法的改进能够带动学生改进自身学习方法。(1)启发式案例教学案例教学法就是教师根据教学目标、教学内容以及教学要求,通过安排一些具体的教学案例,引导学生积极参与案例思考、分析、讨论和表达等多项活动,是一种培养学生认知问题、分析和解决问题等综合能力的行之有效的教学方法。启发式案例教学以自主、合作、探究为主要特征,调动学生的学习积极性,并紧密结合人工智能领域的相关理论与方法,有效理解知识要点及其关联性,适用于管理类专业学生的教学。具体而言,高校基于其问题启发性、教学互动性以及实践有用性等特点,可以建立基于人工智能知识体系的教学案例库,虽然这项建设将极具挑战性与耗时性,但具有很强的积极效果:培养学生较强的批判性思维能力,更多地保留课程材料,更积极地参与课堂活动,对提高教学质量、培养具有人工智能背景的管理类人才具有重要意义。例如,通过单一案例教学,让学生掌握相关基础知识原理及应用;通过一题多解的案例使学生思考如何获取最有效的解题方法;通过综合案例的设计,启发学生全方位地探索问题的解决方案。(2)研讨互动式教学研讨互动式的各个教学环节是逐渐递进、有机结合的。研讨是基于学生个体的差异性,在课堂讨论的过程中对学生做出评判,从而对不同类型的学生开展针对性的教学。互动则是在研讨的基础上,通过老师与学生、学生与学生的互动,让学生主动参与到课堂教学的过程中来。在人工智能课程教学过程中,教师通过课堂讨论了解学生对于知识点的掌握情况,可以有针对性地设计教学内容,例如,对于学校积极性不强的学生,将人工智能理论内容与学生个人兴趣范畴、社会产业发展及研究现状联系起来,能够极大程度地提高学生学习的自主能力;对于基础知识较为薄弱的学生,可以在教师的指导下查阅相关文献资料,根据自己的理解撰写心得报告,并在课堂或课外进行师生互动。像这样研讨与互动相结合的模式。有助于增强学生的探索和求知欲望,建立起浓厚的学习氛围。(3)有效激励式教学人工智能是引领未来的战略性技术,人才需求量极大,对教师的教学水平也提出了更高要求,因此,进行有效激励极为重要。在学生激励方面,可以举办各类人工智能竞赛项目,设置相应项目奖学金,吸引学生参与实践,调动学生做研究、发论文的积极性。例如,教育部主办的中国研究生人工智能创新大赛,围绕新一代人工智能创新主题,激发学生的创新意识,提高学生的创新实践能力,为人工智能领域健康发展提供人才支撑。高校也可以借鉴这种模式,在各学院乃至全校开展此类竞赛项目,激发学生的创新能力与团队合作能力,鼓舞更多学生加入到人工智能课程的学习中来,激发其学习兴趣。在教师激励方面,在教师聘任和提升过程中把参加学生课程制定、课堂与课外作业、课程项目和论文指导等看作教学任务的一部分,鼓励教师积极参与这些活动。(4)学科渗透式教学人工智能学科知识融合程度较高,学科交叉性强。基于人工智能的学科交叉性特点,增强管理类人才对学科应用的领悟,可以采取开展学科渗透式教学的方法。从2015年起,国务院和教育部先后印发了《国务院关于积极推进“互联网+”行动的指导意见教育》、《高等学校人工智能创新行动计划》等文件,“互联网+”、“智能+”已经渗透到各个领域,人类进入数字经济时代,社会需求“技术+管理”的高端复合人才。例如,基于工业4.0和强国战略,人工智能技术在智能制造的应用极为广泛。上海理工大学非常重视少数民族预科班的教育质量。为增强少数民族管理类人才对该领域应用的认识,我们请机械工程、能源动力领域的相关专家以授课或讲座的形式,进行相关领域知识和发展趋势的讲解,使学生理解更为透彻。此外,在教学实践过程中,还可以用举办人工智能知识交流会、线上人工智能论坛等形式,促进不同专业间老师、学生对于人工智能知识模块的见解,相互交流、渗透和学习,从而推动人工智能课程教学的改进。
2.2教学内容设置
世界一流大学在人工智能课程内容设置根据不同国家的教育体系设置,肯定会有不同,但颇有共通之处。本文借鉴世界顶尖大学经验,针对管理类专业人工智能课程教学内容进行研究,结合中国教育体系设置,认为应从以下几方面进行改进。(1)核心内容设置为避免学生因为知识点过多而出现杂而不精的问题,势必要精化教学内容。在互联网时代,我们可以使用云计算和其他方式来实现数据信息的传输、存储和处理,通过在线收集和整合网络课程相关数据,挖掘和丰富教学资源,并在整合课程资源的基础上,进行研究方法和前沿知识的扩展。在核心内容设置方面,可以通过收集到的数据资料,选择人工智能领域具有代表性且难易程度适中的知识作为重点,使学生能够在有限的学时内掌握人工智能的知识脉络。例如,编写针对管理类人才的人工智能教材,内容涉及绪论、知识表示与推理、常用算法、机器学习、神经网络等方面的同时,重点增加相应知识点在管理上的应用案例,加强学生对知识点的理解。同时,根据管理类专业偏向领域,开设关联程度较大、应用较广泛的人工智能选修课程,以便学生根据自己的兴趣与需求选修具体方向的课程。(2)注重学生的数理及编程基础良好的数理及编程基础是学习人工智能的前提。只有具备了这些基础,才能搞清楚人工智能模型的数量关系、空间形式和优化过程等,才能将数学语言转化为程序语言,并应用于实验。管理学院人才的数理及编程基础相对薄弱,因此,在安排学生学习人工智能课程之前,建议开设面向全体管理类专业学生的微积分、线性代数、概率论等专业基础数学课程以及C语言、python等编程基础课程,使学生具备数学分析的基础与一定编程基础,为学习人工智能课程打下坚实的基础。另外,可以推进MOOC平台建设,在平台上开设人工智能网络课程,帮助学生掌握人工智能知识基础及专业技能。(3)实验建设为了加强学生对于人工智能知识点间的关联性理解,可以基于不同的应用模块,设计具有前后铺垫、上下关联的综合性实验,设计不同层次的项目要求,同时基于相同的实验课题,让学生分组对实验课题进行攻克,并设置多元化的实验评价体系,通过实验教学过程中反映出的不同进度,让教师能对学生的学习水平做出准确评判,及时进行教学反思,以便更好地开展下一步工作。例如,针对人工智能课程应用中很广的遗传算法,在某一管理规划的具体应用上设置理解-实现-参数分析-具体应用-尝试改进-深度拓展的不同层次的项目要求,在这些项目层次中规定必做项与可选项,让学生基于同一实验课题进行合作学习,然后通过个人自我评价、小组成员互相评价以及教师评价的方式进行打分,对小组整体能力以及个人能力进行综合评估,以期培养学生的自主思考能力。
篇4
关键词:智能时代;会计人才;高校
纵观现如今人们的生活,智能产品已经无处不在,正一步步的改变着大众的生活方式,比如一部智能手机就可以处理很多业务。许多行业也进入了智能化工作时。就会计领域而言,以德勤为首的四大会计师事务所相继推出财务机器人来完成基础会计工作,给会计行业带来了巨大的挑战。
一、智能时代对传统会计工作的影响
(一)改变了会计工作方式,提高了工作效率
近几年的时间里,需要会计人员处理的工作因为智能化的发展同样发生了变化,企业通过建立财务账套系统,日常发生的发票开具、费用报销、凭证填制等业务都可以在财务软件上操作,期末账簿和报表可自动生成;货币结算时也可以通过互联网进行转账。简单的会计工作由于这些变化摆脱掉时空的束缚,不仅可以缩短会计人员的工作时间,工作效率也能有很大的提升。
(二)会计人员工作岗位发生变化
财务机器人的应用取代了处理基础财务工作的人员,使会计人员免于重复基本业务。更多的会计人员将转型到有价值的财务分析、财务决策以及其他管理岗位中。这就需要财会人员具备商务数据挖掘、财务数据分析处理、财务决策和企业管理等能力,能对报表和数据进行深刻解读,提取数据背后的信息,并把这些信息变为对企业经营策略的制定有用的信息。
(三)降低了财务风险,财务数据更加精准
智能机器发生错误的概率微乎其微,未进入智能时代前的会计工作中会有大批量的财务数据需要进行人工处理,不但枯燥还及易出错。人工智能在会计领域的应用保证了会计信息的真实和完整,而且还可以快速选取各种决策所需的相关数据和信息,大大降低了以往人工分析数据差错、数据不全面和数据分析结果滞后造成的财务风险。
二、智能时代会计人才培养存在的问题
(一)会计学专业课程设置存在缺陷
1.财务核算类课程比重偏大。目前大多数大学的会计学专业课程都侧重于财务会计,不够重视财务分析与财务管理,会计核算类课程多,且课程之间重复的内容比较多,这种传统的以财务会计为中心的课程体系已经不适应智能时代对会计人才的需要。2.缺少数据分析课程。智能时代下,财务机器人的应用会使会计数据自动生成,无需会计工作者进行手动计算。公司的财务分析、决策和其他管理工作会需要会计人员来进行,但目前会计学专业缺少数据分析类相关课程的设置,几乎没有学生拥有对财务数据的分析能力。3.理论知识的传授多过实践能力的培养。很大一部分大学的会计学专业都强调理论教学,对实践教学重视不够,导致很多高校学生毕业以后不能把所学的知识很好的应用到会计实际工作中。4.跨学科类课程设置不足。学科交叉是智能时展的主流方向,要把复合型会计人才列为当前各高校的培养目标。而目前,与其他专业学科设置课程整合是会计课程体系没有涉及的领域,各高校的会计学专业毕业生不能实现智能时代对会计复合型人才的需要,只掌握了单一的会计知识。
(二)缺少对学生自学能力的培养
会计是为社会生产活动服务的,必将随着社会的发展而不断变化,所以学生只靠在学校获取的知识是远远不够的,但目前高校教师的传授知识的方式只是讲授这一种,学生没有任何思考过程,只是把知识听了一遍,并不能使他们的自主学习能力有所提升,导致学生在工作中不能很好的适应环境、内容和工作方式等的变化。
(三)应用型师资不足
会计是实践较强的学科,若教师缺少实践经验,就不能很好的培养学生的实践能力。目前很多高校没有重视对应用型教师的培养,而是一味的鼓励教师进行学术研究,这对培养企业需要的会计人才极为不利。
(四)缺乏职业素养教育
职业素养是从业者按照职业岗位要求养成的行为习惯和良好作风,它是工作人员在从事其专业相关的活动中所表现出来的综合素质。会计职业素养就需要每个会计工作人员对会计这个职业有着崇高的理想和信念,遵守会计行业的纪律,履行其责任与义务,不断提升自己的职业技能,对这份职业充满兴趣,并保持良好的工作态度。目前高校对会计学专业学生的培养只停留在知识教育层面,忽视了对会计职业素养的教育,教学方法和考核方式缺乏多样性,各高校毕业生还没有实现智能时代对会计职业素养的要求。
三、智能时代会计人才培养改革策略
(一)完善会计学专业课程体系
1.减少财务核算类课程比重,增加数据分析类课程。高校在制定会计学专业人才培养计划时,要减少会计核算类课程所占的比重,增加管理会计、财务分析、风险分析、财务管理以及内部控制等课程比重。同时像财务分析、数据处理、挖掘业务数据这类有助于提升学生数据分析能力的课程需要增加到必修课中,以提升会计人员的数据分析能力。2.增加实践类课程,鼓励学生顶岗实习。高校不能仅限于传统的理论教学,与会计有关的实践课程的比重需要提高,比如用友、金蝶在财务中的应用,大数据与可视化在会计学中的应用,企业风险分析案例等课程,为了增长实战经验使学生的实际操作能力有所进步。还要与会计领域中已经开展智能化工作的企业进行深度合作,让学生到真实的企业会计工作岗位参加实习,积累工作经验,更好地将理论与实践结合,保障学生毕业后能更好地适应智能化的工作模式。目前市场需求的会计人才与高校培养的会计人才不一致,高校可以通过调查企业对会计人才的需求方向来培养符合市场需求的会计人才。同时高校还应该定期聘请合作企业的优秀财务工作者为学生开设智能时代会计知识的讲座,提高学生对智能会计工作的了解。3.开设学科交叉课程,注重复合型会计人才培养。随着移动互联网、大数据、人工智能、云计算等新技术在会计领域的应用,会计人员的综合素质必须适应市场的需要,会计人才不仅要有会计理论知识,还要掌握诸如管理学、经济学、金融学、法学、统计学、数据分析以及计算机程序设计等相关知识;不仅要具备会计业务处理能力,还要具备创新、团队沟通、组织协调、判断决策、持续学习等智能机器难以复制的能力。因此,在高校会计学专业开设学科交叉课程,培养复合型会计人才至关重要。具体做法是,在公共基础课程模块应开设人文素养、计算机编程和数理统计类课程,对学生进行厚基础、宽口径的培养。在专业基础课程模块应开设经济管理、金融、财经法规和会计职业道德类课程,融入思政元素,培养学生一定的协调管理能力和良好的会计职业价值观。在专业核心课程模块应该增设大数据会计分析、大数据财务决策、新技术与经济一体化发展等课程。
(二)创新教学以及考核评价方式
高校要不断更新教育理念,应以学生的创造性思维为中心,努力提高学生的自主学习能力,加强培养自主解决问题的能力,实施以教以学生为本,教师主导的教学模式。可以利用互联网上的慕课、微课采用线上线下结合、小组讨论、案例分析、实践操作、竞赛等多种教学方法鼓励学生积极参与教学过程,以此增加独立思考的机会,对学生形成良好的终身学习习惯有很大的好处。同时,学习不只是结果考查,要重视对过程的评价,把对学习过程的考评比例提高。可以采用提高平时作业质量、课堂表现在课程学业成绩中的比重,还可以将学生参与小组讨论、操作演示、课后与老师互动等情况的表现纳入考核评价范围。
(三)建设应用型师资队伍
高校会计专业教师在会计人才培养中担任重要角色。智能时代下,会计工作方式发生了巨大的变化,相应的使会计学科体系的内容也出现了改变。作为引导者,高校会计专业教师应自发的地学习与智能时代相关的理论知识和实践知识。与此同时,高校也应该积极为教师提供学习新知识的渠道,可以聘请实务界人工智能专业人员为教师开设大数据、人工智能、信息技术、财务共享等培训讲座,开拓教师的视野,提升教师的理论水平;还可以分批选派教师到行业内优秀的企业进行挂职锻炼,在企业工作中了解人工智能对会计工作的改变,练习操控人工智能进行会计工作,教师要不断地学习实践来适应智能时代,为后续培养适应智能时代的高素质会计人才提供有力保障。
(四)强化职业素养教育
会计学专业是按照企业对会计人员的需求而设立的专业,满足并且符合经济社会以及会计行业的发展要求是各高校培养会计人才的首要目标。智能时代的到来,以往的会计核算能力就已经不是会计人员的核心竞争力了,对会计人员有了更高的职业素养要求。1.培养学生的管理能力。智能时代已经不再需要财务会计,逐渐变为对管理会计的需求,高校也要考虑这一点,提高学生的综合管理能力。作为一名企业的财务管理者,既要拥有一定的会计专业知识,同时还要具备沟通、团队协作、分析研判以及决策等能力。高校可以开展模拟企业管理竞赛或开设模拟企业管理课程,通过搭建标准工作流程让学生感受企业财务部门管理层的日常工作,以及管理人员的工作内容。还要鼓励学生通过参加社团和学生工作组织来锻炼自己的组织管理、团队协作和决策等能力。2.提升学生的创新意识。高校要使学生感受到良好的创新氛围,为学生搭建好创新平台,让学生积极参加“互联网+”大学生创新创业竞赛,指导学生申报大创项目。此外,教师引导学生开展科研项目,在科研中发现创新点,提高教学质量,学生的创新意识也能得到培养,开拓视野,让学生紧跟会计行业发展变化的步伐。3.加强学生的会计职业道德教育。虽然目前高校已经开设会计职业道德的相关课程,但社会上的会计造假案例仍不断出现,因此在高校还应进一步强化会计职业道德教育,从源头入手,在学生时代就要让他们了解职业道德的重要性和违反职业道德的严重的后果,树立正确的会计职业道德观,提高辨别是非的能力、抵抗诱惑的能力,自觉抵制不良社会风气,维护会计的职业尊严,促进良好的会计道德观的形成。
四、结语
智能时代会计人才培养问题已成为我国人才强国战略的重要组成部分。在人类的不断进步下,社会管理领域也会被智能科技产品一步步的占据。因此,智能时代下会计人才培养问题的研究也不是一劳永逸的,培养教育会计人才的内容也要不断进步,使智能技术不断为会计工作带来便捷。
参考文献:
[1]陈小芹.人工智能时代会计人才培养模式[J].商业会计,2019,657(09):127-129.
[2]吴媛媛.人工智能时代会计人才培养新模式探究[J].时代金融,2018,717(35):192.
篇5
“这确实是个很好的问题。”食谱推荐公司Yummly的研究负责人Gregory Druck如此回应道,但这肯定不能被称为一个真正的答案。
这的确令他有点为难。技术在设计时通常都要优先理解并满足人的喜好。同在台上的厨房整合技术公司Innit的副总裁Ankit Brahmbhatt干脆接过了话筒,“每个人的体质不同,对健康的定义也不同。说到底这是个生活方式的问题。我们得先有关于你更全面的数据,才能判断什么对你是健康的。”
人工智能到底能在多大程度上替代人,也成为一年一度的西南偏南上最热闹的话题。
西南偏南诞生在美国德克萨斯州的奥斯汀。每年3月初,这个全球性的盛会会吸引数十万人,和硅谷以大公司、创投行业为主的活动不同,西南偏南会吸引各个行业的人。大家在这里看新的电影,发现创业灵感。更重要的是,讨论技术已经带来的改变,以及它能把人们带到哪里去。
其中有不少想象空间。比如Yummly,这家来自硅谷的公司能利用人工智能技术分析你曾经使用的食谱数据。来自德国的Foodpairing则声称,机器分析食物成分时最大的弱势是嗅觉不及人类灵敏,但是通过训练,机器的精准程度可以超过大多数未经训练的普通人。
还有更激M的Innit。和一些创业公司费尽心思想把吃饭这件得高效不同,这个硅谷公司发现了一个悖论,一些人根本不愿意被剥夺下厨的权利。于是他们正在硅谷红木城的总部,测试一个全新的“数字化厨房”。
这个厨房用一个软件平台控制家电,告诉用户家里食材的存量。选定菜单后,还会提醒用户要买多少食物。等到准备妥当,连接的厨房电器就能完成初步烹 饪。
“我们想用技术帮上班族解决工作日吃饭的问题,让他们知道下班后要买什么食材、买多少,回家后能更快吃到晚餐。”活动结束后,Brahmbhatt对《第一财经周刊》说。
这听上去“很硅谷”,善于观察问题并提出解决方案。其实更有意思的是,这家公司发现,在一些细分领域当中,人其实没必要过分智能。
“数字化和自动化的确能帮助减少浪费,包括钱和食物。但我们也知道,有人喜欢下厨。Innit在做一项用户调研时发现,对自动化最集中的需求并不是烹饪,而是洗碗。也就是说,用户想让机器帮他们完成的是,恰恰是那些他们最不喜欢做的事情。”
至于机器和人的关系,这个古老的命题也随着人工智能的蔓延重新摆在了人类面前。至少,人工智能不再仅仅是一些极客想把一切自动化的设想和实验,也不只是好莱坞电影里经常出现的无所不能的机器控制人类造成的恐慌。它真的就在我们的生活中发生。
真正的答案,也正如百度首席科学家吴恩达曾预言的那样,“人工智能是新的电能,可以改变很多行业。”既然是电能,就意味着未来它可能无处不在。
西南偏南互动大会首席项目官Hugh Forrest说:“人工智能毫无疑问是2017年最热门的话题。虽然过去我们也做过很多AI的内容,但从未像今年这样集中。”
卡内基梅隆大学计算机科学系主任Andrew Moore长期关心教育,面对可能的人工智能未来,他想分享教育系统有必要做出哪些变化。迪士尼则会分享它如何用人工智能为其主题乐园提供更好体验,毕竟迪士尼乐园不可能一直停留在几十年前的模样。就连那些运动员,都会在训练中尝试使用人工智能,这可能意味着未来的赛事较量,除了天赋,更多是训练方法的比拼。
而如果你知道西南偏南最早是个音乐节,就会觉得在这里听到人们探讨人工智能和音乐如何结合是顺理成章的了。
用人工智能编曲已经不算什么新鲜事了。但是一些音乐公司正在用人工智能制作背景音乐,卖给可口可乐等大公司。
就连Google也参与了进来。去年6月,Google Brain宣布推出Magenta,一个能让计算机制作出“出众而艺术性”的音乐的产品。
不过这也带来一些新的问题,音乐能够做到更加了解我们吗?我们想让自己的情绪反过来影响我们吗?这种响应会不会把气氛搞糟?毕竟粉丝们可能会爱上一个音乐人,但很难爱上一台计算机。
很多人都爱上过iPod。这可能是这个世纪初音乐与技术最简单直接的结合形式。当技术演变成了人工智能,这件事情变得有趣,它像人的左脑和右脑的一场博 弈。
音乐这个感性世界与数字和代码编织的理性世界碰撞了一下。它们如何理解彼此,最好的例子可能是一个指令,就是当你让一个人工智能助手播一首歌时说的那句话。
不要小看这个指令。亚马逊音乐的团队在奥斯汀市中心的一个小酒吧里办了一场活动,当谈到如何让亚马逊的人工智能助手Alexa和亚马逊音乐结合时,主讲人感慨,仅仅是让Alexa播放一首歌的指令就十分复杂,一首曲子的元素包括歌手、专辑名称、音乐流派、歌词内容等不同元素,情境也同样如此,比如遇上用户说“我心情不好,给我放点音乐”这种情况,此时,亚马逊音乐收录了多少首歌曲是一回事,Alexa能在多大程度上明白用户的意思,便是另一回事了。
如果有人去年来过西南偏南,大概还会记得当时的一个历史性事件。
那是AlphaGo与韩国棋手李世石之间的对决。结果你已经知道了。大多数人不相信机器会胜过人类,他们会觉得这是个黑天鹅事件。
Google的高明之处除了技术本身,还在于用一种直接有力的方式向普通人展示了自己在人工智能领域的技术进展―大概没有什么方式比人机大战更能引起人们的兴趣,更直观。
当AlphaGo连续赢到第三场时,来自Automated Insights的Robbie Allen正在准备他在西南偏南上的一场对话。Automated Insights是曾做出帮记者写稿的机器平台WordSmith的公司。
“Google很了不起。”Allen走下台对《第一财经周刊》评论。在观看这场人机大战时,人们产生了一股担心会被人工智能抢走饭碗的恐慌。此后,AlphaGo的连胜加剧了这样的担心。
Allen参加的对话主题正好是“人工智能发展后,人类未来的工作怎么办”。
“理论上人工智能确实达到了一个新阶段,它代表人工智能可以模仿人类的重复性劳动,还会比人做得更好。但我认为,它离人工智能的实际应用还有一定距离,当人工智能可以帮助某些行业完全实现自动化,找到商业化的应用场景,我才会认为它真正达到了实际应用的程度。”Allen说。
“实际应用”换句话说,是一部分人会开始失业。
距离AlphaGo战胜李世石不到一年,人们就已经在拉斯维加斯的国际电子消费展上看到各个汽车制造商对无人驾驶汽车的设想。无人驾驶汽车的技术标准得到厘定,厂商纷纷推出概念车。
Google剥离了无人驾驶汽车部门成立单独的公司Waymo、Uber的无人驾驶汽车在匹兹堡和旧金山上路,虽然后者在上路当天就因犯了些错误被叫停(最近还因为收购Otto被Google告上法庭)。蝴蝶效应是,政府和城市设计师已经开始思考无人驾驶汽车上路后对城市生活规律的影响、如今的城市基础设施是否能和无人驾驶汽车配合等问题了。
若低估技术带来的影响,也许不久后就要承担相应的后果。自从人工智能技术高速发展,特别是无人驾驶汽车上路以来,硅谷以外的世界与硅谷仿佛形成了两股力量―硅谷正在想办法让一切自动化,而美国最大的就业群体之一卡车司机,则忧虑正在某处测试的无人驾驶卡车会让他们失去工作。
机器与人的矛盾和对抗从来没有停止过。远至第一次工业革命,近至互联网诞生。随着人们越来越习惯于数字化生活,机器和人的关系会更加纠缠不清。人工智能这件事会变得更复杂,还可能,带来很多伦理问 题。
来自设计咨询公司IDEO的Jason Robinson和麻省理工学院(MIT)媒体研究室的Philippa Mothersill认为,目前我们并没能解决如何不让机器真正危害人类的创造力和情绪,尽管随着技术的精进,这一点可能会实现。
在一场名为“人类、机器和工业设计的未来”的讨论当中,他们向挤满了整个会议室的观众发问,“我们如何教会计算机创造性思考?”
Mothersill曾是宝洁公司的产品设计师,专注于让计算机可以通过识别人类的语言,将物理元素变成实际产品。为此她设计出EmotiveModeler,这种工具能够将形容词和情绪转化为模型。她寻找到了一种能够让工业设计―无论是家具还是电子产品―更好传递人类情感的方式。
如果没读博士,Mothersill现在应该依然是个出色的设计师。但她如今的研究课题,却让一些设计师有点担心会失去工作。《连线》的Margaret Rhodes也在意这一点,即人工智能如何能提供更多的工作机会,这可能是技术进步为现代社会带来的最大的困扰。没有人希望成为技术进步的牺牲者。
不过在和大量的设计师交谈过之后,Mothersill和Robinson总结了“10件设计师希望机器能够学会的事 情”。
比如说,考虑使用产品的情境。好的设计师不仅会设想要创造的事物,还会思考它出现的地方。它应该摆在哪里?它所在的房间是什么样?周围都有些什么东西?如何能让计算机做到这一切?
或者说,如何抓住灵光一现的时刻。历史上,达达主义运动中的艺术家善于随机创作,通过将传统事物叠加创造新作品。我们能够教会计算机在向不同方向发散思考的同时,催生出全新且有价值的设计吗?
这些有趣的发现让他们意识到,设计师对机器的期待,其实充满人的色彩。Mothersill由此得出的结论是,人们最终需要掌握如何让机器变得有情绪,它们会产生独特的好奇心―而不仅仅是按照写入的程序工作。
如果你看过最新的007系列电影,影片中所描述的一切已经和NASA能做到的非常接近。
毕业于约翰・霍普金斯大学的Pavel Machalek此前在NASA工作,如今他创立了Spaceknow,为金融、政府和制造部门提供商业卫星的图像分析。这些卫星就像是“天空之眼”,看着地球上发生的一切。
“我们正在让整个物理世界数字化,且能够在这个基础上做很多事情。”Machalek说。按照他的说法,世界正在经历巨大变化,重新使用卫星数据的成本也在逐步下降。
不仅如此,Spaceknow正在建立一套人工智能系y,用各种各样的新方式来处理获得的数据。整个地球的数据都会被实时抓取,它会扫描、理解和讲述70亿人的日常行为。
这也意味着,它会重塑商业关系,让零售商更好地预见气候变化、作出设计决策。它的客户各种各样,有人想知道某个港口有多少船只到岸,或者有多少辆卡车被调到精炼厂运油。
它还有很多其他用途。对于新闻业来说,它能让人们尽快发现,叙利亚到底在发生什么。如果有人编造一些事实,它或许可以提供更客观的看法。这套被不断训练的人工智能系统能够接收各种各样的查找请求,截至目前它曾经收到的请求有,“查找一架失踪的飞机”“查找那些非法的攫金者”等,以及对某些政府公开的不实数据提供另一种解释。
Machalek表示,有朝一日想让Spaceknow的人工智能系统覆盖整个世界,让每个拥有智能手机的人都可以对真实世界的数据发起请求―这大概意味着你可以查看某个酒吧门外排队的人有多少。
零售业和广告业立即感受到了威胁,它们开始追求改变。除了面临新技术带来的新购买方式的挑战,另一件可怕的事情是,如果以后帮消费者做购买决策的是机器人,品牌该怎么办?
但这其实已经发生了。亚马逊的推荐算法就是最简单的例子。
在机器人眼里,一切都是数字。因此研究品牌效应的L2 Inc的Pooja Badlani就认为,如果这就是未来,品牌忠诚度这件事已经成为历史了,所有的品牌都要想办法和机器人共存。
但IBM iX的策略与设计负责人Robert Schwartz认为,品牌通过营销来影响消费者的态度和购买行为是一门艺术,它暂时还不会消失。
“那种居高临下教育消费者的时代结束了,”Schwartz说,“对品牌来说,推销自己的时代过去了,现在是展现自己的时候。消费者始终会受到一些时刻、一些瞬间的激发产生购物欲望,品牌要重新梳理自己的核心,决定在什么时间、什么地点来创造这些时刻。”
现在已经没有人讨论技术将如何重新定义传统行业,大家都认为这已经是事实了。至于这个改变将如何发生,“这是个缓慢的过程,所有技术公司和受到冲击的传统行业都是亦敌亦友的关系。”Schwartz对《第一财经周刊》说,毕竟说到底,它们都想争取消费者的数据。
所有人都要学会用新的方式和消费者打交道,也想延长消费者的注意力和停留时间。
硅谷已经有人提出了相应的方法论。Ch r is Messina曾是Uber的开发者体验负责人,也是Twitter上的“hashtag”(标签)的发明人。他在2016年提出“对话经济”(conversational commerce)的概念,认为在Facebook Messenger增加聊天机器人的背景下,未来会有越来越多的“聊天机器人”(chatbot)出现。这些小机器人可能分布在客服、销售等岗位。此时机器应该增加更多的“Conversational UI”,即聊天界面。
让聊天机器人取代人类的前提是赋予机器同理心。如果你对态度冷淡、反应迟缓的人类客服不满意,面对聊天机器人得到的同样是冷冰冰的回答,那么这样的技术进步可以说毫无意义。
相反,如果机器可以弥补人类的部分不足,例如冷漠、缺乏技能,那么人类反而可以从与机器的对话中获得更多好处。Messina举例说,如果聊天机器人可以给用户好的体验,那么每次对话同时,也是用户在主动提供数据。
这仅仅是零售业运用人工智能的开始。人们会渐渐分辨不清,人工智能究竟是在帮助我们购买产品,还是说服我们去购买它们?
麻省理工学院的研究专家Kate Darling在描述人工智能的走向时,表达了相似的观点。
Darling主要研究机器人伦理的问题。“接下来的几十年并不是说机器会一点点取代人类,而是自动化系统和人工智能系统将与人类协力合作,因为技术不是取代人类的能力这么简单。人们高估了机器能做的事情,而低估了它的缺陷。”
斯蒂芬・霍金在接受BBC的采访时曾更直接地说:“人工智能的完全实现,可能意味着人类的终结。”
身处这个行业里的人显然知道人们的恐惧。
人工智能发展协会前主席、微软人工智能研究院负责人Eric Horvitz在西南偏南的一场演讲中介绍Google、亚马逊、苹果、IBM、微软、Facebook等公司联合成立的Open AI时,主动引用了霍金、伊隆・马斯克和比尔・盖茨此前分别公开传达的对人工智能的担心。
这位美国工程院院士、在业内被称为AI先生的老人朗读了一段Open AI的协议内容,几大公司保证在互不竞争的前提下合作。正是因为技术进步这个趋势不可阻挡,大公司结盟和在一些问题上达成共识是保证技术真正为人类赋能的基础。
篇6
关键词:知识表示与知识推理;教学设计;教学实践;数理逻辑;人工智能
知识表示与知识推理是智能信息处理的基础。从人工智能的角度看,知识是构成智能的基础,人类的智能行为依赖于利用已有的知识进行分析、猜测、判断和预测等。当人们希望计算机具有智能行为时,首先需要在计算机上表达人类的知识,然后再告诉计算机如何像人一样地利用这些知识。
自从人工智能领域诞生以来,知识表示与知识推理就一直是其中最为重要的子领域。经过五十多年的发展,知识表示与知识推理领域的许多研究内容、研究方法和研究成果已经深深渗入到计算机科学,进而对计算机学科的发展产生了深远的影响。例如,在C++、Java等面向对象程序设计语言中,“继承”这一最为核心的技术就来源于知识表示与知识推理。再如,在软件自动化领域,许多程序规格语言和程序验证技术都借鉴了知识表示与知识推理领域的Prolog语言等研究成果。从工程开发的角度看,专家系统、智能搜索引擎、智能控制系统、智能诊断系统、自动规划系统等具有所谓智能特征的系统都或多或少地依赖于知识表示与知识推理技术。因此,对于计算机专业的学生来说,学习知识表示与知识推理方面的课程,对于今后在相关领域从事系统开发和科学研究都大有裨益。
在ACM与IEEE-CS联合攻关组制订的计算教程CC2001(Computing Curricula 2001)中,知识表示与知识推理得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成:在其中的IS(Intelligent Systems)知识领域中,关于知识表示与知识推理的内容占据了10个知识单元中的2个,即知识单元“(Is3)知识表示与推理”以及知识单元“(IS5)高级知识表示与推理”。在ACM和IEEE-CS进一步修订后的计算机科学教程CS2008(Computer Science Curriculum 2008)中,知识表示与知识推理同样得到了高度重视。此外,在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,上述的IS3和IS5两个知识单元被全部包括到计算机科学专业的核心课程“人工智能”中。然而,据我们了解,由于“人工智能”在许多高校仅仅作为专业任选课开设,使得计算机相关专业的许多学生无法接触到知识表示与知识推理方面的内容。与此同时,由于课时数限制及没有得到重视等因素,实际开设的“人工智能”课程(包括本科生课程和研究生课程)往往难以覆盖CC2001在知识单元IS3和IS5中列出的各个知识点。
实际上,经过五十多年的发展,知识表示与知识推理领域已经沉淀出一系列基本的方法、理论和技术;这些方法、理论和技术在CC2001的知识单元IS3和IS5中基本上都以知识点的形式列举了出来。作为计算机专业的教育工作者,我们有责任将这些体现了几代人智慧结晶的知识介绍给学生。另一方面,从研究者的角度来看,知识表示与知识推理是一个非常活跃的研究领域;尤其是随着Web技术的发展以及Web科学的出现,知识表示与知识推理将在计算机科学中扮演越来越重要的角色。面对万维网这个全球最大的分布式信息库,如何让计算机对其中海量的数据和信息进行分析、推理和管理,进而为人类提供方便的知识服务,是目前信息技术领域面临的一个重大问题。针对这个问题,国内外研究者基本上都是从人工智能的角度寻求解决思路;近年来成为研究热点的语义Web更是完全建立在知识表示与知识推理的基础上。因此,从开拓学生思维以及介绍研究与技术前沿的角度来看,也非常有必要向学生讲授知识表示与知识推理的相关内容。
基于以上认识,我们为计算机软件与理论专业和计算机应用技术专业一年级的硕士研究生开设了一门32课时的选修课程,以CC2001和CS2008列出的知识单元为核心,对知识表示与知识推理的相关内容进行教学。本文对教学设计和教学实践中遇到的主要问题进行分析,针对这些问题给出相应的解决对策,并对我们获得的经验和教训进行总结。
1 “知识表示与知识推理”知识体的教学设计
自上世纪九十年代以来,国内外许多高校就将“知识表示与知识推理”作为一门课程,面向研究生或高年级的本科生开设。其中比较著名的包括加拿大多伦多大学Hector J.Levesque教授开设的知识表示课程,美国斯坦福大学Leom Morgenstem教授开设的知识表示课程,英国曼彻斯特大学Ulrike Sattler教授等讲授的知识表示和推理课程,中山大学刘咏梅教授讲授的知识表示和推理课程等。但是,由于没有统一的课程设置标准,这些课程讲授的知识点都不尽相同。2000年,Leom Morgenstem和Richmond H.Thomason总结了开设知识表示与知识推理课程时面临的挑战,提出了相应的解决思路。其中,针对该课程缺乏统一的教学知识体的情况,他们设计了一个持续14周、每周2次课的教学大纲。在文献[5]中,Leora Morgenstem进一步修订了之前提出的教学大纲,建议在其中增加语义Web及Web本体语言OWL等内容。
尽管目前各高校开设的知识表示与知识推理课程的课程大纲仍然不尽相同,但比较可喜的是,对知识表示与知识推理的教学在CC2001计算教程中得到了高度重视。CC2001分别在“知识表示与推理”和“高级知识表示与推理”两个知识单元中列出了关于知识表示与知识推理的教学内容。知识单元“知识表示与推理”由以下知识点组成:命题逻辑和谓词逻辑回顾,归结原理与定理证明,非单调推理,概率推理,贝叶斯定理。知识单元“高级知识表示与推理”由以下知识点组成:结构化知识表示(包括对象与框架、描述逻辑和继承系统),非单调推理(包括非经典逻辑、缺省推理、信念修正、偏好逻辑、知识源的集成、冲突信念的聚合),对动作和变化的推理(包括情景演算、事件演算和分枝问题),时态和空间推理,非确定性推理(包括概率推理、贝叶斯网络、粗糙集和可能性理论、决策理论),针对诊断的知识表示与定性知识表示。在CC2001的基础上,CS2008在知识单元“知识表示与推理”中增加了合一与提升、前向链接、反向链接以及归结等知识点;在知识单元“高级知识表示与推理”中增加了本体工程和语义网络两个 知识点。
以CC2001和CS2008列出的知识点为基础,在综合考察了国内外相关课程的开设情况之后,我们对“知识表示与知识推理”课程的教学内容及相应的学时分配设计如下。
1)概述(2学时)。介绍知识表示与知识推理领域的发展历史、现状和前景:讲授知识表示的基本思路和基本原理;介绍知识表示方法和技术的典型应用:列举典型的采用了知识表示技术的系统,与没有采用知识表示技术的系统进行比较分析。
2)基于一阶谓词逻辑的知识表示和推理(4学时)。讲授一阶谓词逻辑的语法、语义和语用;通过例子讲授如何应用一阶谓词逻辑进行知识表示;讲授如何应用消解原理进行知识推理;讲授如何应用Tableau算法进行知识推理;分析一阶谓词逻辑存在的局限。
3)Horn子句逻辑与产生式系统(2学时)。讲解Horn子句及其过程解释;介绍SLD归结以及分别采用反向链和正向链的推理过程;通过例子讲授如何应用Horn子句逻辑进行知识表示和推理;对Prolog语言进行简单介绍;通过例子介绍如何应用产生式系统进行知识表示和推理。
4)结构化知识表示(6学时)。介绍对象与框架,介绍基本的框架形式系统:介绍语义网络,对推理过程中的继承机制进行介绍。介绍描述逻辑家族的研究历史和发展现状;以逻辑系统ALC为例,讲解描述逻辑的语法和语义;通过例子讲授如何应用描述逻辑进行知识表示;讲授如何应用Tableau算法对描述逻辑刻画的知识进行推理。
5)非单调知识表示和推理(4学时)。介绍非单调性推理的研究历史;讲解封闭世界假设与开放世界假设;讲解缺省推理和限定推理;对自认知逻辑、偏好逻辑和真值维持系统进行介绍;对信念修正、知识源的集成以及冲突信念的聚合进行介绍。
6)非确定知识表示和推理(4学时)。对模糊逻辑进行介绍;讲授概率推理和主观贝叶斯方法;对粗糙集、可能性理论和决策理论进行介绍。
7)解释与诊断(2学时)。讲授反绎推理的基本思路,将其与演绎推理和归纳推理进行比较分析;以一个电路系统为例,讲授如何在知识表示的基础上采用反绎推理进行故障诊断。
8)动作与规划(4学时)。介绍动作与规划领域的研究历史和发展现状;讲授如何在STRIPS系统中对动作进行刻画以及如何进行规划求解:讲授如何应用情景演算和事件演算对动作进行刻画、推理、及规划求解;对框架问题、条件问题和分枝问题进行介绍;对规划语言PDDL进行介绍。
9)时态和空间推理(2学时)。对时间点/时间段、离散/连续、有限/无限、线性/分支等表示时态信息的不同方式进行介绍;对Allen的区间代数理论进行介绍;对线性时态逻辑和分支时态逻辑进行介绍;对基于点/基于区域、离散/连续、有限/无限、同维/混合维等表示空间信息的不同方式进行介绍;对区域连接演算RCC进行介绍;对时态与空间推理的结合进行简单介绍。
10)语义Web和本体工程(2学时)。介绍语义Web的基本思想、技术现状和发展趋势;讲授语义Web的层次模型以及各个层次的目标和功能;对资源描述框架RDF、Web本体语言OWL、Web规则标记语言RIF、Web查询语言SPARQL等进行介绍。对本体的构建、管理和维护进行介绍。
上述教学内容的基本特点是覆盖了CC2001和CS2008列出的关于知识表示与推理的所有知识点。此外,我们将目前作为计算机科学和人工智能领域研究热点的语义Web等内容引入了课堂教学,不仅可以将相关研究前沿展示在学生面前,而且还可以让学生更加深刻地体会学习知识表示与知识推理的价值,进一步激发他们的学习热情。另一方面,上述教学内容存在的一个缺陷是内容过多。由于受到课时数的限制,部分内容在讲授时不能充分展开,留给学生课堂练习和讨论的时间不充裕。
2 教学实践中的主要问题及对策
在围绕“知识表示与知识推理”知识体开展教学实践时,我们遇到的问题主要来自以下几个方面:教师和学生对“人工智能”课程以及其中的“知识表示与知识推理”知识体不重视,缺乏合适的教材,学生缺乏必要的基础知识。下面对这些问题进行逐一分析,对我们采取的对策进行相应介绍。
2.1 师生对“人工智能”课程不重视
许多教师和学生对“人工智能”课程不够重视,甚至存在偏见。我们觉得,这种现状很大程度上是由人工智能自身的发展历程造成的。人工智能领域刚诞生时就被赋予过高的期望;早期的研究者也过于乐观地给出了一些不切实际的承诺。由于不能在短期内实现过高的目标和兑现相应的承诺,使人工智能领域在上世纪80年代末90年代初一度跌入低谷,甚至达到了声名狼藉的地步。这一特殊的发展历程使得一部分对人工智能了解不多的教师和学生产生误解,认为人工智能是一个比较务虚的领域。这种误解甚至影响到“人工智能”课程的开设。目前,在许多高校计算机相关专业的课程设置中,“人工智能”往往只作为选修课程开设,没有得到教师和学生的普遍重视。
实际上,从信息技术发展规律的角度来看,人工智能的上述发展历程是很正常的。根据市场权威研究机构Gartner给出的“技术成熟度曲线”(hype cycle)理论,一项新的IT技术在产生之后,一般先是默默无闻地奋力发展几年,然后会由于被大家寄予很高的期望而迅速火爆起来,接着会因为没能兑现过高的承诺而跌入谷底,最后会再次崛起并由于过硬的成就而被大众普遍接受。人工智能已经经历了从默默无闻到迅速火爆再到跌入谷底的发展过程,目前正处于再次崛起的阶段,并且将通过不断取得的成就而被大众普遍接受。
人工智能的教学在CC2001和CS2008中得到了高度重视。CC2001给出的计算机科学知识体由14个知识领域组成,作为其中的知识领域之一,智能系统(即人工智能)与离散结构、程序设计、操作系统、计算机体系结构等已经得到普遍重视的知识领域具有了相同的地位。在我国高等学校计算机科学与技术教学指导委员会制定的计算机专业规范中,也将“人工智能”作为了计算机科学专业的核心课程。但是,对人工智能相关知识的传播需要一个长期的过程,仍然需要广大科研和教育工作者的不懈努力。
2.2 师生对“知识表示与知识推理”知识体不重视
即便部分教师和学生认识到人工智能知识领域的重要性,但对于其中的“知识表示与知识推理”知识体仍然不够重视,认为没有必要专门通过一门课程进行教学。
针对这个问题,我们可以对人工智能领域的发展历程作进一步考察。我们知道,人工智能领域的诞生就是从知识表示和知识推理开始的。在1956年标志着人工智能诞生的Dartmouth会议上,Herbert Simon和Allen Newell展示的“逻辑理论家”就依赖于知识表示和知识推理。在此之后的五十多年中,知识表示与知识推理就一直是人工智能中最为重要的子领域。相 应的一个佐证是,1966年到2009年期间,在获得图灵奖的56名科学家中,Marvin Minsky、John Mccarthy、Herbert Simon、Allen Newell、Edward Feigenbaum和Raj Reddy等6名科学家都在知识表示与知识推理领域取得了开创性的研究成果。
知识表示与知识推理的重要性在CC2001和CS2008中同样得到了体现。CC2001给出的“智能系统”知识领域由以下10个知识单元组成:智能系统中的基本问题、搜索与约束求解、知识表示与推理、高级搜索、高级知识表示与推理、智能主体、自然语言处理、机器学习与神经网络、人工智能规划系统、机器人;C$2008在CC200I的基础上增加了智能感知这个知识单元。其中,关于知识表示和知识推理的教学内容不仅占据了两个知识单元,而且在智能主体、人工智能规划系统、机器人等知识单元中也占据了相应的多个知识点的位置。由于32课时的人工智能选修课程通常只能对上述知识单元作一个概要性的介绍,对于想进一步深入学习的学生,在有条件的情况下,我们完全有必要开设一门关于“知识表示与知识推理”的课程。另外,从上一节给出的教学设计可以看出,如果要覆盖CC2001和CS2008给出的关于知识表示与知识推理的所有知识点,一门32课时的课程在时间上还很不够用。因此,基于以上分析,我们希望“知识表示与知识推理”的教学首先能够得到相关教师的认可和重视,然后通过课程设置等途径逐渐吸引学生的关注,并在教学过程中激发起学生的学习兴趣和热情。
2.3 缺少合适的教材
尽管CC2001和CS2008详细地列出了关于知识表示与知识推理的主要知识点,但是,据我们所知,目前还没有出现完全覆盖这些知识点的合适教材,而中文的相关教材更是缺乏。
在参考了多方面的资料之后,我们选择了Ronald Brachman和Hector Levesque撰写的《Knowledge Representation and Reasoning》作为教材。Ronald Brachman和Hector Levesque都是知识表示与知识推理领域的著名学者。其中,Ronald Brachman于1977年在哈佛大学攻读博士学位时提出了KL-ONE系统,开创了目前成为研究热点的描述逻辑领域,之后于2003年担任了美国人工智能学会的主席,目前是ACM院士、雅虎全球研究运营副总裁。Hector Levesque在知识表示领域也做出了许多开创性的研究成果,曾于2001年担任人工智能顶级会议IJCAI的主席,于2006年当选加拿大皇家学会会士。除了时态和空间推理以及本体工程这两个知识点之外,CC2001和CS2008中列出的其他关于知识表示与知识推理的知识点,在《Knowledge Representation and Reasoning》中都基本上得到了体现。另外,为了在课程中向学生介绍语义Web方面的知识,我们选择了Grigoris Antoniou和Frank van Harmelen撰写的《A Semantic Web Primer》作为参考书目。
2.4 学生缺乏必需的基础知识
知识表示与知识推理的核心思想是采用形式语言(尤其是逻辑语言)对知识进行刻画和推理,因此要求学生在学习该课程前具有扎实的数理逻辑基础知识。
尽管数理逻辑对于整个计算机学科来说具有非常重要的作用,但在目前计算机相关专业的课程设置中,数理逻辑往往只作为离散数学课程的一个部分进行教学,在课时数量上非常有限。此外,从教材的角度来看,大部分离散数学教材的数理逻辑部分主要介绍命题逻辑的相关知识,而且只介绍命题逻辑联结词、范式、等值演算、自然推理系统等最基本的内容;对一阶谓词逻辑以及命题逻辑中更为深入的内容介绍得很少,甚至不介绍。这些内容对于学习知识表示与知识推理知识体来说远远不够。例如,根据我们在讲授“知识表示与知识推理”之前的调查,许多研究生对于一阶谓词逻辑的语法与语义等基本概念都还比较模糊,对于消解原理、Tableau方法、可满足性问题等内容更是没有接触过。
针对上述问题,除了原计划关于一阶谓词逻辑知识表示的4个课时之外,我们临时增加了2个课时的课堂教学,为学生补充命题逻辑的语法和语义、公式可满足性问题、Tableau判定算法、基于消解原理的判定算法等内容。由于受到课时的限制,许多重要的结论及其证明过程无法在课堂上详细阐述。
值得一提的是,由于研究课题的需要,我们组织部分研究生一起学习了John Bell和Moshe Machover撰写的著名教材《A Course in Mathematical Logic》。在学习这本教材时,我们将研究生分为三个小组,让各个小组自学该教材,对其中的引理、定理以及问题(Problem)进行证明或求解,然后在每周一次的学习班上使用黑板讲解他们的证明或求解过程。在3个月的时间里,将这本教材中的第一章和第二章学完后,这些研究生的数理逻辑知识明显上了一个台阶。在之后学习知识表示与知识推理的过程中,这部分研究生的学习效果也明显好得多。在今后的教学中,我们希望计算机相关专业的研究生能够先学习一门数理逻辑方面的课程,然后再学习知识表示与知识推理课程。
3 结语
篇7
【关键字】推理与专家系统;认知学徒制;专家系统外壳
【中图分类号】G420 【文献标识码】A 【论文编号】1009―8097(2009)04―0120―03
在教育部2003年颁布的《普通高中技术课程标准(实验)》中,首次设立了《人工智能初步》选修模块,该模块共设三个主题:“知识及其表达”,“推理与专家系统”,“人工智能语言与问题求解”。其中的“推理与专家系统”主题,由于专家系统构建的简便性以及运行的可观察性,在为数不多的已开设《人工智能初步》选修模块的学校中,较为普遍地被作为重点内容进行教学。[1]因此,十分有必要对“推理与专家系统”主题的教学模式及其相关问题进行讨论,以便为中学信息技术教师更有效的开展教学提供参考与借鉴。
一 “推理与专家系统”主题的教学目标
新课标中给出了“推理与专家系统”主题的具体教学目标:
1 演示或使用简单的产生式专家系统软件,感受用专家系统解决问题的基本过程;了解专家系统的基本结构。
2 通过实例分析,知道专家系统正向、反向推理的基本原理;会描述一种常用的不精确推理的基本过程。
3 了解专家系统解释机制的基本概念及其在专家系统中的重要作用。
4 了解专家系统外壳的概念;学会使用一个简易的专家系统外壳,并能用它开发简单的专家系统。[2]
由此可见,“推理与专家系统”主题并非是大学专家系统相关专业内容的简单下移,它的总体目标是了解与专家系统相关的知识,体验专家系统的技术与应用,感受专家系统对学习和生活的影响,从而激发对信息技术未来的追求。
二 认知学徒制及其应用于“推理与专家系统”教学的可行性
1 认知学徒制及其特征
所谓认知学徒制(Cognitive Apprenticeship),是一种从改造学校教育中的主要问题出发,将传统学徒制方法中的核心技术与学校教育整合起来的新型教学模式,[3]用以培养学生的认知技能,即专家实践所需的思维、问题求解和处理复杂任务的能力。
从认知学徒制的特征与“推理与专家系统”教学过程的特点的一致性、认知学徒制的知识观与“推理与专家系统”强调知识获取、转化的一致性、认知学徒制的技能观与“推理与专家系统”教学注重学生技能发展的一致性,能够得出将认知学徒制应用于“推理与专家系统”主题的教学是切实可行的。
认知学徒制的核心假设是:通过这种模式能够培养学习者问题求解等方面的高阶思维技能/策略。这种技能/策略把技能与知识结合起来,是完成有意义的/真实的任务的关键。它具有如下的基本特征:
(1) 认知学徒制关注的不是概念和事实知识的获得,而是重视专家在获取知识或将知识运用于复杂现实生活任务/问题时所关涉的推理过程与认知/元认知策略。
(2) 将原本隐蔽的内在认知过程显性化,亦即表现思维过程,使之可视化(包括教师和学生的思维过程)。通过这种方法,学生可以在老师和其他学生的帮助下进行观察、重复演练和实践。
(3) 将学校课程中的抽象任务/内容置于对学生有意义的情境之中,学习者充分了解学习的目的与应用,理解工作的相关性,并参与专家行为。[4]
“推理与专家系统”主题的教学主要思路是要求学生使用一个简易的专家系统外壳(例如InterModeller)开发简单的专家系统,它的过程是:第一步,确定所要开发的专家系统类型,即确定开发的专家系统的内容,如动物识别专家系统、汽车故障诊断专家系统等;第二步,选择、整理与所要开发的专家系统相关的日常生活知识;第三步,将日常生活知识转化为专家系统能推理和解释的知识表示形式,如产生式规则表示,框架知识表示等;第四步,通过师生、生生之间的交流与讨论,逐步修改完善专家系统,使专家系统做出判断与解释。
这一教学过程不仅要求学生获取、选择、整理概念和事实知识,更强调将知识转化为专家系统能推理和解释的知识表示形式,最终能用专家系统解决实际问题,这与认知学徒制所关注的在有意义的情境之中,将知识进行逻辑化表示后去解决现实任务/问题,培养学习者问题求解等方面的高阶思维技能/策略是相一致的。
2 基于认知学徒制的知识观
比利特(Billett,1993)认为学习的知识包括三种形式:陈述性知识(关于是“什么”的知识)、程序性知识(关于“怎么做”的知识)和情感性知识(关于价值观和态度的知识)。陈述性知识用来提供事实和陈述,程序性知识用来提供做事过程的规则,情感性知识用来提供对事情的意见与看法。在一些实际工作情境中,程序性知识通常是可以直接观察的,而陈述性知识的内容则往往比较模糊、不透明。因此,与程序性知识相比,在日常工作的活动中,一些类型的概念性知识获得更加困难,学习者对它们的理解受到更多的限制。[5][6]
如何在学习中有效的获得陈述性知识,比利特和罗斯(Billett & Rose,1996)认为:第一,陈述性的知识是在参与社会实践、从事日常工作的过程中获得的。在日常的工作实践中,人们必须解决问题、实现目标而这些活动真正促进了人们对学习对象的理解;第二,在学习的阐释或知识的建构过程中,个体之间的密切互动是知识一个非常重要的来源,特别是熟练的指导者能够帮助个体建构知识,“强烈的社会影响或者最贴切的指导似乎为学习者获取和建构陈述性知识提供了有意的途径”。[5]
“推理与专家系统”主题中所涉及的知识也可分为陈述性知识和程序性知识。陈述性知识主要体现在确立的所要构建的专家系统类型的情境中,将零散、孤立的陈述性知识,通过教师的指导,学生间的讨论,将其整体化,组块化。程序性知识主要是存在于专家系统的知识库中,以“ifthen”形式来编程陈述性知识,即先确认当前的情境和条件,然后产生相应的行动。由于高中阶段的教学要求是利用简易的专家系统外壳开发简单的专家系统,因此在条理清晰、结构合理的陈述性知识的基础上编写程序性知识的过程较为简单,关键是学生如何通过多种有效形式获得陈述性知识,并将其清晰,合理的表示出来。专家系统构建过程中的陈述性知识获取及其向陈述性知识的转化,与认知学徒制知识观所倡导的知识分类和有效获取是相吻合的。
3 基于认知学徒制的学生技能发展
伊万斯(Evans,1994)提出了技能发展的,明确了技能所包含的智力维度:
(1) 阶段1――新手。其特征为行为是受限制的、不灵活的、受规则控制的;
(2) 阶段2――较高级的新手。学习者开始能够感知任务中一些重要的情境特征,但还不能对那些重要的情境进行区分;
(3) 阶段3――胜任阶段。学习者能够识别情境的重要特征,并以此为基础思考行动的目标和计划,用来指导行动;
(4) 阶段4――精通。能够在不特别关注的情况下选择最好的行动计划,能够快速概括、识别情境并订出计划;
(5) 阶段5――专家。专家凭借直觉行动,这种直觉来自对情境的深刻理解,不关注规则的和特征,而且行动是可变的、灵活的和高度熟练的。[5]
在上述技能发展的五个阶段中,学习者从新手到专家的过渡过程就是从被动接受信息到具备更多的反思和参与策略的过程。在建构所需要的知识时,学习者开始需要指导者详细的帮助,而后逐步过渡到大量的互动和建构的水平。在技能发展的高级阶段,对理解技能中的智力因素的需要进一步增加,而对详细指导的需要急剧下降,因为知识变得更加内化,更加接近于自我建构。在“推理与专家系统”主题中,学生利用专家系统外壳工具,通过了解由某一领域专家建构的专家系统,并在教师的指导下亲手开发简单的专家系统,来体验专家系统的开发过程,加深学习体验。在实际教学中,我们将上述技能发展的五个阶段简化为三个阶段,学生和专家系统构成了一种专家与新手的关系,刚开始学专家系统的学生(相对新手)、课程教师(相对于学生为专家)以及专家建构的专家系统(相对于教师为专家),[7]学生开发专家系统的过程也即相对新手向相对专家转化,最后还可能发展领域专家的过程。在这一过程中,学生对所建立的专家系统类型的相关陈述性知识和程序性的需要不断增加,而对教师指导其开发的需要急剧下降。
三 认知学徒制在“推理与专家系统”教学中的实施过程
认知学徒制作为一种新型的教学模式,将其应用于“推理与专家系统”教学,需要教师和学生两方面共同执行,如图1所示。[4]
在认知学徒制教学模式中,学生是主体,教师起主导作用。对教师来说,要精心设计教学以表现专家实践的思维过程,并引导学生积极参与、体验,在这个过程中,教师先示范必要的策略,再放手让学生尝试,并在学生需要时予以指导。对学生来说,通过对特定领域专家实践能力的模仿、参与、讨论、交流和阐释,获得基本的问题求解方法、策略和能力,并随着脚手架的拆除,逐渐独立探究、定义、分析和解决问题。[8]具体的说包含如下步骤:
(1) 建模。教师选择某一典型的专家系统,对专家系统的问题解决过程,如推理方式和应用策略进行建模,以使学生观察系统的推理、运行过程,感受领域专家的思维过程。
(2) 情境设计。教师要引导学生选择符合其认知特点的专家系统内容,注重实用性、贴切性和可开发性,如“当地旅游景点识别”、“特色小吃划分”等专家系统,并把情境化的活动与相关的预期结果关联起来,以便学生在真实的情景中进行模拟学习,发展远迁移能力。
(3) 提供脚手架。脚手架的重要功能是帮助学生顺利穿越“最近发展区”。教师对学生的开发专家系统的过程进行指导,提供必要的“支架”,如概念支持、软件应用技巧支持、过程支持、策略方法支持等。
(4) 清晰表达。要求学生清晰地表达专家系统的推理过程或解决问题的过程,以使学生真正了解自己的学习过程, 不仅“知其然”(What),而且“知其所以然”(Why)。
(5) 反思。使学生将自己的思维和问题求解过程与领域专家、其他学生的逻辑思维方式进行比较。通过反思,学生可以构建关于该专家系统内容的问题求解过程的模型,已修正/启示自己的问题求解和任务完成过程。
(6) 拆除脚手架。当学生完成知识库的建立,或者能运行专家系统后,教师应逐渐拆除支架,以促进学生的发展。
四 结语
在“推理与专家系统”主题的教学中采用认知学徒制教学模式,对于学生分析问题和解决问题能力的培养具有积极的意义。一方面,为了完成该任务,学生需要编制规划、制定知识获取策略,并具体付诸实施,这是一个不断深化的过程。学生还得明确与系统有关的所有变量或相关的因素,并且将这些变量和因素转化为问题求解过程,得出相应的结论。在进行一系列问题求解分析之后,运用产生式规则来表示知识。 该过程中有助于提高他们的分析、思维与判断能力。另一方面,在专家系统运行时,学生可以向专家系统提出诸如“为什么(Why)”、“如何(How)”、“如果……会怎么样”等问题,系统接受用户的问题指令后,可以根据推理的逻辑进程,即时将答案呈现给用户,这个过程如同教师与学生在进行面对面的教学,学生还可以充分体验人类专家的求解思路和推理风格。完善的专家系统还可以让其他学生去运用和体验,具有一定的实用价值。正如美国著名的学习论专家Jonassen所指出的:那些自行设计专家系统的学生将会在这种活动中受益匪浅,因为这是一个对所学知识进行深度加工的过程。[9]
参考文献
[1] 张剑平,张家华,我国人工智能课程实施的问题与对策[M],中国电化教育,2008,(10):95-98.
[2] 教育部.普通高中技术课程标准(实验)[M].北京:人民教育出版社,2003:24.
[3] 高文.教学模式论[M].上海:上海教育出版社,2002:342.
[4] 钟志贤.信息化教学模式:理论建构与实践例说[M].北京:教育科学出版社,2005:263.
[5] 赵蒙成.工作场的学习:概念、认知基础与教学模式[J].比较教育研究,2008,(1):51-56.
[6] Billett, S.R, & Rose, J.Developing Conceptual Knowledge in the Workplace. In J. Stevenson (Ed.).Learning in theWorkplace: Tourism and Hospitality.Brisbane, Australia: Griffith University, Center for Learning and Work Research, 1996:204-208.
[7] 周跃良,张燕.人工智能教育的理论基础及教学组织[J].中小学信息技术教育,2003,(10):10-13.
篇8
关键词:机器人教育;虚拟机器人;社团;合作学习;研究
一、机器人发展现状
1.机器人教育的价值及影响
机器人教育的核心基础是人工智能技术在教育领域以人性化、智能化的形式加以利用。由于人工智能技术是信息技术发展的一次重大飞跃,因此信息技术教育必将走向机器人教育。我国颁布的义务教育阶段信息技术课程标准和《国家九年义务教育课程综合实践活动指导纲要》中,机器人设计和制作被列入信息技术课程选修内容。由此可见,机器人教育已经纳入了中小学信息技术教育内容中。此外,全国各地的机器人比赛蓬勃开展,比赛内容不断完善,参加的人数不断增多,规模不断扩大,影响力也在逐步提高。从技术的综合性、先进性、自主体验和兴趣激发等方面学生都能有极大的收获进而实现极大的教育价值。
2.虚拟技术的发展及在教育领域的应用
虚拟现实(Virtual Reality,简称VR,又译作灵境、幻真)是近年来出现的高新技术,也称灵境技术或人工环境。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身临其境一般。
目前,虚拟技术在大众教育、军事、医学、航空,旅游等各行业得到了广泛的应用,利用虚拟技术可以建立各种虚拟实验室,虚拟环境。随着虚拟技术逐渐成熟,虚拟技术逐渐普及化,大众化。虚拟技术以其强大的交互性、随意性、安全性等人性化特性,必将对教育领域产生深远的影响。虚拟机器人作为虚拟领域的一部分也得到了快速发展。
3.实物机器人存在的问题
各国的机器人竞赛开展得如火如荼,机器人的教育价值也逐渐得到认可。虽然我国开展机器人教育已经有十多年,但进展缓慢,仍游离于基础教育教学之外,通过分析可发现其主要原因是经费问题,学校没有财力购买大量的实物机器人用于教学。虽然有学校购买了实物机器人,但数量有限,只是用于参加比赛的学生。实物机器人的价格、后期的升级、维护、场地、工作环境等都制约着实物机器人进入学校教学。
二、开设虚拟机器人社团的原因
1.概念界定
虚拟机器人是近年来得到人们重视的一类新兴机器人教育载体,英文简称为“Virtual Robot”。目前,还没有一个统一的定义。根据互联网上的描述和Michael Somby对机器人软件开发平台的界定,就相当于虚拟机器人平台。所谓的“机器人软件开发平台”指的是用来给多种机器人开发程序的软件包,一般包括下列内容(1)统一的编程环境;(2)统一的编译执行环境;(3)可重用的组建库;(4)完备的调试仿真环境;(5)对多种机器人硬件设备的“驱动”程序支持;(6)通用的常用功能控制组件。
2.实物机器人现状
机器人技术融合了机械原理、电子传感器、计算机软硬件及人工智能等众多先进技术,为学生能力、素质的培养承载着新的使命。机器人教育在教学中体现了以下几个方面的作用:
(1)让学生了解机器人的发展和应用现状,理解机器人的概念和工作方式。
(2)让学生了解机器人各个传感器的功能,学习编写简单的机器人控制程序,提高学生分析问题和解决问题的能力。
(3)通过机器人竞赛和完成各项任务,使学生在搭建机器人和编制程序的过程中培养动手能力、协作能力和创造能力,有目的地培养学生的科学素养。
(4)迎接机器人时代的到来。机器人的广泛应用将极大促进社会生产力的发展与产业结构的调整。开展机器人教育,有助于使我们在机器人时代走向世界前列。
实物机器人已经成为呼声很高的创新教育平台,并且正在走向基础教育。机器人教育在国内尚处在起步阶段,把实物机器人作为课程,在现阶段遇到了诸多方面的制约:
(1)实物机器人产品缺乏规范性。国内外机器人制造商开发的实物机器人品牌十分繁杂,且自成体系,互不兼容,开放度较低。
(2)实物机器人价格高,场地有严格要求,而学校资金严重缺乏,也没有相应的场地作为实物机器人的教学场地,配套组件及设施不够,给普及增加了难度。
(3)机器人教学所使用的“教材”质量不高,大多属于“产品说明”或“用户指南”等,缺少课程与教学专家的参与和指导,每个学校要独立开发各自的校本教材,难度较高。
(4)师资队伍的良莠不齐。
3.虚拟机器人在线仿真平台
iRobotQ 3D机器人在线仿真平台的出现,解决了学校开展机器人教学的一个最重要问题,即资金和场地问题。iRobotQ 3D机器人在线仿真平台是全球首款基于网络互动模式设计,以强大物理引擎作为技术支撑,以机器人为载体的科技创新平台。它对资金、环境的要求不高,只要有网络的地方都可以使用。平台通过先进的3D虚拟技术对机器人应用的各个环节进行高度的3D模拟,实物机器人所拥有的功能都可以在该平台实现。
国外机器人教学实验证明,机器人竞赛不仅活动主题有趣,
更重要的是其问题解决方案是开放性的,学生可以用不同的方法完成同一个目标,虚拟机器人拥有实物机器人的绝大部分功能,而且拥有实物机器人所不具备的零件永不磨损的优势,因而虚拟机器人教学活动能激发学生充分发挥想象力、创造力,有利于培养学生的开放性思维。在机器人教学中,学生主要是通过动手实践获取知识。他们就像真正的工程师一样,针对项目主题进行研究、策划、设计、组装和测试。他们以小组为单位,使用积木、传感器、马达等组件设计自己的机器人,并为机器人编写程序,让它完成自己想让它做的事情。学生通过主动探索、动手实践,亲身体验了抽象的理论知识如何变成了触手可及的答案,享受成功的兴奋。在活动中,学生不仅可以学到有关机械、电子、计算机等技术知识,还可以培养多方面的能力和素养,如与人沟通合作的能力,合理利用时间的能力,毅力与自信心的树立等。
三、虚拟机器人社团项目合作学习范式
新一轮课程改革的重点之一,就是要让学生的学习产生实质性的变化,逐渐改变以教师为中心、课堂为中心和以书本为中心的局面,促进学生创新意识和实践能力的发展。小组合作学习成为当代深受关注和欢迎的教学理论与策略,它能有效培养学生的自主创新能力,适应国家培养创新人才。
本人在虚拟机器人教学实践中进行了一些小组合作学习的探索,下面从小组合作学习来谈谈自己的认识。
所谓小组合作学习是以班级授课为前导结构,以小组活动为基本教学形式,系统利用教学动态因素之间的互动来促进学习,共同达成教学目标的活动。
在小组合作学习的过程中逐步培养学生的自主创新能力。具体表现在以下几个阶段中。
1.明确目标:为培养自主创新能力做好铺垫
由于学生各具不同的性格、知识、思想,所以他们会以各自不同的表达方式去处理各种不同种类的信息。因此,教学过程中,教师首先要了解学生通过什么途径可以学得更快、更好,再决定如何利用学生优势带动发展其他有待发展的潜能。因此,教师需采用多元途径进行个性化的教育。除个别化教学外,教师还应组合不同性格类型和水平的学生进行小组活动,利用他们互补的潜能,通过多元虚拟的教育途径进行合作学习。
我的虚拟机器人社团总共20位学生,在教师的指导下,以小组合作的形式,把学生分成5个小组。每个小组由4名不同能力、性别、性格、文化背景的学生组成。在合作学习之前,师生从心理、思想、内容等方面都要有明确的目标,为激发学生的自主创新意识和热情铺平道路。
教师要为学生培养自主创新能力铺路搭桥。一方面给学生提出合作学习中培养自主创新能力的明确要求。即学习的内容和目标是什么,怎样完成任务,评价的标准是什么;另一方面,通过设计具有挑战性的问题,激发学生学习的积极性,启发学生运用已有知识和经验解决问题,促进学习的迁移、自主创新能力的培养。
例如,我在社团课中给学生制订了关于“汽车总动员”项目学习的相关内容(如下表)。
项目学习计划表
■
项目学习评价量规
■
项目活动记录表
■
项目评价表
■
学生根据教师制订的项目学习计划,每个小组再制订自己小组的项目实施计划,并把项目进行分解,分配给小组的每位同学。
2.合作探究:培养自主创新能力的重要环节
每个小组成员明确了学习任务之后,根据分工进入合作探究阶段,由于虚拟机器人是对现实的一个仿真,学生在进行机器人的搭建和编程过程中就要充分考虑到马达的性能、车轮的摩擦系数、轴距对车子的影响、速度的快慢等各种物理因素,促使学生要灵活运用科学知识及生活常识。每个学生知识掌握不同,生活经历不同,对项目实施过程中的理解也不同,这样,每个学生就会根据自己的理解进行互相交流、讨论,甚至争辩,在这一过程中,教师进行适当的引导,小组成员间经过多次的磨合,逐渐形成小组的学习成果。在讨论过程中,让学有余力的学生充分发挥自己的潜能,并带动学习有一定困难的学生多思考、多发言,保证他们达到基本要求;同时,教师要在巡视时,针对学习过程中出现的各种问题及时指导,帮助学生提高分析问题的技巧与能力。这一合作过程,既是类似科学研究的体验过程,更是提升学生自主创新能力的过程。
例如,在“汽车总动员”这个项目任务中,在实施汽车的搭建这个小任务时,我给学生以下提示和问题,让学生根据这些问题去寻找合理的答案。
(1)整条道路由普通道路路面、能量补充站路面、快速过弯路面、飞车路面,这些路面的颜色值都不相同,如何让汽车知道行驶在什么路面上(使用什么传感器来判断)?
(2)道路两边都有栅栏,能否在汽车行驶过程中合理利用这些栅栏?如果能利用栅栏,那应该使用什么传感器?
(3)道路上有得分物,怎样让汽车判断得分物在哪(应该使用什么传感器)?
(4)汽车使用什么样的马达和轮子比较好?
我把上述几个问题交给各小组长,由各小组长再具体分解,分配到每个组员,学生依据一些有待研究的问题,自己去思考,自己去体验。在合作中,学生有了探索与创造的机会,学生的学习活动更具有自觉、能动、创新的特征,学生在合作学习、解决问题的过程中,学习按照一定规则开展讨论,明确表达自己的观点,与他人进行交流,学会倾听别人的想法,修正自己的观点,激发新的灵感,在共同参与中,主动地获取知识、应用知识、解决问题。通过与同伴共同努力来整理资料、分析处理和寻求问题的答案或结论,最终形成小组的汽车搭建方案。
3.成果交流:培养自主创新能力的收获阶段
合作学习后,由小组长代表全组学生对自己小组的汽车搭建方案进行展示,并对选用的部件进行详细介绍,即为什么要选用这些装置,这些装置的作用。展示完毕,由其他各组成员对其进行点评,并对该组进行评分。同时,组内每个成员对自己的表现进行自我评分,并对小组其他成员进行评分。最后,教师对各组进行评价,指出各组的优势和不足之处供学生参考。
虚拟机器人本身就提供了给学生的充分想象空间,再加以使用小组合作学习,充分调动了学生学习的主动性、创意性,学会与他人进行交流,学会倾听别人的想法,修正自己的观点,激发出新的灵感。合作中的倾听、分享、交流、互助与反思,扩展了生生之间、师生之间的沟通网络,从而在教学中构建了立体动态的沟通途径。成果交流中学生之间会有比较鉴别,会互相取长补短、优势互补,提高了学生的自评和他评能力,促进学生进一步动手探索机器人奥秘的能力。拓展了学生个性化思维,锻炼了学生的多向思维能力与创新精神,也展示了学生的创新能力,满足学生对归属感和自尊感的需要。
通过半年来的实践,根据调查,发现学生对信息技术的爱好有明显的提高,这些社团的成员玩电脑游戏的少了,利用课余时间进行开发虚拟机器发的学生多了,原先家长是不允许孩子在家使用电脑的,现在多数家长已经同意学生玩虚拟机器人2个小
时。在小组合作学习的实践过程中使学生受益匪浅,每个学生在学习过程中都多了一份责任与自信,虚拟机器人强大的便利性和对学生的创造要求,使学生学习后创新能力有所提高。
参考文献:
[1]方建军,何广平.智能机器人[M].北京:化学工业出版社,2004-01.
[3]朱力.目前各国机器人发展情况[J].中国青年科技,2003(11).
篇9
关键词:学习分析技术;网络教育平台;数据挖据
中图分类号:G434文献标识码:A文章编号文章编号:1672-7800(2013)012-0184-03
作者简介:胥果(1982-),男,西华师范大学教育学院硕士研究生,研究方向为教育信息化。
0引言
网络教育是在网络环境下,以现代教育思想和学习理论为指导,充分发挥网络的各种教育功能和丰富的网络教育资源优势,向受教育者和学习者提供一种网络教和学的环境,传递数字化内容,开展以学习者为中心的非面授教育活动。[1]网络教育作为继信件、收音机、电视和计算机之后的第五代远程教育,自1998年教育部开展现代远程教育试点工作以来得到了迅速发展。据教育部统计数据,2010年网络高等教育本、专科招生人数达166万人,在校学生人数达453万人[2]。实施网络教育的关键是创设能够促进学习者主动学习的网络环境,而学习者在网络教学环境中的学习活动离不开网络教育平台。
网络教育平台作为支持网上教学与学习活动的软件系统,它的发展经历了3个主要阶段:第一阶段:内容管理系统(CMS),主要用来存储和管理教学资源,方便学生自主选择网络资源学习;第二阶段:学习管理系统(LMS),主要用于存储、管理、跟踪、报告和传送网络教育课程,与CMS系统相比,LMS系统可以跟踪学生表现,存储学生的作业,让学生与教师沟通;[3]第三阶段:学习内容管理系统(LCMS),与LMS系统相比,LCMS系统提供了多用户环境,系统管理者、教学设计人员、项目专家可以在数据库内创造、存储、重复利用、管理和传输数字化学习内容。LCMS专注于课程的开发、管理和,而这又需要通过LMS来传送。尽管从定义上来说LMS和LCMS有区别,但LMS通常用来同时表示LMS和LCMS,Blackboard公司就把他们的Blackboard学习平台称作是一个LMS平台。国外对于网络教育平台还有很多不同说法,如虚拟学习环境(VLE)、管理学习环境(MLEs)、个人学习环境(PLE)、学习平台(LP)等等。网络教育平台为网络教育的快速发展提供了有力支撑,也为大量学习者提供了帮助。
随着网络教育平台的多年使用,在此过程中积累了大量的系统化、结构化的学习结果和学习行为数据。为了利用这些数据,教育界最初采用了教育数据挖掘(EDM)技术,应用数据挖掘方法将来自于教育平台的数据提取出有意义的信息,利用这些信息为教育者、学习者、管理者、教育软件开发者和教育研究者等提供服务。[4]而后随着引入一些原本属于社会科学领域的语义分析法、内容分析法、社会网络分析法的使用,形成了一个新的概念:学习分析。相对于教育数据挖掘服务的主要对象是政府机构和管理人员,学习分析主要针对的是学习者和教师。学习分析使用学习者产生的数据,建立分析模型以发现社会关系和有用的信息,用以预测学习情况并对学习者提供建议。在首届“学习分析和知识(LAK)国际会议”上,与会者对学习分析做出定义:学习分析技术是测量、收集、分析和报告有关学生及其学习环境的数据,用以理解和优化产生的环境的技术。[5]由于网络教育平台已经积累大量数据,我们把学习分析技术应用到网络教育平台将大有可为。在把握学习者的主要特征、网络学习行为的特点、监控学习过程、了解学习行为的影响因素、干预学习进程、保障教育质量等方面,学习分析技术都能够提供帮助。
1学习分析技术背景
在学习分析概念形成之前,相关方法、技术和工具都已经发展起来了。学习分析从一系列研究领域汲取技术,如数据统计、商业智能(Business Intelligence)、网页分析(Web Analytics)、运筹学(Operational Research)、人工智能(AI)、教育数据挖掘(EDM)、社会网络分析、信息可视化等。
数据统计历来作为一个行之有效的手段用来解决假设检验问题。商业智能以数据仓库、联机分析处理、数据挖掘等技术为基础,从不同的数据源中提取数据,将之转换成有用的信息,它与学习分析有相似之处,但它历来被定位于通过可能的数据访问和绩效指标总结使生产更高效。网页分析工具如google analytics通过网页访问量,与互联网网站、品牌等的关联做出报告,这些技术可以用来分析学生的学习资源(课程,材料等)以追踪学生的学习轨迹。运筹学通过设计优化数学模型和统计方法使目标最优化。
人工智能和数据挖掘中的机器学习技术建立在数据挖掘和人工智能方法上,它能够检测数据中的模式。在学习分析中的类似技术可用于智能教学系统,以更加动态的方式对学生进行分类而不是简单地进行人口统计分类,可以通过协同过滤技术对特定的资源建立模型。社会网络分析可以分析出隐含的人与人(如在论坛上的互动)和外显的人与人(如朋友或者关注对象)之间的关系,在学习分析中可用于探索网络集群、影响力网络、参与及不参与状况。信息可视化是很多分析的重要一步(包括上面列出的那些分析方法),它可以用来对所提供的数据进行意义建构,John Tukey1977年在他的《探索性数据分析》一书中给我们介绍了如何更好地利用信息可视化,Tukey强调使用可视化的价值在于帮助在形成正式的假设之前做检验。[6]以上这些学习分析技术都可以对大量数据进行分析和处理,形成分析报告为教育提供帮助。
学习分析技术的特点在于能够为网络教育平台提供实时数据,通过利用这些实时数据,可以为教师、学生和教育管理人员提供帮助:①为个人学习者提供成绩反馈及与他人沟通的行为模式;②为预测学习者提供支持与关注;③为教师和助理人员提供支持个人与集体的干涉计划;④为如课程小组这样的组织改善现有课程或开发新的课程提供帮助;(5)为机构管理者在营销、招聘和效率等方面做决定时提供有效措施。[7]
2学习分析方法
发展中的学习分析技术吸纳了许多其它领域的关键技术,以实现对学习过程的研究,下面介绍一些常用方法。
2.1社会网络分析法
社会网络分析法(SNA)可用于测绘和测量人、团体、组织、计算机、网址以及其它相互关联的信息知识试题之间的关系。网络中的节点是人和团体,它们之间的链接则显示了节点之间的关系或者流量。社会网络分析为人类关系提供可视化的数学分析。网络教育平台管理者可以用它来分析学习者之间的联系、关系、角色以及关系网络形成的过程与特点,从而帮助学习者建立自己的关系网络以支持自己的学习。SNAPP软件就可以通过论坛内的回复和跟帖状况分析学习者交互情况,并得到可视化的图标。
2.2影响力与消极性测量法
影响力与消极性测量法(Influence and passivity measure)通过测量传递、引用或者转发的次数,评估人和信息的影响力。网络教育平台可以对学习者个体的影响力进行测量,分析了解为什么某些个体能够获得高影响力,低影响力学习者应该如何改进。
2.3性格分析法
性格分析法(Disposition Analytics)旨在获得学生性格与他们学习情况的数据,以及两者之间的关系。好奇的学生可能更倾向于提问,学习分析可以对获得的这些数据进行分析。
2.4行为信任分析法
行为信任分析法(Behavioral trust analysis)使用人们谈吐和交流中的信息(在人交流和使用信息的过程中将产生新的信息)作为信任关系的一个指标。网络教育平台可用来对人际关系进行分析。
2.5内容分析法
内容分析法(Content Analytics)可以对学习者的学习过程数据进行定量分析,寻找学习者的行为模式;还可以进行定性分析,运用已积累的数据经验来预测当前的学习行为。网络教育平台可以对学习者的学习行为分析,找到优生和差生学习行为的差别,教师结合自己的教学经验有针对性地干涉。由于网络教育平台数据的实时性,可以根据学习者的学习行为实时进行干涉,当然干涉的准确性需要数据库的进一步积累,从而产生由量变到质变的效果。LOCO-Analyst软件就可以对网络教育平台的内容进行分析。
2.6话语分析法
话语分析法(Discourse analytics)的目的在于获得有意义的数据(不像社会网络分析),旨在探讨所使用语言的属性,而不只是网络上的互动,或者论坛帖子数量的统计。网络教育平台可用以探究知识构建的过程,从而使教师和教学研究者对学习发生的过程有更清晰的认识。
2.7社会学习分析法
社会学习分析法(Social Learning Analytics)的目的在于探索在学习过程中社会交互所扮演的角色,以及学习网络的重要性,话语如何用来意义建构。网络教育平台管理者可以用来构建一个更好的学习者网络,通过学习者之间的交互,达到相互帮助学习的目的,相互帮助实现知识结构构建。
2.8信息可视化方法
信息可视化(Information Visualization)可以避免我们在一堆枯燥的数据中寻找规律,数据可视化之后,我们可以更好地进行意义建构。BEESTAR Insight可以自动收集学生实时的参与数据,从而为教师、学生和管理者提供分析图改善学习。
网络教育平台上的学习是学生、教师和管理者之间的共同交互过程,应运用不同的方法对这一复杂过程进行研究,才能得到满意的结果,学习分析技术将在此过程中展现它的作用。
3学习分析技术促进网络教育平台发展
笔者将从数据面板、预测性分析和自适应学习分析分别举例说明学习分析技术为网络教育平台带来哪些帮助。
3.1学习管理系统分析面板(LMS Analytics Dashboards)
大多数网络学习平台上都开始使用学习分析数据面板。实际上,到目前为止,大部分的非专业人员都还不能对记录数据进行解读,但是通过一系列的图像、表格和其它的可视化工具生成的报告,学生、教师和管理人员都可以读懂。美国一些大学采用了更先进的综合数据系统(如Helpdesk calls;学生信息系统),当然这些功能强大的系统也更难以学懂,这些系统能够探索不同变量之间的关系,使用户不仅止于掌握预先的报告。学习者在测验分数、论坛贡献、参与情况方面,可以得到一些基本分析报告。
EDUCAUSE汇集了一系列有用的高等教育案例,例如亚利桑那州立大学的研究表明,在学术和学习分析上进行投资能够收到显著的回报,该大学做了一个“Student 360”项目,通过该项目学校可以了解该校每一名学生的状况。[8]
3.2预测性分析(Predictive Analytics)
这是学习分析的一种高级应用。通过对学习者的统计数据或者过去的成绩之类的静态数据,和在线登陆方式、讨论发帖量之类的动态数据进行分析,追踪分析学习者的类型。把学习者进行分类,例如该学习者属于“高成就”,或者该生目前比较“危险”,或者是“社会型学习者”。然后根据学习者的类型进行实时的干预,对“高成就”类型提供一些更具挑战性的学习任务,而对处于“危险”状况的学生,教师则需要特别关注,给予一些学习上的帮助,而对于“社会型”的学生,则可能需要给予社交上的支持。
目前对于期末考试成绩最可靠的预测,是在学习开始的时候做一个小的学习能力测验。如果想设计更复杂的数据驱动预测模型,必须在此基础上进行改进,而这需要进一步的数据分析,以确定哪些变量能够预测“成功”。Purdue大学的Course Signal software非常知名,已经部分实现了这一技术。Signals在学生的学习过程提供了红色、黄色、绿色等信号,以帮助教师和学生了解目前的学习状况。最近的评估报告表明,参与Course Signal项目的学生获得了更高的平均分,能够更快速地寻找帮助资源。[9]来自密歇根大学的报告显示,自适应干预技术能够帮助参与E2Coach infrastructure项目的物理系学生学习健康信息,给他们提供定制的反馈,并鼓励学生改变他们的学习策略。
3.3自适应学习分析(Adaptive Learning Analytics)
自适应学习平台建立了一个学习某个主题(如代数;光合作用)的模型,并在标准化测试背景下建立了课程测试的模型。这种平台能够提供更细致的反馈(例如你已经掌握了哪些概念并掌握到何种程度),据此自动呈现以后的学习内容(例如不呈现基于学习者所未掌握概念的材料)。当然,建立学习者认知的动态模型,和准备自适应学习内容的引擎比设计和实现传统的学习平台需要更多的资源。大量的研究证据表明,采用这种方法将使个性化学习成为可能。
在智能教学系统和自适应平台上大量的研究和资金投入,将会为网络教育平台带来更好的用户体验。卡内基-梅隆大学的Open Learning Initiative课程是免费的,大家可以去体验一下,而Grockit与Knewton公司的商业平台也做得很好。
4结语
国外的大量实践表明,学习分析技术越来越显示出它的重要性。基于学习分析技术巨大的发展潜力,也希望更多的公司和机构投入到这个领域,毕竟学习分析技术还处于发展应用的初期阶段。而学习分析技术支持下的网络教育平台,将为我国远程教育发展带来新的机遇。
参考文献参考文献:
[1]程智.对网络教育概念的探讨[J].电化教育研究,2003(7):25-28.
[2]魏顺平.学习分析技术:挖掘大数据时代下教育数据的价值[J].现代教育技术,2013(2):5-11.
[3]WATSON,WILLIAM R.An argument for clarity:what are learning management systems,what are they not, and what should they become[J].TechTrends,2013(2):28–34.
[4]Educational Data Mining.http://.
[5]COOPER,ADAM.A brief history of analytics a briefing paper.http://publications.cetis.ac.uk/wp-content/uploads/2012/12/Analytics-Brief-History-Vol-1-No9.pdf.
[6]POWELL,STEPHEN,SHIELA.MACNEIL.Instituitional readiness for analytics a briefing paper.http://publications.cetis.ac.uk/wp-content/uploads/2012/12/Institutional-Readiness-for-Analytics-Vol1-No8.pdf.
篇10
关键词:信息技术 数字化管理 体检结果 后勤服务
Research on the digital management of the teachers and students in the university logistics service
Zhang Yong1,Zhang Yue-mei2
(2.Hospital of Taishan Medical College;2.Taishan Medical College Offi ce of General Servies 271000)
Abstract:with information at the core of the new third industrial revolution is having a huge impact on human society. With the acceleration of the process of globalization, information technology support, PC and smart phones as tools, mobile or handheld logistics logistics logistics model as the main form of efficient digital management of teachers and health colleges and universities is on the rise, through which management can dynamically learn daily health of students and teachers, and propose specifi c countermeasures. Practice shows that: Effective School Health Digital Management allows teachers and students to understand their own situation situation, strengthening the efforts of teachers and students regular physical examination, physical examination results to teachers and students are using the system locate digitized effective monitoring, in order to provide logistical digital management new ideas.
Key words: IT digital management;examination results; logistics services
随着我国高等教育事业的不断发展,高校后勤服务成为一个热点研究问题。诸多研究更多地集中在高校后勤制度、高校后勤社会化、高校后勤精细化管理、现代大学生体质下的高校后勤等方面。但是,大学制度改革下高校师生健康问题研究相对较少。数字化管理是指利用计算机、通信以及人工智能技术等量化管理对象与管理行为,实现计划、组织、协调、服务、创新等方面的智能化管理的总称。数字化管理和传统管理模式相比具有集成性、系统性等[1]。目前,数字化管理在高校后勤管理中运用较多,涉及档案管理系统、校园一卡通系统以及校园网络系统等。本文将以数字化管理为起点,分析数字化管理在高校师生健康中的运用及作用,现综述如下。
一、后勤数字化管理基本概念
后勤数字化管理是利用数字技术使后勤管理实现现代化,利用数字技术选择后勤企业发展战略,大大拓宽了选择范围,实现选择的最优化。后勤数字化管理要求管理人员运用数字技术为客户和后勤员工设计全新的价值理念,实现后勤企业发展的战略目标,体现后勤数字化管理的独特性[2]。而师生健康数字化管理则是运用现代技术动态的掌握或了解全校师生的健康状况,这不仅仅是技术问题,更多的是服务于师生问题,它能建立独特的价值理念,发挥后勤员工的积极性,动态了解全新的师生健康情况,促进高校更好、更快的发展。
二、师生健康数字化管理在高校后勤服务中的运用
师生健康数字化管理能动态了解师生健康状况,加强不同部门之间的协调合作,更加有利于高校资源的利用和整合,促进师生健康。
(一)高校医院
高校医院在师生健康数字化管理中发挥重要作用,能对高校师生的健康体检、健康分层、健康评估以及健康干预和健康教育进行有效的支持。根据高校师生健康数字化管理内容将其分为教职工和学生健康数据管理两部分。教职工健康数据主要采集学校定期组织的健康体检结果,并与往年结果进行比较,实现不同教职工健康情况进行分层和跟踪管理。而大学生健康数据主要通过入学健康体检和学期体质测试获取,对获得的数据进行对比分析,根据不同大学生体质和身体状况进行健康信息咨询和教育[3]。
(二)高校体育教师
高校体育教师在师生健康数字化管理中能够改善师生健康状况。高校体育教师能根据学校师生健康管理情况加强学生健康干预,如:运动技能培训、运动方案的制定、健康咨询等。学校定期组织体育老师对师生的运动状况进行测评,为制定相应的方案提供数据支持,形成高校数字化管理的数据库[4]。同时,高效体育教师应该加强监督、制定运动方案的实施,使得采集的数据更加科学化。
(三)高校心理咨询中心
根据教育部要求,高校均配备心理咨询中心,它对师生健康数字化管理有着重要的作用。心理咨询中心能够针对高校师生进行相应的心理评估、心理调查等,然后根据评估结果加强其健康教育。心理咨询师运用专业的方法对高校师生心理状况、情绪、人际交往、生活质量等进行测评,建立心理测量、心理调查等相关信息,保证师生健康数字化管理信息能全面、连续、动态并建立完善的健康档案。同时,师生健康数字化管理能够为高校师生提供定期、不定期的心理咨询,心理健康普查。
三、完善师生健康数字化管理对策
为了进一步完善师生健康数字化管理,提高师生健康水平,相关部门应该采取积极有效的措施进行应对,保证实施健康数字化管理在高校后勤管理中发挥重要作用。
(一)整合资源
师生健康数字化管理能够实现对全校师生健康的动态了解,根据师生身体状况加强健康锻炼。为了进一步提高实施健康数字化管理效果,学校应该将不同部门、不同类型的信息资源进行有效的整合,实现信息资源的优化功效。师生健康数字化管理属于后勤管理的一部分,通过学校医院、学校体育院系以及学生心理咨询中心进行整合,以充分利用健康监测、评估等相关资源,发挥社会和经济效益[5]。
(二)提高对师生健康服务的功能
师生健康数字化平台在高校教职工及学生的身体健康数据的采集,建立相应的电子健康档案,根据师生实际需要提出针对性的解决对策。同时,高校后勤部通过对师生进行动态监督,能为疾病的防治奠定基础。同时,师生健康数字化管理能满足高校后勤管理的基本要求,满足体育、医学预防保健、心理指导,对师生健康指导、健康信息等进行规范化管理,提供完善的保障,为社会健康管理方面输送专门人才[6]。
三、结束语
综上所述,师生健康数字化管理在高校后勤服务中能够满足后勤管理的基本需要,动态了解全校实施的健康体检状况,将高校内有关健康部门的资源进行有效的整合。通过师生健康数字化管理能够为高校大学生、教职工提供更具针对性的健康教育、健康指导、健康干预和健康管理,能够充分发挥师生健康数字化管理功能,对师生的健身进行科学的指导,能够预防慢性疾病的发生,促进师生身心健康,为社会源源不断的输送德才兼备身体健康的专业型人才。
参考文献:
[1] 赛迪智库软件与信息服务研究所.美国将发展大数据提升到战略层面[N].中国电子报,2012-07-17(3):90-93.
[2] 王武海.高校供暖能源浪费问题与管理节能探索[J].中国科技纵横,2011,24(4):28-30.
[3] 范,姜群瑛.现代大学制度:我国高校后勤改革的新视野[J].中国高教研究,2013,18(9):90-93.
[4] 闫冰.深化后勤改革为建设高水平研究教学型大学提供可靠保障―――郑州大学后勤改革纪实[J].高校后勤研究,2014,76(2):8-11.