人工智能教育的核心范文

时间:2023-08-23 16:10:28

导语:如何才能写好一篇人工智能教育的核心,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

人工智能教育的核心

篇1

[关键词] 脑卒中;抑郁;焦虑;心理干预

[中图分类号] R743.3 [文献标识码] C [文章编号] 1673-7210(2013)08(b)-0144-03

近年来随着人口老龄化,脑卒中的发病率及致残率逐年上升[1]。急性脑梗死患者治疗后50%~70%会遗留不同程度的各种后遗症,其中抑郁和焦虑症状是其中较常见,不仅可影响患者神经、运动功能及日常生活能力恢复,而且加重患者认知功能障碍,影响患者生活质量和预后,因此,对脑卒中伴有抑郁和焦虑患者予以心理干预显得十分重要[2-3]。本研究观察了综合性心理干预对脑卒中伴抑郁和焦虑患者神经和认知功能的影响,现报道如下:

1 资料与方法

1.1 一般资料

选择2011年7月~2012年6月在浙江省台州市第二人民医院、浙江省台州市恩泽医疗中心(集团)内科住院治疗脑卒中伴抑郁和焦虑患者80例。纳入标准:①均符合第4届中华医学会脑血管病会议制定的有关脑血管病诊断指南标准[3];②符合CCMD-3器质性抑郁和焦虑发作的诊断标准[4];③并经临床、头颅CT/MRI等检查确诊。排除标准:①伴有意识障碍、失语和失认的患者;②双向情感障碍抑郁相患者;③以往有神经、精神病史患者。采用随机数字表将患者分为观察组和对照组,每组各40例。观察组中男22例,女18例;年龄41~87岁,平均(71.9±7.6)岁;受教育年限0~15年,平均(5.7±1.9)年;病程13~42 d,平均(30.5±7.1)d;脑卒中类型:脑梗死33例,脑出血7例。对照组中男24例,女16例;年龄40~86岁,平均(71.2±7.3)岁;受教育年限0~16年,平均(5.6±1.7)年;病程11~45 d,平均(29.8±7.3)d;脑卒中类型:脑梗死31例,脑出血9例。两组患者的性别构成、年龄分布、病程时间、受教育年限和脑卒中类型等比较均无明显统计学差异(P > 0.05),具有可比性。本研究方案经浙江省台州市第二人民医院、浙江省台州市恩泽医疗中心(集团)伦理委员会批准通过,两组患者入组前均知情同意,并签署知情同意书。

1.2 治疗方法

两组患者常规予以控制颅内压、血压和血糖、营养脑细胞及改善脑循环等治疗,观察组在此基础上予以综合性心理干预治疗,两组疗效均为4周。综合性心理干预的具体内容包括:①心理护理:耐心倾听患者的不适主诉,关心和同情患者取得其信任,掌握患者的心理状态,予以积极有效的心理护理及心理疏导,消除患者的抑郁和焦虑症状,提高患者治疗的信心;②认知干预:向患者及家属介绍脑卒中及伴随抑郁及焦虑的相关知识,采用认知重建的方法,改变患者以往错误的认识,建立主动认知模式,使患者认识到心理因素在脑卒中患者康复治疗中的重要性;③康复干预:根据脑卒中患者病程的不同阶段及患者神经、肢体肌力和认知功能障碍的测定,采用针对性的早期康复训练及认知干预措施,改善患者的功能性表达和交流现状,逐渐恢复患者的神经、肢体运动及日常活动能力。观察并比较两组患者治疗前后心理状态、神经、运动和认知功能的变化。

1.3 观察指标

1.3.1 心理状态的评定[5] 采用汉密尔顿抑郁量表(HAMD)和汉密尔顿焦虑量表(HAMA)分别评定患者的抑郁和焦虑症状。

1.3.2 神经和运动的评定[6] 采用脑卒中神经功能缺损评分表(CNS)和简化Fugl-Meyer运动评分(FMA)分别评定患者神经和运动功能。

1.3.3 认知功能的评定[7] 采用简明精神状态量表(MMSE)评定患者的认知功能,其中显著改善:MMSE评分较前增加≥4分;改善:MMSE评分较前增加1~3分;无效:MMSE评分较前无明显变化或减少。除无效外均认为改善。

1.4 统计学方法

采用统计软件SPSS 17.0对实验数据进行分析,计量资料数据以均数±标准差(x±s)表示,采用t检验。计数资料以率表示,采用χ2检验。以P < 0.05为差异有统计学意义。

2 结果

2.1 两组患者治疗前后心理状态的变化

两组患者治疗前HAMD和HAMA评分比较差异无统计学意义(P > 0.05)。治疗4周后,两组患者HAMD和HAMA评分均有明显下降(对照组治疗前后,t = 2.23、2.31,P < 0.05;观察组治疗前后,t = 3.02、3.26,P < 0.01),且观察组下降值较对照组更明显(t = 2.29、2.33,P < 0.05)。见表1。

2.2 两组患者治疗前后神经和运动功能的变化

两组患者治疗前CNS评分和FMA评分比较无明显统计学差异(P > 0.05)。治疗4周后,两组患者CNS评分均有明显下降,FMA评分均有明显上升(对照组治疗前后,t = 2.21、2.29,P < 0.05;观察组治疗前后,t =3 .41、2.91,P < 0.01),且观察组下降或上升值较对照组更明显(t = 2.39、2.21,P < 0.05)。见表2。

2.3 两组患者治疗后认知功能改善情况比较

治疗4周后,观察组患者认知功能总改善率明显优于对照组(χ2=7.41,P < 0.01)。见表3。

3 讨论

脑卒中是老年患者的常见疾病,不仅可引起患者生理上残疾,而且可使患者心理受到极大创伤,常导致心理失调[8]。脑卒中伴抑郁、焦虑障碍的发病率达15%~35%,严重影响了患者的工作及生活,不利于患者神经、运动及认知功能的恢复,增加了患者的致残率和死亡率,给患者及家属带来精神及经济负担[9]。目前研究已证实脑卒中伴抑郁、焦虑障碍是生理、心理和社会等因素共同作用的结果,其中心理因素在其中起关键作用。因此,对脑卒中伴抑郁、焦虑患者予以心理干预显得尤为重要[10-11]。

近年来国内外对脑卒中伴抑郁、焦虑患者认识功能障碍的心理干预治疗进行了深入广泛的研究,并取得了较好的疗效[12-13]。田永梅等[14]研究发现对脑卒中后焦虑与抑郁障碍患者进行心理护理,可有效缓解患者焦虑、抑郁情绪,改善患者的神经、认知和社会活动功能,提高患者的生活质量和预后。赵惠宁等[15]研究发现脑梗死恢复期患者进行康复治疗能明显改善患者的生活质量,有效抑制患者的焦虑、抑郁等不良情绪。本研究结果发现治疗4周后,观察组HAMD和HAMA评分下降值较对照组更明显;观察组CNS评分下降或FMA评分上升值较对照组更明显;观察组患者认知功能改善总有效率明显优于对照组。表明综合性心理干预能明显改善脑卒中伴抑郁和焦虑患者心理状态,增强患者康复的信心,有利于患者神经和肢体运动功能的尽早恢复,促进患者认知功能障碍的有效恢复,从而提高脑卒中患者的治疗效果,使患者致残率和死亡率明显下降,提高了患者的生活质量与预后。

综上所述,综合性心理干预能明显改善脑卒中伴抑郁和焦虑患者心理状态,增强患者康复的信心,有利于患者神经和肢体运动功能的尽早恢复,促进患者认知功能障碍的有效恢复,从而提高脑卒中患者的治疗效果,使患者致残率和死亡率明显下降,提高了患者的生活质量与预后,具有临床推广价值。

[参考文献]

[1] Joubert J,Reid C,Joubert L,et al. Risk factpr management and depression post-stroke: The value of an integrated model of care[J]. J Clin Nearosci,2006,13(1):84-90.

[2] Biernaskie J,Chernenko G,Corbett D. Efficacy of rehabilitative experience declines with time after focalis chemic brain injury[J]. J Neurosci,2004,24(5):1245-1254.

[3] 陈清棠.全国第四届脑血管病学术会议.脑卒中患者临床神经功能缺损程度评分标准(1995)[J].中华神经科杂志,1996,29(6):381-386.

[4] 张明园.精神科评定量表手册[M].2版.长沙:湖南科学技术出版社,1998:16:273.

[5] 龙璐,向光红,周晓璇.89例脑卒中患者焦虑及抑郁调查研究[J].中国医药导报,2011,8(2):144-145,147.

[6] 柳兰仙,方志红.康复护理干预对脑卒中后抑郁症患者神经与运动功能的影响[J].中国药物与临床,2012,12(4):536-538.

[7] 叶红晖,毕建忠.早期综合康复治疗对脑卒中患者认知功能的影响[J].中国卒中,2006,1(8):553-555.

[8] 梁业飞.脑卒中后焦虑状态与抑郁状态的药物治疗[J].实用心脑肺血管病杂志,2012,20(2):290-291.

[9] Hsieh Lp,Kao Hi. Depressive symptoms following ischemic stroke: a study of 207 patients[J]. Acta Neurol Twsiwan,2005,14(4):187-190.

[10] Tam SF,Tsang HW,Chan YC,et al. Preliminary evidence for the basis of self-concept in Chinese with mental illness[J].Qual life Res,2004,13(2):497-508.

[11] Fruehwald S,Gatterbauer E,Rehak P,et al,Early fluoxetine treatment of post-stroke depression: A three-month double-blind placebo-controlled study with an open-label long-term follow up[J]. J Neurol,2003,250(3):347-351.

[12] Reed BR,Eberling JL,Mungas D,et al. Effects of white matter lesions and lacunes on cortical function[J]. Arch Neurol,2004,61(10):1545-1550.

[13] Jaillard A,Grand S,Le Bas JF,et al. Predicting cognitive dysfunctioning in nondemented patients early after stroke[J]. Cerebrovasc Dis,2010,29(5):415-423.

[14] 田永梅,任爱玲.心理护理对脑卒中后焦虑与抑郁障碍患者的效果观察[J].齐鲁护理杂志,2010,16(16):6-7.

篇2

先给大家重点推荐一本期刊:中国职业技术教育

中国职业技术教育杂志征稿信息

《中国职业技术教育》杂志是由中华人民共和国教育部主管,教育部职业技术教育中心研究所、中国职业技术教育学会和高等教育出版社共同主办的一份综合性中文期刊,集政策指导性、学术理论性和应用服务于一身,是教育部指导全国职业教育工作的重要舆论工具,是服务各级各类职业教育机构的主要阵地。

中国职业技术教育投稿栏目:主要有职教要闻、专稿专访、综合管理方略、课程教材、教研与教学、师资队伍建设、研究与探讨、职业指导、职业培训、高等职业教育等栏目。

再给大家推荐职业教育范文:人工智能背景下职业教育变革及模式建构

董文娟1,黄尧2(1.天津大学教育学院,天津300350;2.北京师范大学国家职业教育研究院,北京100875)

摘要:顺应人工智能时代的浪潮,基于新兴技术的职业教育变革及新模式建构势在必行。该文从职业教育智慧化、经济发展、政策保障、信息化生态重构四个方面,剖析了人工智能时代职业教育变革的现实诉求,并进一步分析了当前职业教育外部环境及其自身发展的困境。人工智能背景下职业教育的变革体现出融合、创新、跨界、终身化的新特征。基于此,从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面,探究职业教育的变革路径及模式建构。最后探讨了职业教育模式变革还面临回归教育本质、规避技术弊端等挑战,并提出“适应—引领人工智能”的发展目标。

关键词:人工智能;职业教育变革;模式建构;智慧化

“人工智能的迅速发展将深刻改变人类社会生活、改变世界。特别是在移动互联网、超级计算等新理论、新技术及经济社会发展强烈需求的共同驱动下,人工智能发展呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。”[1]人工智能作为新一轮产业变革的核心驱动力,为我国供给侧结构性改革下的“新常态”经济发展注入新动能,使人们的思维模式和生活方式发生了深刻变革。近年来,国家高度重视与社会经济发展联系最为密切的职业教育,积极推进职业教育信息化,运用人工智能改革教学方法和人才培养模式,构建新型智能职教体系,提升信息技术引领职业教育创新发展的能力。

一、人工智能背景下职业教育变革的现实诉求

人工智能对传统教育理念产生了革命性冲击,职业教育结构不断调整,劳动力素质与市场需求的矛盾、学习方式与自我价值实现的矛盾等促使职业教育向智慧化、智能化发展。目前,我国处于教育信息化2.0、工业4.0的新时期,全球范围内新一轮的科技革命和产业变革正在加速进行。“一带一路”“中国制造2025”人工智能等重大国家战略的提出,及以新技术、新产业为特征的新兴经济模式要求教育领域,尤其是职业教育培养行业、产业急需的技术技能型、智慧型人才,具备更高的创新创业能力和跨界整合能力,促进智慧化发展,助力经济转型升级。

(一)职业教育智慧化诉求:职业教育信息化发展的必然选择

“智慧教育是以物联网,大数据等信息技术为依托,创造智慧教学环境,转换教育方法,内容与手段,注重教育网络化,个性化和智能化的一种教育新模式。”[2]智慧教育作为“一种由学校、区域或国家提供的高学习体验、高内容适配性和高教学效率的教育行为(系统)”,被视为教育信息化发展的高端形态[3]。因此,职业教育的智慧化并非简单的数字化,强调信息技术推动职业教育教学模式和方法的变革,改变思维模式,创建价值等方面共享的学习共同体,培养创新型、智慧型人才。

职业教育智慧化是职业教育信息化发展的必然选择。目前,我国的职业教育信息化水平正在稳步提高,投入持续增加,各种智能信息技术应用于教育教学、实习实训、测量评价等领域,并逐步成熟,正在努力打造一个信息化、智慧化的现代职业教育生态系统。新时期我国很多地区及职业院校积极提升现有信息化系统的智慧化水平,积极创建智慧校园、智慧社区等,逐步实现了组织管理的智慧化、资源环境的智慧化和服务评价的智慧化。

(二)经济发展诉求:人工智能时代的新兴经济需要高技能智慧型人才

人工智能时代职业教育运用移动互联网、大数据等新兴技术,与经济及其他部门跨界融合,不断创造新产品、新业务,推动职业教育模式创新,形成了以互联网为基础设施、人工智能为实现手段的经济发展新常态。人工智能时代是以现代科学技术为支撑的新时代,各行各业的运作发展和对知识技术的掌握要求达到了更高层面,相应的教育需求也有所提升,市场环境渴求勇于创新、个性化的高技能智慧型人才。职业教育要应对行业上升发展的劳动力需求问题,基于人工智能应用,提高技能培养层级,以适应新的社会劳务需求。现代企业生产依托互联网科技,与智能化设备直接联接,通过数据分析和应用,促进科技成果转化为生产力。劳动密集型企业已不适应现代行业、产业发展,需升级为网络智能型,与此同时,职业院校的课程模式、专业设置、实习实训、师资结构等也做出相应的调整和革新,既促进了职业教育的智慧化、智能化,又推动了产业升级和工业变革。

(三)政策保障:国家从宏观层面保障人工智能时代的职业教育发展

2016年是我国人工智能元年,2017年我国颁布了《新一代人工智能发展规划》,提出了“将发展人工智能放在国家战略层面进行系统谋划和布局”,这预示着我国人工智能时代的全面到来,为我国职业教育的发展提供了良好的宏观政策环境。人工智能给职业教育带来了符合时代精神的新内容,积极融合信息技术,整合职业教育资源,提升公共服务水平,影响和改变了原有的教育生态。紧密依托信息共享平台,突破时空限制,让学习者自我选择,更加人性化和智能化。我国很多职业院校已经开启了智慧校园的行动计划,一些大中城市也在积极制定实施智慧城市的发展规划,在良好的政策保障中提升智慧化水平。

(四)信息化生态重构诉求:人工智能时代的职业教育变革是对职业教育信息化生态系统的重构

“依据《2006-2020年国家信息化发展战略》,我国正在有序推进数字教育向智慧教育的跃迁升级和创新发展。”[4]在新兴智能信息技术的催促下,技术变革带来了职业教育系统的颠覆性创新改革,打破现有的条条框框,改革传统教育模式,再造教育业务新流程。在职业教育领域创新应用物联网、大数据、人工智能等先进技术,提升各科各门教育教学业务,打造各级各类智能实训部门、培训机构,覆盖贯通中高职院校,整合系统内外现有资源,推进智慧教育生态有序发展,为各类用户提供最适合、最智能的职业教育资源和服务,完成对职业教育信息化生态系统的重构。

二、当前职业教育发展的现实困境

人工智能对各行各业的影响具有革命性和颠覆性,可能带来新的发展机遇,也可能带来不确定性的挑战,比如可能会改变就业结构、影响政府管理、威胁经济安全等,还可能会冲击法律与社会伦理,影响社会稳定乃至全球治理。当前,人工智能与“大众创业、万众创新”浪潮席卷而来,职业院校既是人工智能应用的战场,又是培养技术创新型人才的“梦工厂”[5]。人工智能时代的职业教育信息化发展迅速,影响是广而深的,对职业教育外部环境及其本身都造成了极大的冲击。

(一)职业教育外部环境发展困境

“据联合国教科文组织预测,到2020年,人工智能将替代20亿个工作岗位”[6],那些技术含量低、重复性强的技能将被智能机器、数码设备所替代,工业机器人也将大面积应用。智能设备替代行业劳动力,能够降低劳动成本,且具有高效、易操作等竞争优势。传统职业教育培养模式很难适应未来行业、产业的发展需求,人工智能冲击职业教育就业岗位,撼动其所依附的岗位基础,对职业教育的生存与定位产生了威胁。因此,根据智能时代职业教育的岗位特征与需求,提升职业人才的知识结构和专业技能,是新形势下职业教育的发展方向。

(二)职业教育自身发展困境

近年来,人工智能在职业教育领域内的应用和提高是目前职业教育的发展趋势。我国重视职业教育信息化、智能化发展,各级各类职业院校在信息化基础设施建设、校园信息化管理等方面都有了显著提升,但信息技术与职业教育的深度融合仍不够紧密,表现出信息化管理效率低、科学决策水平低等现象。人工智能背景下职业教育自身发展的困境表现在:

1.课程与教学困境

职业院校新课程改革提倡构建智慧课堂,制定个性化学习计划,注重课堂实施效果。但目前的实际课程教学仍是以教师为中心,强调知识的灌输,重视统一性和计划性,与教育改革提倡的个性化教学相去甚远。教学方法、教学理念更新慢,很难激发学生的内在学习动力,创新性思维弱,使得个性化教育的无法实现。近年来,中央、省、市、县四级教育平台逐步建立起来,课程与教学的层级设计逐步完善,但在实施的过程中,各级平台之间存在沟通不畅等问题,各级资源内容不系统,不衔接,导致无序叠加和资源的重复浪费,“精品课程”等项目丰富了课程资源,但质量不高。在线课程与教学以传统的科目、章节为单元,构建系统性的在线教育内容,为用户提供专业化的知识选择,但由于受时间条件等限制,大多数受教育者习惯于碎片化学习,连贯性和整体性差,缺乏对课程与教学体系的系统性学习。

2.认知困境

随着人工智能时代的到来,许多职业院校将“未来教室”“智慧课堂”定位为未来发展方向,进行了多种尝试和改革,如MOOC混合教学、翻转课堂、多屏教学等,但“管理者和施教者对智慧教育的理解多停留在‘智慧课堂=多媒体+传统教学的层面’,教学观念和思维依然固化,并没有因为新技术的参与而得到实质改变”[7],缺乏对多媒体网络架构和智能学习平台的深层认识,更缺乏对管理评价和互动交流等模块的理解与掌握,虽投入大量人力财力采购了数量巨大、设备精良的多媒体设备和智能服务设备,但没有充分有效使用,大大限制了智慧教育的发展潜力。

3.用户困境

传统教学以群体教育为基本单元,教师和学习者作为学习共同体,在管理、学习的互动过程中形成强大的群体约束力,促进双方共同进步。在信息化教育时代,学习者自由掌握学习时间和进度,遇到问题可能无法及时解决并获得反馈,无法进行面对面交流,因此,基于人工智能网络化学习平台,学习者需要高自控力、高学习能力才能适应这种全新的学习方式。

4.评价困境

传统的评价方式多依靠经验和观察,智慧型评价则是基于学习过程的一种发展性评价,以采集到的学习数据为客观基础。在人工智能、数字信息化环境下教育效果的评价实际要受到很多因素的影响和局限,在信息技术与职业教育融合的过程之中,许多智能技术应用于教育教学实践,难以进行定性定量的智慧评价,如互动交流及深层次的学习评价等。

三、人工智能背景下职业教育变革的新特征

人工智能带来了思维模式的创新,改变了人们认识问题、思考和解决问题的方式,越来越多地依赖人与智能网络的协同创新。人工智能背景下的职业教育变革围绕经济社会发展大局,“主动服务国家重大发展战略,加大虚拟现实、云计算等新技术应用,体现校企合作、知行合一等职教特色,以应用促融合、以融合促创新、以创新促发展。”[8]人工智能背景下职业教育的变革必将加速推进职业教育的现代化、智能化进程,表现出了融合、创新、跨界和终身化的新特征。

(一)融合

人工智能技术科学应用于当前职业教育,在最短的时间内整合、重组大量的知识信息,形成科学的技术技能知识体系,为职业教育资源、企业资源、产业资源、社会资源等一切有可能联结的资源融合提供了可能。为促进职业教育的智慧化发展,在现有的合作模式、集团模式、产教融合模式等实体协作发展的基础上,建立智能互动的智慧教育供给平台、常态化智慧课堂和大数据化智慧教育生态系统,为我国新兴经济发展提供高技能、智慧型人才支撑。

(二)创新

信息化时代下“变”为创新立足之要点。创新时代最需要提升的就是创造智慧。“由知识的理解记忆,转向知识的迁移、应用并最终指向创造发明”[9],以提高学习者的学习能力和应用能力,提升其创新思维和智慧思维,不断开拓人类社会发展的高度和宽度。智能化、信息化的时代是创新不断的时代,是原有知识不断被更新、技术不断被升级的时代。人工智能促使社会化协同大规模发展,促进职业教育体系核心要素的重组与重构,创新生产关系,呈现出新的协作架构,开创了新的教育供给方式,增加了教育的选择性,推动了教育的民主化。学习者能够按照自己的价值观、兴趣与爱好等选择适合自己个性发展的学习方式和学习内容,促进学习者个性化、多样化发展,最终实现教育公平。

(三)跨界

智能科学与职业教育连接起来,搭建起两者沟通的桥梁,跨越了人工智能虚拟教育和线下实体教育的界限,实现了两者之间的融合。教育供给由竞争资源转变为协同合作,直线型的中心组织管理转向去中心化、泛化管理。通过大数据智能技术平台、远程教育平台等对职业教育资源进行整合共享,跨越教育边界,与市场、行业、企业以及职业教育培训机构对接,提供更加便捷的智慧化服务。

(四)终身化

人工智能时代职业教育的变革坚持“以人为本”的教育理念,满足学习者在任意时间、任意地点、以任意方式、任意步调终身学习的需求[10]。打破了地域和时间的限制,体现了教育的泛在化、个性化和终身化,与终身教育理念的发展目标不谋而合。人工智能时代社会经济发展加快,人们追求高层次自我价值的实现,充分体现出终身学习的必要性和紧迫性。目前,我国正在积极创建泛在学习环境,致力于构建终身化学习型社会,努力创造有利条件向全民提供终身教育与学习的机会。

四、人工智能背景下职业教育发展的模式建构

人工智能背景下职业教育的变革预示着全新思维意识形态、社会发展形态的变革,重塑职业教育可持续发展的新思维,重构信息时代职业教育的价值链和生态系统。智能化技术科学将现代职业教育内部各要素,以及内部要素与外部环境之间,通过虚拟技术和智能化手段互联贯通,突破传统教育价值的链状模式,使职业教育由传统模式走向“人工智能+职业教育”模式的建构。人工智能对职业教育课程、教学、评价、管理、教师发展等方面产生系统性影响,为职业教育提高教育质量和提升服务水平提供了技术支持和现实路径,解决不能兼顾职业教育规模和质量的矛盾问题。下面将从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面来探究职业教育的变革路径及模式建构。

(一)人工智能背景下职业教育的课程模式

人工智能时代的信息知识、科学技术正在以前所未有的速度增长、更新和迭代,呈现出了碎片化、多元化、创新性、社会性的特征。人工智能背景下职业教育的课程模式是为学习者提供按需可随时选择的知识储备智能模式,解决了传统职业院校课程教学的滞后性,呈现的是现代职业教育的前沿信息和内容。课程革命愈演愈烈,灵活多样的微课、慕课等形式层出不穷,在线课程将成为常态,信息传播媒介、知识获取方式等都发生了巨大改变,课程内容和结构的表现形态、呈现方式、实施及评价等也都进行了相应变革。智能化信息科学技术为课程的设计、架构、实施提供了快捷和便利,为学习者的个性化、终身化选择提供了多种渠道。人工智能背景下职业教育的课程模式的建构表现为:首先,线上线下融合的大规模开放课程融入现代职业教育,课程的表现形态和实施途径呈现出智能化、数字化、立体化的特征,成为学校常态课程的有机组成部分,为学习者提供了更多的可选择机会,使实施个性化课程成为可能。现代职业教育的课程内容强调学术性与生活性相互融合与转化,融入社会资源,立足于我国社会经济的新常态和学习者的全面发展,实现社会化协同发展,共赢共创;其次,课程实施的空间得以拓展,跨越了社会组织边界、职业院校边界,将从班级、年级、全校扩展到网络社区以及更大的空间。课程的整体结构从分散走向整合,以技术为媒介,形成跨学科、多学科整合的课程;最后,课程内容的组织、课程的实施逐步模块化、碎片化、移动化与泛在化,社会化分工更加精细,教师也将承担教学设计、技术开发、在线辅导等不同的角色。

(二)人工智能背景下职业教育的教学模式

人工智能时代将信息技术有效地融合于职业教育各学科的教学过程,从知识的传递转变为认知的建构,从注重讲授和内容,转变成重视学习过程[11],构建“以教师为主导,以学生为主体”的以数字化、智能化为特征的智慧教学模式,重视学生的主体地位,引导学生“自主、探究、合作”。人工智能背景下职业教育的教学模式的建构表现为:首先,人们的学习方法、认知方式和思维模式已经发生了巨大的转变。信息化教学使得信息技术已成为学习者认知的必要工具,认知方式也由“从技术中学”转型为“用技术学”。其次,信息化教学的重点从“面向内容设计”转变到“面向学习过程设计”,更加重视学习者发现问题、分析和解决问题能力的培养,关注学习者的学习过程,以及其获得学习活动的体验。同时,信息化教学要将课堂内的学习知识和课堂外的实践活动联结互动,按照学习者的个性化需求和认知方式自主选择学习内容。第三,智慧教学将成为课堂教学的新重点。日常教学工作形态不再是点线面的连接,而是呈现为智能化、立体化的教学空间,智慧课堂将会促进学习者的深度学习、交互学习和融合学习,智能备课、批阅以及个性化指导等也将成为教育者新的教学工作形式。从机械评价学习结果转变成适应性评价学习结果。第四,在线教学、整合技术的学科教学法将成为新的教学形态,促进教育均衡发展,实现跨学校、跨区域的流转。移动学习、远程协作等信息化教学模式,能够实现教师的“教”与学生的“学”的全面实时互动,最大限度地调动学习者的主观能动性,提升教学质量与人才培养质量。

(三)人工智能背景下职业教育的学习模式

智能系统和互联网络为学习者提供了丰富多元的学习资源和环境,推进了教育教学活动与学习环境的融合发展,人工智能背景下职业教育的学习模式也逐步建立起来,具体表现为:首先,智能时代的互联网络全面覆盖每一个人、每一个角落,活动空间由课堂内拓展到课堂外,学习与非正式学习正在互相补充、互相与融合,导致学习者的学习行为变化、学习方式的革新。其次,基于互联网出现了一批创新的学习方式,借助情景感知技术及智慧信息技术,进行真实过程体验的情境学习,促进学习者知识迁移运用的情境化和社会化。第三,借助互联网云技术和各种应用工具,学习者可根据自身学习需求,选择最优学习方式,也可利用数据分析技术,追踪记录学习路径和学习交互过程,随时随地获取个性化教学服务和量身定制的学习资源,拓宽了智慧教育视野。第四,各职业院校开始拓展校园智慧学习的时间和空间,以实现虚拟和现实相互结合的智慧校园育人环境。推进网络学习空间建设,加强教与学全过程的数据采集和分析,“引导各地各职业院校开发基于工作过程的虚拟仿真实训资源和个性化自主学习系统”[12],强化优质资源在学习环境中的实际应用。

(四)人工智能背景下职业教育的环境模式

智慧教育环境是以大数据、多媒体、云计算等智能信息技术为基础而构建的虚实融合、智能适应的均衡化生态系统。信息技术与职业教育的深度融合,为师生的全面发展提供了智慧化的成长环境,如智慧云平台、智慧校园。人工智能背景下职业教育的环境模式的建构表现为:首先,智慧教育环境将信息技术与职业教育服务结合、面对面教学和在线学习结合,形成数字化的、虚实结合的职业教育智能服务新模式。其次,智慧教育环境将促进各种智能化、数字化信息技术融入职业院校的各个业务范围和业务领域,与系统内的其他业务横向互联、纵向贯通,且信息能够适时生成和采集,全过程实现数字化与互联化。第三,智慧教育环境能够感知学习者所处的学习情境,理解学习者的行为与意图,满足学习者的个性化需求,提供多元化的适应服务和智能感知的信息服务。互联网应用基于智能数据分析,实现智能调节与自动监控,为学习者提供定制式的学习服务和个性化的学习环境。未来教室必将变成“虚拟+现实”的智慧课堂,在网络空间中参与线上课程、线下活动,实现线上线下互动交流。同时,智慧校园的创建和管理,能够对每个班级、学区进行动态管理,构建出一个以问题、任务为线索,学生实现自主学习的知识体系和促进师生互动、生生互动的智慧管理平台。到2020年,“90%以上的职业院校建成不低于《职业院校数字校园建设规范》要求的数字校园,各地普遍建立推进职业教育信息化持续健康发展的政策机制”[13],以学习者为中心的自主、泛在学习普遍开展,精准的智能服务能够满足职业教育的终身化定制。

(五)人工智能背景下职业教育的教师发展模式

人工智能背景下职业教育的变革对教师的专业发展、素质能力提出了新要求,改变了教师的能力结构和工作状态。教育信息化大背景下,互联网技术、多媒体手段的产生、智能化设备的使用极大提高了教师的专业发展和能力素养,以适应新课程改革与教育信息化的要求。人工智能背景下职业教育的教师发展模式的建构表现为:首先,新时代教师专业发展的内在要求和外在环境都要求教师能够认识、了解和应用互联网新技术工具,促使教师专业发展能力和素养的提升和丰富。其次,教师的专业发展要面向实际、情境化、网络化的教学问题,教师需要在多变的教育情境中综合运用核心教学技能,将信息技术知识、学科内容知识、教学法知识很好地融合并迁移运用。新时代的教师要学会掌握使用智能化设备和数字化网络资源,积极加强与其他专家、教师的合作,或远程工作,形成基于智慧教育技术的多元化的学习共同体。教师的工作状态由个体的单独工作转变为群体的共同协作,大大提升了教师的工作效率。第三,信息化背景下教师的教学理念要发生转变,由促进学生“接受学习”转变为“主动建构”,由“被动适应”转变为“主动参与”,越来越强调以学生为中心的过程体验,从了解信息技术转变为掌握智慧教育技术,保持学科知识,教学方法,核心技术的动态平衡,促进学生智慧学习的发生。第四,信息化教师要学会使用智能化教育技术,积极开发数字化学习资源,创设丰富多元的教学活动,鼓励学生掌握智能信息工具,学会探究和解决问题,发展提升学生的创新思维能力和信息化学习能力。教师的信息化教学能力和素养全面提升,信息技术应用能力实现常态化。

(六)人工智能背景下职业教育的评价模式

现代教育价值趋于多元,以互联网为基础的智能化信息技术使教育评价在评价依据、评价内容、评价主体等多个方面实现了全面转变。人工智能背景下职业教育的评价模式的建构表现为:首先,互联网信息技术应用于学习过程使得伴随式评价成为可能,更加关注学习者的个体差异和特点。强调过程评价和多元共同评价,更加客观全面,重视评价过程的诊断与改进功能,以促进学习者的个性化发展。其次,互联网、大数据、智能云技术的出现使得评价的技术和手段多样化、智能化,节省人力物力财力,提高了评价的科学性、针对性。第三,以大数据为基础的适应性评价因人而异,可获得及时反馈,可真实地测评学习者的认知结构、能力倾向和个性特征等,从知识领域扩展到技能领域、情感、态度与价值观,构建以学习者核心素养为导向的教育测量与评价体系,促进学习者发展。

(七)人工智能背景下职业教育的管理模式

智能化信息技术、云计算技术、大数据技术等能够促进大规模社会化协同,拓展教育资源与服务的共享性,提高教育管理、决策与评价的智慧性,因此,基于互联网的教育管理必将逐步走向“智慧管理”模式。人工智能背景下职业教育的管理模式的建构表现为:首先,互联网将家庭、学校、社区等紧密、方便地联系在一起,拓宽了家长和社会机构参与学校管理的渠道,各利益相关者可共同参与现代职业院校的学校管理,协作育人。其次,新时代的职业院校管理模式通过可视化界面进行智能化管理,业务数据几乎全部数字化,能有效降低信息管理系统的技术门槛,使管理工作更加轻松、高效。通过深度的数据挖掘与分析,能够实现个性化、精准资源信息的智能推荐和服务,为管理人员和决策者提供及时、全面、精准的数据支持,以提高决策的科学性。第三,通过互联网信息技术可以实现全方位、随时的远程监督与指导,从督导评估转变为实时评估,可以实现大规模的实时沟通与协作,促进社会化分工,促进职业院校内部重构管理业务流程,使管理智能化、网络化、专业化。

(八)人工智能背景下职业教育的组织模式

人工智能时代信息科学技术的蓬勃发展冲击着学校内部的组织结构向智能化、网络化的方向发展,各职业院校需要合理调整内部组织结构和资源分配,通过互联网加快信息流动等方式,提高各职业院校组织管理的效率和活力。人工智能背景下职业教育的组织模式的建构表现为:首先,当今时代人工智能的产生不可能替代学校教育,但可以改变学校教育的基本业务流程。人工智能推动了学校组织结构向网络化方向发展,教学与课程是提供信息数据的重要平台,学校组织则构成了教育大数据生态系统。其次,“互联网+职业教育”的跨界融合将打破学校的围墙的阻隔,互联网将学校组织与企业、科研院所等社会机构紧密联系起来,提供优质教育资源供给,共同承担知识的传授、传播、转化等功能,促进学校组织体系核心要素的重构。第三,建设“智慧校园”,实现线上线下融合的智慧校园育人环境,实施一体化校园网络认证,推动智能化教育资源共建共享,实现职业教育信息化建设的均衡发展。

五、人工智能背景下职业教育的模式变革面临的挑战及发展目标

人工智能将推进大数据、云技术等智能信息技术深层次融入职业教育课程与教学、组织与管理、评价与反馈等领域,形成社会化多元供给,为学习者提供多样化的参与方式、自主选择的学习形式和及时获得反馈的评价途径,有利于实现职业教育的共建、共享、共治。但其全面实现,还面临着诸多挑战。

(一)挑战

首先,职业教育的新模式建构需要充足的资金支持。各职业院校积极建构智慧校园,努力实现智慧化产学研环境,打造一体化智慧城市网络等核心技术的开发,都需要资金的根本保障。政府要给予资金政策保障并加强监管,资金管理部门要合理规划,合理利用,专款专用,落到实处。其次,职业教育的新模式建构的成果表现离不开学习者对技术的理解、掌握和应用。在实际实施过程中,教育工作者既要利用信息技术优势变革职业教育,也要避免技术中心主义倾向,“避免一味追赶技术新潮而不顾学生身心健康等,技术本身是一个祸福相依的辩证法。”[14]第三,“目前的教育实践中,仍未能充分实现人机合理分工和双边优势互补。人工智能终端系统擅长逻辑性、单调重复的工作,而人类则更适合情感性、创造性和社会性的工作。”[15]现阶段,信息化技术水平还有待提高,智能机器不能完全胜任知识传播、数据处理等工作,有待于进一步开发和完善,绝对依赖互联网络和设备,还存在一定的风险。

(二)发展目标

人工智能时代职业教育变革重新架构了职业教育发展模式,完成了对资源的重新整合配置,改变了人的思维方式、学习方式和生活方式。人工智能时代下没有职业教育模式的改革,就不可能建构真正的现代化职业教育。人工智能背景下职业教育的发展目标可以概括为个三方面:

1.“智慧脑”与“智能脑”融通

随着第四次产业革命的到来,信息技术爆发式发展,造就了以电脑、互联网为基础的智能脑。职业教育智慧化发展的一个目标就是如何让学习者发挥人脑“智慧脑”与机器设备“智能脑”的“双脑”共同协作[16]。人工智能时代职业教育与信息技术的深度融合,就是要通过“智慧脑”和“智能脑”的协同作用,发挥互补优势,进行融通式学习,而不是简单地人脑与电脑的技术对接。

2.“现实世界”与“虚拟世界”结合

在人工智能时代,网络虚拟技术的发展使人类拥有了真实与虚拟两个世界,虚拟信息技术的兴起在一定程度上会影响职业教育的实体教育,实体教育的发展也需要虚拟技术的支撑。但在具体的学习实践中,还会存在利用这两个世界时顾此失彼、难以平衡的问题。目前,虚拟化教育技术在职业教育领域不断应用与推广,职业教育的发展模式不断优化,使得职业院校线上线下的边界逐渐消融,“现实世界”与“虚拟世界”更好地结合。人工智能时代职业教育的本质没有发生根本改变,学习者要学会利用这两个世界虚实融合、高度互动,充分发挥出自身的优势,更好地学习与生活。

3.职业教育“适应人工智能”发展为“引领人工智能”

人工智能为职业教育带来了强大的技术支持,为职业教育带来了便利。初始阶段的职业教育基本知识和技能被数字化和智能化,通过人工智能相关课程,云教育模式,个性化学习计划等,适应并应用人工智能,以提高职业教育的效率和质量。职业教育重在技术创新,对于行业技术发展具有一定的引领性作用。未来人工智能将成为职业院校快速发展和转型的技术支撑。“如某些职业院校基于自身优势专业与相关行业的智能自动化企业合作,实现以职业教育发展引领人工智能。”[17]目前,人工智能处于适应性大发展阶段,随着信息化技术的提高和智能化设备的普及,人工智能时代必将由专用人工智能时代步入通用人工智能时代。在通用人工智能时代,人工智能与职业教育深度融合高效协作,职业教育完全适应且完美应用于人工智能,进一步引领人工智能发展,由“人工智能+职业教育”发展为“职业教育+人工智能”的时代。

篇3

一、顶层设计,构建全方位、多层次、可操作的指导体系。

为了保障人工智能教育在我校真正落实和长期发展,学校将人工智能教育工作纳入到学校整体三年发展规划中,并作出明确要求。

为了让师生更加重视人工智能教育,促进学生全面发展,特修订了我校“五美”能行课程体系,将人工智能课程进行了重新定位和设计。

为了建设符合我校校情、学情的人工智能课程体系,学校成立了人工智能课程建设与实施的探索与研究项目管理团队,制定了项目计划书,从项目名称、项目团队、项目背景、项目创新点及解决问题、项目推进措施、项目完成期限等方面进行了具体规划。

二、支撑保障

完善软硬件设施和文化建设,为人工智能教育开展做好支撑和保障。除了四楼独立的人工智能实验室,我校还自主改造了五楼的创客教室和阅览室,扩宽了人工智能教育场所,尽全力满足学生人工智能上课需求。

学校高度重视人工智能教育,不断加大投入。在资金紧张的情况下依然给学生购买了小学生C++趣味编程书和人工智能超变战场的场地。

三、具体做法

1.基于校情和学情的人工智能课程设计

课程设置:开学之前,课程部整体规划,实行信息技术课两节联排。

人工智能课程开设内容安排:基于校情学情,本学期3-6年级全面铺开人工智能课程,3年级以信息技术基础知识、编程猫、乐高搭建基础入门为主;4年级AI神奇动物,5-6年AI变形工坊,是集搭建和编程于一体的人工智能课程体系。本学期信息技术类人工智能特色社团的开设:人工智能机器人社团、信息学奥C++社团、创意编程社团。

2.三位一体,三组联动推进人工智能课程的开发与实践。三组是:项目组、教研组和集备组。具体做法是:

项目组的做法:根据人工智能项目管理计划书的内容和要求,3月初进行项目工作总结和4月份计划汇报,5月份进行了中期汇报。进一步梳理人工智能校本课程的内容,促进人工智能课程实施与落地,进行了生本AI人工智能校本课程的开发与研究,重点对课程目标和课程内容进行了设计和探索。

教研组的做法:1.参加区首次信息技术教研活动,明确方向和工作重点。组织信息技术教师按时参加区里首次信息技术教研活动,并将区里的要求传达给每一位信息技术老师,为接下来的工作做好铺垫指明方向。2. 教研组内进行磨课,四年级潘倩老师执教了四年级AI神奇动物—敏捷的蛇;徐娜老执教了五年级AI神奇变形工坊—设计“地雷”,课后及时听评课,提出优点与不足,并进一步改进完善。

集备组活动:各年级备课组利用双周周二上午时间进行集备,研究本周的上课内容、梳理课堂具体流程及教学设计。

3.加强教师培养力度,积极组织教师参加人工智能培训和学习。学校鼓励教师进行小课题的研究,提升教学专业素养。2019年区级小课题《小学人工智能课程体系、教学策略和教学评价的研究》顺利结题。2020年区级小课题《奎文区人工智能教育专项课题--小学人工智能教育教学策略及评价方法的研究》立项。

4.为了拓宽视野,为人工智能教育的发展进一步指明方向。落实请进来:邀请区教研室专家进校为学校人工智能开展情况进行诊断;邀请优必选指导老师入校指导人工智能课程,并进行赛事辅导和培训。

5.为了给学生的学习搭建更广阔的平台,丰富学生的课余文化生活,促进学生信息素养的提升。以赛促学,积极组织学生参加各级各类比赛。

四、取得成效

1.学校层面:以人工智能教育为契机近年来,我校的信息化、数字化、智能化水平不断提升,互联网+教育、智慧校园工作取得了巨大的进步,学校获得省市区多项荣誉。

篇4

计划强调,要加强人工智能领域专业建设,形成“人工智能+X”复合专业培养新模式。计划的重点任务之一,是要完善人工智能领域人才培养体系,并且推动高校人工智能领域科技成果转化与示范应用。高校在人才培养中起到了至关重要的作用,虽然人工智能尚未成为一级学科,但国内不少一流的高校已经开始通过建立合作实验室、增强人工智能分支教学等方式发展人工智能。

为了解各高校开展人工智能研究的情况,亿欧盘点了10家在设有人工智能实验室或有人工智能分支专业的高校。

清华大学:计算机科学与技术系

清华大学计算机科学与技术系(简称计算机系)成立于1958年,在2006年、2012年全国学位与研究生教育发展中心开展的一级学科整体水平评估中,以总分满分100分的成绩排名第一。2017年,在 USnews 推出的世界大学学科排名 Best Global Universities for Computer Science 中,计算机科学与技术学科紧随 MIT之后位列世界第2名。在 QS 世界大学排名 (QS World University Rankings) 给出的全球计算机学科排名中为例第15名,其排名与得分逐年稳步提升。

计算机系包含了国内计算机专业最全的学科方向,设有高性能计算机与处理器、并行与分布式处理、存储系统、大数据与云计算、计算机网络、网络与信息系统安全、系统性能评价、理论计算机科学、数据工程及知识工程、软件工程、计算机与VLSI设计自动化、软件理论与系统、生物计算及量子计算、人工智能、智能控制及机器人、人机交互与普适计算、计算机图形学与可视化技术、CAD技术、计算机视觉、媒体信息处理等研究方向。

计算机系现设有高性能计算、计算机网络技术、计算机软件、人机交互与媒体集成4个研究所;智能技术与系统国家重点实验室;计算机基础与实验教学部等科研教学机构。

计算机系还设有国家级计算机实验教学示范中心,包括:计算机原理实验室、微型计算机实验室、计算机网络实验室、操作系统实验室、计算机软件实验室、计算机控制系统实验室、智能机器人实验室、计算机接口实验室、学生科技创新实验室等。此外,计算机系还与腾讯、搜狗、微软、思科等国内外著名公司建立了面向教学或研究的联合实验室。

北京大学:智能科学系

智能科学系成立于2002年7月,主要从事智能感知、机器学习、数据智能分析与智能计算、智能机器人等方向的基础和应用基础研究,侧重于理论、方法以及重大领域应用上。

北大智能科学系依托于视觉听觉信息处理国家重点实验室,实验室以实现高度智能化的机器感知系统为目标,在生物特征识别研究方面处于国际领先地位。智能科学系在著名的软件与人工智能专家、我国载人飞船工程软件专家组组长何新贵院士和长江特聘教授查红彬教授的带领下,重点开展机器视觉、机器听觉、智能系统与智能的生理心理基础等研究。以北大智能科学研究人员为技术核心的北大指纹自动识别系统,是国内唯一能与国外系统抗衡的自主知识产权,是中国第一家也是唯一的一家提供公安应用全面解决方案的系统,拥有中国指纹自动识别技术产品第一市场占有率。

人工神经网络说话人识别新方法的研究获得教育部科技进步一等奖;国家空间信息基础设施关键技术研究获得2000年中国高校科学技术二等奖,入选2000年中国高校十大科技进展。

复旦大学:类脑智能科学与技术研究院

复旦大学类脑智能科学与技术研究院于2015年3月筹建成立,是复旦大学校内的独立二级研究机构。其前身为复旦大学第一批跨学科交叉国际化研究中心——计算系统生物学研究中心,成立于2008年。研究院基于复旦大学既有的数学、统计学、计算机科学、生物学、信息学、临床医学、语言学、心理学等多学科综合交叉研究优势,以计算神经科学为桥梁,着力开展大脑机制解析、脑疾病智能诊疗、类脑智能算法、类脑智能软硬件、新药智能研发、通用智能等相关领域的科学研究、技术研发和人才培养。

研究院率先探索打通国际与国内、科技与产业的全链条、全球化产学研合作机制,充分发挥高校培养和储备高端智能人才、发现和培育前沿技术的综合优势,推动产学研源头创新与合作,致力于成为推动脑科学、人工类脑智能与产业应用融合发展的重要科技创新平台。

研究院目前在建五个核心功能平台和一个国际合作研发中心,主要包括:一是以脑高级认知功能的多信息反馈处理机制研究为核心的神经形态计算仿真平台;二是以多尺度多中心重大脑疾病数据库和算法开发为基础的智能诊治数据示范平台;三是依托高端医疗影像设备集群,为生物医学转化研究和信息产业智能化提供试验技术支撑的综合生物医学影像平台;四是以开发深度学习、强化学习和自组织学习等机器学习算法以及可穿戴设备、类脑芯片、健康服务机器人等为目标的类脑智能软、硬件开发平台;五是集孵化加速、产业联盟、投资基金为一体,为类脑智能创新项目及企业提供应用技术资源和孵化服务的类脑智能产业化平台;六是依托已有的欧洲人类脑计划、美国脑计划等国际合作的数据、学术资源,建设类脑智能国际合作节点和人才培养中心。

中国科学院:自动化研究所

中国科学院自动化研究所成立于1956年10月,是我国最早成立的国立自动化研究机构。目前设有类脑智能研究中心、智能感知与计算研究中心、脑网络组研究中心等12个科研开发部门,还有若干与国际和社会其他创新单元共建的各类联合实验室和工程中心。另有汉王科技、三博中等四十余家持股高科技公司。

近年来,自动化所共获得省部级以上奖励30余项。数量逐年增加,质量不断提高;专利申请和授权量连年攀升,多年位居北京市科研系统前十名绘制的“脑网络组图谱”第一次建立了宏观尺度上的活体全脑连接图谱;虹膜识别核心技术突破国外封锁,通过产学研用相结合走出“中国制造”之路;基于自动化所语音识别技术的“紫冬语音云”在淘宝、来往等阿里巴巴旗下移动客户端产品中得到推广;“分子影像手术导航系统”通过国家药监局医疗器械安全性及有效性检测认证并进入临床应用;“智能视频监控技术”和“人脸识别技术”分别成功应用于2008年北京奥运会、2010年上海世博会的安保工作中,为社会安全贡献自己的力量;研制的AI程序“CASIA-先知1.0”采用知识和数据混合驱动的体系架构,在2017首届全国兵棋推演大赛总决赛中7:1的悬殊比分战胜人类顶级选手,展示了人工智能技术在博弈对抗领域的强大实力……

在共建机构方面,自动化所与新加坡媒体发展管理局联合成立中新数字媒体研究院,聚焦交互式语言学习、视频和分析等领域;与瑞士洛桑联邦理工大学(EPFL)在京成立中瑞数据密集型神经科学联合实验室,在类脑智能研究方面展开合作;与澳大利亚昆士兰大学(UQ)共建中澳脑网络组联合实验室,在“计算大脑”研究方向上进行远景规划;还与香港科技大学共建智能识别联合实验室,在模式识别、无线传感器网络等领域展开合作。

厦门大学:智能科学与技术系

早在上世纪八十年代初,厦门大学就已开始从事人工智能领域的研究,相继在专家系统、自然语言处理与机器翻译等领域取得过一系列成果。为此,1988年经学校批准成立“厦门大学人工智能与计算机应用研究所”,后于2004年更名为“厦门大学人工智能研究所”。2006年12月,经国家教育部批准,厦门大学正式设立“智能科学与技术”本科专业,并于2007年6月经学校批准成立“厦门大学智能科学与技术系”。

厦门大学智能科学与技术系现有一个本科专业(智能科学与技术),三个硕士学位授予专业(模式识别与智能系统、计算机科学与技术、智能科学与技术),两个博士学位授予专业(计算机科学与技术、智能科学与技术)。

目前该系承担多项国家863、国家自然科学基金、福建省科技基金等项目,拥有“福建省仿脑智能系统重点实验室”、“智能信息技术福建省高校重点实验室”和“厦门大学语言技术中心”三个平台,此外还有“艺术认知与计算”、“自然语言处理”、“智能多媒体技术”、“人工大脑实验室”、“智能中医信息处理”等多个研究型实验室,为培养高质量的学生提供了必要的保障。

上海交通大学:计算机科学与工程系

上海交通大学计算机科学与工程系成立于1984年。近年来,随着计算机科学与技术在人们生活中的应用不断深入,特别是随着云计算、物联网、移动互联网、大数据等技术的兴起,交通大学计算机系不断调整学科方向,形成了高可靠软件与理论、并行与分布式系统、计算机网络、智能人机交互、密码学与信息安全等研究方向。

该院系下设三个重点实验室:智能计算与智能系统重点实验室、上海市教委智能交互与认知工程重点实验室、省部共建国家重点实验室培育基地及上海市可扩展计算与系统重点实验室。其中,上海交通大学-微软智能计算与智能系统联合实验室目前是教育部-微软重点实验室,成立于2005年9月,是交通大学和微软亚洲研究院在多年良好合作的基础上,为了更好发挥各自在并发计算、算法与复杂性理论、仿脑计算、计算机视觉、机器学习、计算智能、自然语言处理、多媒体通讯以及机器人等领域的优势,实现“使未来的计算机和机器人能够看、听、学,能以自然语言的方式与人类交流”这一共同使命而成立的。实验室在科学研究、人才培养、学术交流等方面也取得了很好的成绩。实验室累积200余篇,成果发表于CVPR,ICCV,WWW等国际顶级会议上。

南京大学:计算机科学与技术系

南京大学的计算机科学研究起步于1958年,建立了计算技术、计算数学、数理逻辑等专业开始培养计算机相关领域专门人才,1978年在上述三个专业基础上成立了计算机科学系,1993年更名为计算机科学与技术系。

依托该系师资,先后成立了南京大学计算机软件研究所、计算机软件新技术国家重点实验室(南京大学)、南京大学计算机应用研究所、南京大学多媒体计算技术研究所、南京大学软件工程中心(江苏省软件工程研究中心)、南京大学信息安全研究所等科研机构。主要科研方向有:软件自动化与形式化、分布与并行计算及新型网络、新型程序设计与软件方法学、多媒体与信息处理、人工智能与机器学习、系统软件及信息安全等。

建系30年来,共承担国家973计划、国家863计划、国家攀登计划、国家自然科学基金、国家科技攻关等重大科技计划项目以及省、部、委科研项目和企事业委托或国际合作的研发项目300余项,科研成果获得各种奖励80余项,其中国家科技进步奖一等奖1项、二等奖4项、三等奖2项,省部委自然科学奖和科技进步奖特等奖2项,一等奖8项,二等奖37项。3000多篇,出版专著、教材50多部,申请国家发明专利33项。部分成果被转化为产品,产生了较大社会效益和经济效益。

哈尔滨工业大学:计算机科学与技术学院

哈尔滨工业大学计算机专业创建于1956年,是中国最早的计算机专业之一。在1985年,发展成为计算机科学与工程系,并建立了计算机科学技术研究所。2000年,计算机科学与技术学院成立;同年,建立了软件学院,后经国家教育部、国家计委批准为国家示范性软件学院。目前。哈工大计算机科学与技术学院拥有计算机科学与技术国家一级重点学科、7个博士点和7个硕士点、1个博士后科研流动站、一个国家级教学团队、一个国家级科技创新团队、一个国防科工委创新研究团队。

目前主要研究方向包括:智能人机交互、音视频编解码技术、语言处理、自然语言理解与中文信息处理、机器翻译、信息检索、海量数据计算、计算机网络与信息安全、传感器网与移动计算、高可靠与容错计算技术、穿戴计算机、企业计算与服务计算、智能机器人、生物计算与生物特征识别。

学院有一批研究成果达到国际先进水平,包括:国家信息安全管理系统、数字视频广播编码传输与接收系统、大规模网络特定信息获取系统、计算机机群并行数据库系统、并行数据库系统、神州号飞船数据管理分系统、穿戴计算机系统、信息安全与实时监测系统、人脸识别系统、视频编解码技术、黑龙江省CIMS应用示范工程、农业专家系统等等。

中国科学技术大学:计算机科学与技术学院

中国科技大学于1958年建校时就设置了计算机专业。根据学科发展趋势和国家中长期发展规划,面向国家和社会的重大需求,计算机科学与技术学院将科研力量凝聚在高性能计算、智能计算与应用、网络计算与可信计算、先进计算机系统四个主要的研究领域。

学院的支撑实验室有:国家高性能计算中心(合肥)、安徽省高性能计算重点实验室、安徽省计算与通讯软件重点实验室、 多媒体计算与通信教育部-微软重点实验室、中国科大超级运算中心和信息科学实验中心。

其中,多媒体计算与通信教育部—微软重点实验室主要从事人机自然语音通信、语义计算与数据挖掘等方面的研究。人机自然语音通信方面,主要研究中文信息处理、人类视听觉机理、语音语言学等。语义计算与数据挖掘方面,主要研究自然语言驱动的计算、多媒体内容的语义标注、自动问答、语义社会网络、数据与知识工程、隐私保护与管理中的语义计算等。

依托多媒体计算与通信教育部—微软重点实验室,双方联合实施了联合培养博士生计划、实习生计划、精品课程建设计划、青年教师培养计划等,取得了突出成果,探索出了一条企业和高校共同培养优秀人才的道路,为微软亚洲研究院与其他高校的合作提供了一个经典范例。

华中科技大学:自动化学院

华中科技大学自动化学院是由原控制科学与工程系和原图像识别与人工智能研究所于2013年合并组建的学院。原控制科学与工程系前身是成立于1973年的华中工学院自动控制系,1998年更名为华中理工大学控制科学与工程系;原图像识别与人工智能研究所是1978年由教育部和航天部共同批准成立从事图像识别和人工智能研究的研究机构。

科学研究工作主要涉及复杂系统控制理论、决策分析与决策支持、电力电子与运动控制、智能控制与机器人、计算机集成控制与网络技术、信息检测与识别、飞行器控制与状态监测、生物信息处理、神经接口与康复技术、物流系统、国民经济动员与公共安全、多谱图像制导、目标探测的多谱信息技术、多谱信息的实时处理与系统集成技术、人工智能与思维科学、信息安全等方向。

模式识别与智能系统是自动化一级学科的重要二级学科。迄今为止,本系在原 “图像识别与人工智能研究所”和“控制科学与工程系”的这两个学科点承担了百余项国家、国防与行业项目。近5年科研经费总额在8000万元以上,包括973计划,国家自然科学基金重点、面上和青年基金项目,863计划,国家重大专项、国防重点预研与基金,国家科技支撑计划,省部级科研项目,以及大型工程和企业科研合作项目等。

总结

篇5

【关键字】人工智能;教育;进展

【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03

人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。

人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。

一 专家系统

专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。

目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]

教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]

目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。

二 机器人学

机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。

机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。

机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。

三 机器学习

机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]

随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。

四 自然语言理解

自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]

自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]

五 人工神经网络

人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。

人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。

六 分布式人工智能(Distributed Artificial Intelligence,DAI)

分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。

分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。

综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。

技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。

参考文献

[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.

[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.

[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.

[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.

[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.

[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.

[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.

[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.

[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.

[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].

[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.

[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.

[16] 自然语言理解[DB/OL].

[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.

[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].

篇6

中国电子信息产业发展研究院总工程师乌宝贵参加了本次大会并代表主办方致辞。乌宝贵回顾了人工智能的历史,肯定了人工智能60年来的发展成绩,并指出,中国人工智能产业正步入一个崭新的阶段。从科学研究角度来看,中国在深度学习等领域的学术研究水平,已经走在世界前列;从龙头企业发展角度来看,阿里等国内企业在人工智能领域已经具备和国际巨头抗衡的实力;从创新创业角度来看,人工智能已经成为国内“双创”最活跃的领域之一;从应用创新角度来看,制造、交通、家居、教育、金融、大健康等众多领域的应用正全面展开;从产业链角度来看,从智能芯片到IT基础设施,从底层架构到模型算法,从大数据到云平台,从智能终端到智能应用,国内在各个层面均取得了突破性进展。他表示,人工智能不仅仅是一个概念,而是下阶段技术创新、应用创新的新焦点,是市场发展的新热点,也是我国推动产业转型升级的重要支点。

中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃参加了本次论坛并发表演讲。王飞跃以《迈向人机混合虚实互动的平行智能》为主题,追溯了智能的本源,探讨了平行时代的智能基础设施X5.0,并展望了智能产业和智能社会。王飞跃认为,阳为智能,阴为情报,相辅相成,智能是开放的情报,情报是封闭的智能,智能的本质是利用已知解决未知,从已知到未知只能依靠想象。王飞跃提出,物理世界与心理世界、人工世界共同构成平行世界,平行世界需要平行智能。开放智能算法,开发人工世界,最终消除“智力的不对称”是新智能时代的历史任务。人机混合、虚实互动的平行智能,是“激活”的人工智能,是未来人、组织、各种类的智能机器、装置、过程、系统所必备的“生存”形式,是智能产业的基础设施。X5.0 时代的智能体系包括:一个核心――平行,两个支撑――ACP 和CPSS,三个主题――智能系统、智慧管理和社会智能。平行智能各种各类的虚实互动X5.0 系统是智能社会的基础设施,不久的将来,一个个体的实力,很大程度上可能并不取决于其本身,而取决于与其伴生的软件定义的人工映像。

中国电子信息产业发展研究院电子信息产业所副所长温晓君参加了本次大会,并以《电子信息产业新兴热点及趋势――人工智能与虚拟现实》为主题发表演讲。温晓君指出,泛在、互联、融合、智能成为产业发展新趋势,技术创新是国内经济新旧动能转换,经济结构转型升级的核心推动力量之一,是从根本上打开增长之锁的钥匙。温晓君重点解读了人工智能和虚拟现实的发展现状和趋势。温晓君分享了智能感知、人脑芯片、深度学习、大数据等人工智能前沿技术,移动社交、智能搜索、机器人、无人驾驶等人工智能前沿应用,指出“基础资源+技术+应用”的人工智能产业生态逐步形成。我国人工智能产业需构建开放生态体系、合作搭建基础资源、促进产业链深度合作、开拓可持续应用需求 。在虚拟现实方面,温晓君判断,消费端市场早期一定爆发于欧美等发达国家,国内市场短期内以产业链布局蓄力和消费者提升消费认知为主;行业应用一定从高附加值行业或价值链的高端环节兴起,应用成本与效率提升必须首先得到权衡。他指出,虚拟现实的趋势为:消费市场的普及化、行业需求的明晰化、投资热潮的全球化、基础平台的开放化、技术创新的协同化。他建议,强化顶层设计,面向行业需求规划应用路径;加强重点攻关,尽快突破行业应用技术瓶颈;制定标准规范,开展行业应用联合测试验证;推进试点示范,以点带面扩大行业应用范围和影响力。

搜狗、英特尔、陌上花(衣+)等企业代表分别从各自的领域出发,分享了人工智能的实践与思考。

北京搜狗科技有限公司CTO杨洪涛分享了关于互联网产品自然交互的经验。他指出,人机之间交互的学习成本在不断降低,变得越来越接近人的自然能力,语音正在成为最自然的交互形式。在他看来,自然交互= 技术 + 计算力 + 数据 + 产品。技术是扩散的,计算力稳步增长, 只有数据和产品才是私有财产,将成为竞争的壁垒。要想做好自然交互,需要充分利用“产品+数据”。会上,杨洪涛还分享了搜狗输入法即将推出的智能回复功能。

英特尔中国研究院院长宋继强博士就《人工智能驱动的智能交互,推进个人机器人产业化》发表演讲。他说,人工智能与人机交互推动科技进步,人工智能应用的终极平台是自主系统。他分析,个人自主服务机器人理想与现实的差距在于智能组合的实现难度,其中运动不易,认知更难。人工智能联手智能交互,通过商业化成功带动人工智能的发展和成本下降。宋继强分享了几种人工智能驱动智能交互的应用模式,并提出了个人机器人的智能度分级建议,展望了个人机器人的商业化迭代 ,即在用户需求推动下,由能力达标到价格达标,再到可靠性达标。

篇7

在全球人工智能产业信息服务平台“机器之心”主办的全球机器智能峰会上,《人工智能:一种现代方法》的作者之一、美加州大学伯克利分校人工智能专家斯图尔特・拉塞尔举例说,AlphaGo是人工智能深度学习飞速进步的一个例子,输给AlphaGo后柯洁说,去年好像还是在跟人下棋,而今年他觉得好像是在跟“神”下棋一样。

加拿大阿尔伯塔大学教授、计算机围棋专家马丁・米勒介绍说,AlphaGo的成功源于启发式学习与深度学习相结合。有了新算法与硬件,启发式学习有望让计算机系统学会真正的人工智能,“能让我们的搜索变得更加有效,能让计算机帮助我们做出越来越好的决策”。

攻克游戏和棋类人工智能,是要为真实世界的应用铺平道路。搜狗首席执行官王小川说,识别、决策、生成是人工智能的核心应用。例如,在决策方面,人工智能可以帮助提高决策效率,提升商业效率。

“我们已经在金融、医疗和教育等方面看到这些应用。在识别和生成领域,人工智能的进展已使人机交互越来越自然,这也是我们感兴趣的领域。从历史趋势上看,机器在逐渐适应人,并已为人类分担了许多具体工作。”王小川说。

但他同时指出,目前人工智能还局限在特定的封闭领域,比如AlphaGo和搜狗的问答机器人“汪仔”在围棋和语音识别输入竞赛中分别战胜了人类,但它们只擅长各自的技能,且只能在封闭场景里通过数据学习、计算或搜索提高效率,并不能发挥创造性。今天的机器智能还需要依赖于来自人的数据,机器并不具备人工通用智能能力和解决开放型问题的能力。

香港科技大学计算机科学与工程学系系主任杨强说,从机器学习的角度看,AlphaGo尚不具备迁移学习的能力,即把已经训练好的模型参数迁移到新的模型上来帮助新模型训练数据集。王小川则认为,目前来看,迁移学习等理论离实际应用并产生效益还很远。

拉塞尔说,人工智能并不是一个新学科,20世纪40年代人们就在思考如何使用一些新工具;1950年,著名的图灵测试诞生,按照其定义,如果一台机器能通过电传设备与人类展开对话而不被辨别出机器身份,则称这台机器具有智能。

但直到2010年后,许多初创公司开始重新专注于人工智能发展,谷歌、国际商用机器公司(IBM)等大企业也投入到该领域研究中,此后人们看到了神经学的进步以及计算机资源和大数据的发展。

篇8

国内人工智能产业链解构

基础技术、人工智能技术和人工智能应用构成了人工智能产业链的三个核心环节,我们将主要从这三个方面对国内人工智能产业进行梳理,并对其中的人工智能应用进行重点解构。

人工智能的基础技术主要依赖于大数据管理和云计算技术,经过近几年的发展,国内大数据管理和云计算技术已从一个崭新的领域逐步转变为大众化服务的基础平台。而依据服务性质的不同,这些平台主要集中于三个服务层面,即基础设施即服务(IaaS)、平台即服务(PaaS)和软件即服务(SaaS)。基础技术提供平台为人工智能技术的实现和人工智能应用的落地提供基础的后台保障,也是一切人工智能技术和应用实现的前提。

对于许多中小型企业来说,SaaS 是采用先进技术的最好途径,它消除了企业购买、构建和维护基础设施和应用程序的需要;而 IaaS通过三种不同形态服务的提供(公有云、私有云和混合云)可以更快地开发应用程序和服务,缩短开发和测试周期;作为 SaaS 和 IaaS 中间服务的 PaaS 则为二者的实现提供了云环境中的应用基础设施服务。

人工智能技术平台

与基础技术提供平台不同,人工智能技术平台主要专注于机器学习、模式识别和人机交互三项与人工智能应用密切相关的技术,所涉及的领域包括机器视觉、指纹识别、人脸识别、视网膜识别、虹膜识别、掌纹识别、专家系统、自动规划、智能搜索、定理证明、博弈、自动程序设计、智能控制、机器人学习、语言和图像理解和遗传编程等。

机器学习:通俗的说就是让机器自己去学习,然后通过学习到的知识来指导进一步的判断。我们用大量的标签样本数据来让计算机进行运算并设计惩罚函数,通过不断的迭代,机器就学会了怎样进行分类,使得惩罚最小。这些学到的分类规则可以进行预测等活动,具体应用覆盖了从通用人工智能应用到专用人工智能应用的大多数领域,如:计算机视觉、自然语言处理、生物特征识别、证券市场分析和DNA 测序等。

模式识别:模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读,它偏重于对信号、图像、语音、文字、指纹等非直观数据方面的处理,如语音识别,人脸识别等,通过提取出相关的特征来实现一定的目标。文字识别、语音识别、指纹识别和图像识别等都属于模式识别的场景应用。

人机交互:人机交互是一门研究系统与用户之间交互关系的学问。系统可以是各种各样的机器,也可以是计算机化的系统和软件。在应用层面,它既包括人与系统的语音交互,也包含了人与机器人实体的物理交互。

而在国内,人工智能技术平台在应用层面主要聚焦于计算机视觉、语音识别和语言技术处理领域,其中的代表企业包括科大讯飞、格灵深瞳、捷通华声(灵云)、地平线、SenseTime、永洪科技、旷视科技、云知声等。

人工智能应用

人工智能应用涉及到专用应用和通用应用两个方面,这也是机器学习、模式识别和人机交互这三项人工智能技术的落地实现形式。其中,专用领域的应用涵盖了目前国内人工智能应用的大多数应用,包括各领域的人脸和语音识别以及服务型机器人等方面;而通用型则侧重于金融、医疗、智能家居等领域的通用解决方案,目前国内人工智能应用正处于由专业应用向通用应用过度的发展阶段。

(1)计算机视觉在国内计算机视觉领域,动静态图像识别和人脸识别是主要研究方向

图像识别:是计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。识别过程包括图像预处理、图像分割、特征提取和判断匹配。

人脸识别:是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。

目前,由于动态检测与识别的技术门槛限制,静态图像识别与人脸识别的研究暂时处于领先位置,其中既有腾讯、蚂蚁金服、百度和搜狗这样基于社交、搜索大数据整合的互联网公司,也有三星中国技术研究院、微软亚洲研究院、Intel中国研究院这类的传统硬件与技术服务商;同时,类似于 Face++ 和FaceID 这类的新兴技术公司也在各自专业技术和识别准确率上取得了不错的突破。

而在难度最大的动态视觉检测领域,格灵深瞳、东方网力和 Video++ 等企业的着力点主要在企业和家庭安防,在一些常见的应用场景也与人脸识别技术联动使用。

(2)语音/语义识别

语音识别的关键基于大量样本数据的识别处理,因此,国内大多数语音识别技术商都在平台化的方向上发力,希望通过不同平台以及软硬件方面的数据和技术积累不断提高识别准确率。

在通用识别率上,各企业的成绩基本维持在 95% 左右,真正的差异化在于对垂直领域的定制化开发。类似百度、科大讯飞这样的上市公司凭借着深厚的技术、数据积累占据在市场前列的位置,并且通过软硬件服务的开发不断进化着自身的服务能力;此外,在科大讯飞之后国内第二家语音识别公有云的云知声在各项通用语音服务技术的提供上也占据着不小的市场空间。值得注意的是,不少机器人和通用硬件制造商在语音、语义的识别上也取得了不错的进展,例如智臻智能推出的小 i 机器人的语义识别、图灵机器人的个性化语音助手机器人和服务、被 Google 投资的出门问问的软硬件服务。

(3)智能机器人

由于工业发展和智能化生活的需要,目前国内智能机器人行业的研发主要集中于家庭机器人、工业企业服务和智能助手三个方面其中,工业及企业服务类的机器人研发企业依托政策背景和市场需要处于较为发达的发展阶段,代表性企业包括依托中科院沈阳自动化研究所的新松机器人、聚焦智能医疗领域的博实股份,以及大疆、优爱宝机器人、Slamtec 这类专注工业生产和企业服务的智能机器人公司。在以上三个分类中,从事家庭机器人和智能助手的企业占据着绝大多数比例,涉及到的国内企业近 300 家。

(4)智能家居

与家庭机器人不同,智能家居和物联企业的主要着力点在于智能设备和智能中控两个方面。在这其中,以海尔和美的为代表的传统家电企业依托自身渠道、技术和配套产品优势建立起了实体化智能家居产品生态. 而以阿里、腾讯、京东、小米和乐视等互联网企业为代表的公司则通过各自平台内的数据和终端资源提供不同的软硬件服务。

值得关注的是,科沃斯、broadlink、感居物联、风向标科技、欧瑞博、物联传感和华为等技术解决方案商在通用硬件和技术、系统级解决方案上已成为诸多智能家居和物联企业的合作伙伴。综合来看,智能家居和物联企业由于市场分类、技术种类和数据积累的不同各自提供着差异化的解决方案。在既定市场中,没有绝对意义上的排斥竞争,各企业之间的合作融合度较强。

(5)智能医疗

目前国内智能医疗领域的研究主要集中于医疗机器人、医疗解决方案和生命科学领域。由于起步较晚和技术门槛的限制,目前国内医用机器人的研发水平和普及率相较于国际一线水平仍存在一定的差距,从事企业主要集中与手术机器人和康复机器人两大领域,以新松机器人、博实股份、妙手机器人、和技创等企业为代表。

在医疗解决方案方面,以腾讯、阿里巴巴、百度和科大讯飞为代表的公司通过和政府、医疗机构的合作,为脑科学、疾病防治与医疗信息数据等领域提供智能解决方案。而在生命科学领域,研究的着眼点在以基因和细胞检测为代表的前沿研究领域。

综合来看,国内人工智能产业链的基础技术链条已经构建成熟,人工智能技术和应用则集中在人脸和图像识别、语音助手、智能生活等专用领域的场景化解决方案上。就趋势来看,未来国内人工智能领域的差异化竞争和突破将主要集中在人工智能相关技术的突破和应用场景升级两个层面。

未来国内人工智能行业发展的五大趋势

(1)机器学习与场景应用将迎来下一轮爆发

根据 Venture Scanner 的统计,截至 2015 年 9 月,全球人工智能领域获得投资的公司中,按照平均融资额度排名的五大业务依次是:机器学习(应用类)、智能机器人、计算机视觉(研发类)、机器学习(研发类)和视频内容识别等。

自 2009 年以来,人工智能已经吸引了超过 170 亿美元的投资。过去四年间,人工智能领域的民间投资以平均每年 62% 的增长速率增加,这一速率预计还会持续下去。而在 2015 年,全球人工智能领域的投资占到了年度总投资的 5%,尽管高于 2013 年的2% ,但相比其他竞争领域仍处于落后位置。

目前中国地区人工智能领域获得投资最多的五大细分领域是计算机视觉(研发类)、自然语言处理、私人虚拟助理、智能机器人和语音识别。从投资领域和趋势来看,未来国内人工智能行业的资本将主要涌向机器学习与场景应用两大方向。

(2)专用领域的智能化仍是发展核心

基于 GPU(图形处理器)计算速度(每半年性能增加一倍)和基础技术平台的飞速发展,企业对于人工智能神经网络的构建取得了前所未有的突破。但是,由于人工智能各领域技术和算法的复杂性,未来 20 年内人工智能的应用仍将集中于人脸和图像识别、语音助手和智能家居等专用领域。

通过上述产业链环节构成和投资分类可以看出,优势企业的核心竞争力主要集中于特定领域的专用技术研发;其中,计算机视觉和语音识别领域的研发和应用已处于国际一流水平,专业应用机器人的研发也有望近 10 年内迎来突破性发展。可以预见的是,在由专业领域向通用领域过渡的过程中,自然语言处理与计算机视觉两个方向将会成为人工智能通用应用最大的两个突破口。

(3)产业分工日渐明晰,企业合作大于竞争

随着专用领域应用开发的成熟和差异化技术门槛的存在,国内人工智能产业将逐渐分化为底层基础构建、通用场景应用和专用应用研发三个方向。

在底层基础构建方面,腾讯、阿里巴巴、百度、华为等企业依托自身数据、算法、技术和服务器优势为行业链条的各公司提供基础资源支持的同时,也会将自身优势转化为通用和专业应用领域的研究,从而形成自身生态内的人工智能产业链闭环。

在通用场景应用方面,以科大讯飞、格灵深瞳和旷视科技为代表的企业将主要以计算机视觉和语音识别为方向,为安防、教育和金融等领域提供通用解决方案。而在专用应用研发方面则集中了大部分硬件和创业企业,这其中既包括以小米和 broadlink 为代表的智能家居解决方案商,也包含了出门问问、linkface 和优必选这类的差异化应用提供商。

总的来说,由通用领域向专业领域的进化离不开产业链条各核心环节企业的相互配合,专用领域的竞争尽管存在,但各分工层级间的协作互通已成为多数企业的共识。

(4)系统级开源将成为常态

任何一个人工智能研究分支都涉及到异常庞大的代码计算,加上漏洞排查与跨领域交叉,任何一家企业都无法做到在封闭环境内取得阶段性突破的可能。可以看到的趋势是,Google、微软、Facebook 和雅虎等视人工智能为未来核心竞争力的顶级企业都先后开放了自身的人工智能系统。

需要明确的一点是,开源并不代表核心技术和算法的完全出让,底层系统的开源将会让更多企业从不同维度参与到人工智能相关领域的研发,这为行业层面新产品的快速迭代和共同试错提供了一个良性且规范化的共生平台。于开放企业而言,这也确保了它们与行业最新前沿技术的同步。

(5)算法突破将拉开竞争差距

作为人工智能实现的核心,算法将成为未来国内人工智能行业最大的竞争门槛。以 Google 为例,Google 旗下的搜索算法实验室每天都要进行超过 200 次的改进,以完成由关键字匹配到知识图谱、语义搜索的算法创新。

在未来竞争的重点机器学习领域,监督学习、非监督学习和增强学习三个方面算法的竞争将进入白热化阶段。而正是算法层面的突破造就了腾讯优图、科大讯飞和格灵深瞳等企业在图像识别和计算机视觉领域取得了突破性进展和国际一线的技术水平。

但就目前国内人工智能算法的总体发展而言,工程学算法虽已取得阶段性突破,但基于认知层面的算法水平还亟待提高,这也是未来竞争的核心领域。

总的来看,虽然基础技术的成熟带来了存储容量和机器学习等人工智能技术的提升,但由于现阶段运算能力以及大规模 CPU 和GPU 并行解决方案的局限,目前国内人工智能的发展主要集中于计算机视觉、语音识别、智能生活等方向上。

虽然专用化领域的场景应用仍是目前研发和投资的核心,但随着技术、数据的积累演化以及超算平台的应用,由专用化领域的场景应用向语音、视觉等领域的通用化解决方案应该在未来 20 年内成为发展的主流。

篇9

关键词:网络;智能学习;自适应学习;智能支持模块

中图分类号:TN91134;TP311.52文献标识码:A文章编号:1004373X(2012)18007703

引言

在当今信息时代,随着网络技术的普及应用和人工智能技术为核心的信息技术的发展给人们创造了基于网络的自主学习,使学习者有了自主获取信息的便利条件。因此以学习者为中心的学习越来越引起人们的重视。

目前,我国网络教学平台在展现课程基本内容、教学信息方面已经比较成熟,不少课程的教学资料已经数字化。然而,由于我国远程教育还存在很多矛盾和问题。现在网络教学平台不得不面对和解决的实际问题是:随着网上教学资源日益增多,如何使学习者能在浩如烟海的教学资源中迅速找到适应自己学习能力的教学内容,如何正确评估自己的学习能力,如何使学习者在学习的过程中得到及时、准确的反馈和评价并及时调整自己的学习步调等。要解决上述问题,就必须发展智能化的网络学习平台。笔者认为,支撑智能化网络学习平台的技术已日趋成熟。如何把这些技术整合社会教育资源,从而在网络教育实践中逐步开发出基于网络的自适应智能学习系统,是摆在远程教育工作者面前的一项迫切而重要的工作[1]。

本文采用网络与人工智能为核心的技术,并以某学校作为课题实验基地,研究并开发了一个《计算机应用基础》课程自适应智能学习系统。该系统能在学生测验时不断地对学生能力作实时的评估,由此不断给出难度与学生能力相适应的试题,从而在学生学习中体现了因人而异,达到个性化学习,让学习程度不同的学生同时得到最佳的学习效果[2]。

1系统各模块功能

整个自适应学习系统由学习模块、考试模块、指导者模块和智能支持模块四部分组成。需要说明的是:系统的各个模块相互作用、相互依存,每个模块都无法独立完成系统能完成的任务,在这里只是为了方便论述和研究,将它们在逻辑上相对化为四个主要逻辑模块进行研究。下面就对各个模块进行比较详细的阐述。

篇10

【关键词】人工智能 计算机技术

一、人工智能的定义

“人工智能”(Artificial Intelligence)一词最初是在1956年Dartmouth学会上提出的。人工智能是指研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机,人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。

人工智能理论进入21世纪,正酝酿着新的突破,人工智能的研究成果将能够创造出更多更高级的智能“制品”,并使之在越来越多的领域超越人类智能,人工智能将为发展国民经济和改善人类生活做出更大贡献。

二、人工智能的应用领域

1.在管理系统中的应用

(1)人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。在《谈谈人工智能在企业管理中的应用》一文中刘玉然指出把人工智能应用于企业管理中,以数据管理和处理为中心,围绕企业的核心业务和主导流程建立若干个主题数据库,而所有的应用系统应该围绕主题数据库来建立和运行。换句话说,就是将企业各部门的数据进行统一集成管理,搭建人工智能的应用平台,使之成为企业管理与决策中的关键因子。

(2)智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。计算机智能教学系统包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。

2.在工程领域的应用

(1)医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。事实上,早在1982年,美国匹兹堡大学的Miller就发表了著名的作为内科医生咨询的Internist 2Ⅰ内科计算机辅助诊断系统的研究成果,由此,掀起了医学智能系统开发与应用的。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

(2)地质勘探、石油化工等领域是人工智能的主要作用发挥领地。1978年美国斯坦福国际研究所就研发制成矿藏勘探和评价专家系统“PROSPECTOR”,该系统用于勘探评价、区域资源估值和钻井井位选择等,是工业领域的首个人工智能专家系统,其发现了一个钼矿沉积,价值超过1亿美元。

3.在技术研究中的应用

(1)在超声无损检测(NDT)与无损评价(NDE)领域中,目前主要广泛采用专家系统方法对超声损伤(UT)中缺陷的性质、形状和大小进行判断和归类;专家运用超声无损检测仪器,以其高精度的运算、控制和逻辑判断力代替大量人的体力与脑力劳动,减少了任务因素造成的无擦,提高了检测的可靠性,实现了超声检测和评价的自动化、智能化。

(2)人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。

三、人工智能的发展方向

1.专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“专家系统”或“知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。

2.智能信息检索技术的飞速发展。人工智能在网络信息检索中的应用,主要表现在:(1)如何利用计算机软硬件系统模仿、延伸与扩展人类智能的理论、方法和技术。(2)由于网络知识信息既包括规律性的知识,如一般原理概念,也包括大量的经验知识这些知识不可避免地带有模糊性、随机性、不可靠性等不确定性因素对其进行推理,需要利用人工智能的研究成果。

3.SOAr是一种通用智能体系结构,其始终处在人工智能研究的前沿,已显示出强大的问题求解能力,它认为机器人的开发是人工智能应用的重要领域。在它的研究中突出4个概念:(1)所处的境遇机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2)具体化机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后会有反馈。(3)智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4)浮现从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。目前,国内外不少学者都对机器人足球系统颇感兴趣,足球机器人涉及机器人学、人工智能以及人工生命、智能控制等多个领域。足球机器人系统本身既是一个典型的多智能体系统,是一个多机器人协作自治系统,同时又为它们的理论研究和模型测试提供一个标准的实验平台。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008.

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2003.

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2003,(8).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息, 2007.

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2001,(8).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2005,(4).