国外人工智能教育现状范文

时间:2023-08-23 16:10:00

导语:如何才能写好一篇国外人工智能教育现状,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

国外人工智能教育现状

篇1

关键词:机器智能;教学方法;专题文献调研;演讲;讨论;编程;学生评价

自2005年北京邮电大学在国内得到教育部批准设立智能科学与技术本科专业开始,机器智能课程就被设定为一门重要的专业基础课。在2008年全国智能科学技术教育学术研讨会上,机器智能课程被确立为第一批三门核心课程之一。作者曾在2009年全国智能科学技术教育学术研讨会上对该课程内容的建设进行了探讨[1],在此基础上,结合教学实践工作对于该课程的教学方法也进行了一些摸索。

1相关教学方法

机器智能是新出现的课程,可供参考的国内外资料较少,我们主要对相关的人工智能课程的教学方法进行了调研和学习。陈白帆、蔡自兴等的人工智能精品课程教学方法在国内最具代表性[2],开设课程设计,学生根据自己的兴趣组成小组选题。多媒体课件和网络课程相结合,采用启发式教学,举行课堂讨论等。王甲海[3]等探讨启发式传授人工智能解决问题的非结构化的思想。刘兴林[4]从教材选择、教学内容和方法、考核方式等做了一系列教学改革。韩洁琼[5]等提出注重激发学生的学习兴趣、加强对实验教学的重视。白洁[6]等提出与学科发展前沿接轨,注重培养学生的创新能力。朱红[7]等对图搜索内容进行有效的教学设计。王璐[8]等设计了应用型和研究型的教学情境。

国外人工智能课程建设具有更长的时间和更多的积累。很多大学在人工智能课程中围绕游戏引入工程项目。Jeffrey等[9]引入基于Blackjack游戏的优化模型来进行人工智能课程教学。Hansen等[10]开发了Glomus教学系统,引导学生在逻辑证明游戏过程中学会重要概念。Douglas等[11]针对电脑游戏中的人工智能的课程教学提出了学生教学生的方法。Ingrid等[12]以机器学习为主题把人工智能中分散的重要概念统一到一起。

2教学实践

2.1总体思路

在本课程教学实践过程中,总体思路是根据教学基本要求和主要内容形成的。详细的教学基本要求和内容参见文献[1]。基于此,对本课程的教学实践进行了如下分析。

1) 教学内容极其丰富多彩,如果需要详细地讲授,每一个章节都可以成为一门课程,64学时的时间是远远不够的。

2) 本课程是一门成长中的新课程,其中既要包括智能领域学者们研究了几十年的重要成果,也要涵盖当前国内外最新研究现状的了解和把握,才能让学生们感受到当前时代的脉搏,了解到本专业的魅力。

3) 智能科学与技术也是一门实践性很强的学科,其中很多技术都已经或正在社会生活中发挥着重要作用,学生们更渴望能够在学习实践中掌握和推进这些技术。

4) 任何教学过程,如果只是单方向的教师讲、学生听,很难达到良好的效果,必须要调动学生的主动学习兴趣,让学生真正参与到教学过程中来,才能实现教与学的双向促进。

于是,我们采取了以点带面的方法,抓住其中的关键点进行细致地讲解,其余的内容则根据侧重面的不同,分别采取启发式教学的方法,如专题文献调研、演讲、讨论、动手实验、学生评价等方式推动学生主动学习相关知识和技术,实现知识拓展和兴趣培养。

2.2专题文献调研

这是我们借鉴了带研究生做课题的经验而提出的一种方法。每次开始讲授这门课程的时候,学生们都会问:为什么我们课程的名字跟其他人工智能的课程不一样?内容上有什么区别?我也都会给出我们的回答,但是总感觉学生并没有完全理解。考虑到智能科学技术专业本身就是一个新鲜事物,机器智能课程也是新近提出的,目前并没有完全定论,属于前沿探索的问题。因此,我们提出进行专题文献调研的方法,希望让学生通过自己的广泛阅读、比较和分析,更加深入地了解本课程。

我们首先给出需要调研的问题以便引导学生的调研方向,即国内外关于智能科学与技术专业的建设情况如何?机器智能、人工智能、神经网络及其他相关课程的建设情况如何?这些不同于学生们以前在其他课程中遇到的作业或问题,没有固定的求解思路,没有确切的标准答案,但却都是学生们非常关心的问题,因此极大地激发了同学们的学习兴趣。我们鼓励大三学生自由组合,每3~4人组成一个课程小组,每组由一位组长负责组织管理,如召集小组讨论,共同制定调研计划,分配调研任务,综合调研结果等。这种形式对于大三的学生毕竟是新的尝试,开始的时候学生们对于如何进行文献调研不太清楚,我们在给学生介绍文献资源和调研方法的同时,也邀请了几位研究生来到课堂上现身说法,学生们普遍反映非常好。

经过1~2周的文献调研,学生们交上来的作业令人非常满意。内容涵盖了人工智能、机器智能、计算智能的概念,国内设置本科智能科学与技术专业的高等学校及其专业定位、培养方案、主干课程、实验课程、毕业生去向,美国、英国大学人工智能专业研究生排名,国内外著名大学的人工智能、神经网络相关课程教学内容、实践设计、参考教材等等。各组调研内容之间有一些交叉,证实了本领域的一些共同特点,如人工智能课程的知识表达与推理、搜索、专家系统、自然语言处理等经典内容;各组的调研结果更有很大的不同,既反映了学生们思考问题的角度是多样性的,也反映了智能科学技术专业建设和机器智能相关课程的教学是多样性的。经过比较和分析,学生们对本课程的理解清晰多了,学习态度非常积极,希望探索智能奥秘的热情极为高涨,为后面的教学打下了良好的基础。

2.3动手实验

实践出真知,我们在理论教学的同时也特别注重实验环节的设计,学生通过动手实验加深对理论知识的理解和运用。对于本课程的重点模块内容,如BP算法、启发式搜索,我们都给学生布置了以组为单位的实验作业。为了激发学生的主动性和创造性,还对每个作业给出了扩展性的要求。以BP算法的实验为例,我们要求各组在充分理解BP算法原理的基础上,编程实现手写数字0~9的训练和识别功能。我们也给出了扩展性要求:可以通过自己查阅文献,寻找提高BP基本算法性能的方法和技术;可以不限于手写数字0~9的识别,自主选择感兴趣的其他模式信息进行实验,如语音信息、手写英文字母、手写汉字等。

学生们开始面对这个作业的时候非常迷茫,不知从何处下手,我们一方面鼓励学生要有信心,不要有畏难情绪,一方面就相关内容安排课堂重点讨论,首先要正确理解和掌握经典BP算法的基本原理,包括其数学推导的全过程,然后从如何构造单一神经元和激励函数开始,进而讨论如何实现一层神经元和相邻层神经元的计算,以及如何进行误差计算和反向权值调整。学生们逐渐对实验作业有了深刻的理解,开始动手设计自己的神经网络,随着一个个步骤的实现,学生们之前的很多疑惑都豁然开朗,对BP算法充满了兴趣。很多组的同学对测试的识别率不太满意,都主动去图书馆查阅相关资料,尝试了一些改进方法和技术,如改变多种神经元激励函数、加入动量项微调权值修正量、自适应变步长算法等。

有一个组的作业给我印象极其深刻,因为他们勇于挑战了BP神经网络实现语音信息0~9的识别,不但很好地掌握了BP基本算法及其改进:变步长法和引入动量项法,还自学了录音、音频信号分帧、加窗、MFCC特征提取等。他们对待本课程的热情,还有他们表现出来的巨大的潜力都让我感动,让我对我们的专业和课程建设的未来充满了信心和希望。

正是应对了“理论与实践相结合”的经典理念,半年里64个学时完成后,从学生们的直接反馈中发现,他们理解掌握最为深刻的内容恰恰是他们曾经动手进行程序开发的内容。这充分表明了在本课程的教学过程中注重动手实践能力的训练和培养的重要性。

2.4演讲、讨论与评价

这也是我们在教学过程中探索出来的方法。专题文献调研和动手实践的作业极大地调动了学生们的积极性,效果也非常好,但作为一门课程,还是要有一个分数的评价。以往都是学生把作业交上来,老师统一评分。现在面对如此多样性的作业,老师个人的评价显得并不充分,我们认为学生们相互之间做的工作类似,能够理解各组作业的特色和工作量大小,在评价上更有发言权。因此,我们提出了一种同学参与评分的方案,即演讲+讨论+评价。

首先是演讲。为了使评分过程做到公开、公正、公平,我们在各组完成一次文献调研或者动手实验之后,都要求各组准备好演讲的文件和相关材料,包括ppt文件制作、程序演示、功能测试等,专门抽一次上课时间用来进行各组的集中演讲,展开实践经验的深入交流。每组派出一位代表来演讲,介绍本组作业的详细情况并演示。介绍完毕,就进入提问和讨论环节,老师和同学都可以就其中的任何问题提问,也可以进行程序功能的现场检测。这一方面活跃了课堂气氛,使得学生们大大增强了对于重点内容的理解和掌握,另一方面,各组之间可以相互学习,拓展视野,开阔思路。同时,这也很好地锻炼了学生的组织和演讲能力。最后是评价,也是各组选派一名代表,就像各类比赛中的评分专家一样,根据各组的演讲、提问、回答、演示等,综合给出一个评分。这种形式对于学生们也是很新奇的,大家都很认真地对待,基本上每次评分都能很好地反映出各组的水平。同时,这也激发了学生们的主动性和创造性,因为只有真正的努力和过硬的成绩才能获得各组同学的一致好评。

2.5创新性研究

我们鼓励对本课程相关领域具有浓厚兴趣、能力较强的同学自发组成小组,基于课程所学内容进行深入分析思考,提出创新性的课题展开研究,并在合适的时机鼓励学生们利用课程相关的知识积极参加各种竞赛,从今年开始中国人工智能学会主办的全国大学生智能设计大赛将是今后我们努力的主要方向。2010年,我们选择了三星公司面向大学生的bada应用开发试点活动作为第一次尝试。学生们经过三个多月的努力,获得两个三等奖和两个优秀奖。经过竞赛锻炼,学生们不仅加强了对于课程相关知识的理解和掌握,增强了研究开发能力和自信心,更加深了对于本专业的浓厚兴趣,为本专业和本课程的建设提供了强有力的支撑。

2.6专家讲座

我们先后邀请到了国内外的专家学者来给学生进行专题讲座。国际计算语言学会主席、美国南加州大学信息科学研究所Prof. Eduard Hovy关于什么是智能的讲座,首都师范大学人工智能领域著名教育专家王万森教授关于模糊逻辑与推理的讲座,都让学生们感受到了大家的风范,灵活生动的讲课风格受到了学生的高度赞扬。

3教学反馈

在北京邮电大学组织的2010年学生评教工作中,本课程得到了97.46的高分(满分100)。以下是我们收到的一些学生的反馈意见。

1) 实践时间充裕,在解决问题的过程中培养了一种能力。作业不死板,给出一个框架思路,同学可以自由发挥。还地锻炼了大家的团队合作精神,专注于自己擅长的领域才能做的更好。让同学们自己放开去做,在出错时及时交流纠正是一种很自由、很开放的学习模式,这样的氛围可能不会培养高的分数,但会收获高的能力。

2) 教学形式较为新颖,不是采用以往讲授知识的方式,而是采用了更为贴近实际的方式,在开学初就分组,抛弃了笔上作业,改用实际的编程、查找资料等方法,更能调动大家的学习积极性。验收作业也不是以往老师收上去批改后发下来这种千年不变的形式,而是让同学互相打分,这种方式更为客观而且可见,更加公平。最后感谢李老师一学期以来的教学与帮助,也感谢实验室所有老师和助教的帮助,也相信咱们智能科学与技术专业,机器智能这门课程会越来越完善、成熟。

3) 感觉比较实用、有意义。从大学开始接触的都是纯理论的课,这门课上需要做实践编程作业,我学习了机制与算法实现,更重要的是能让我们在解决实际问题中提供一些从未有过的思路。比如我在百度俱乐部参加一个如何构建购物网站的工作,需要垂直搜索技术,把各大购物网站的价格列出来,可是有些网站,如京东商城是采用图片形式显示价格的,很多研究生也没做出来,我用了机器智能中的BP算法解决了这个问题,当然需要一些图像处理技术。总之,试验后我们得到的是一种解决问题的思路,所以我觉得在提供知识的基础上使用实验技术加深对知识的理解效果很好,实验就是最好的作业。

4) 随着我们步入大三,越来越感受到智能领域的广博精深。就像老师教学的课件一样,每个知识点的扩充都能组成新的一章。本学期感触最深的除了三星竞赛此外还有两点:一是李老师上课讲的内容充实,从神经网络到机器情感,从BP到A*,几乎把智能领域经典的模型算法都覆盖了。第二点就是本学期李老师请来了很多professor(巨开心哈)。我觉得看看别的学校甚至别的国度的“大牛们”都在研究什么,有利于我们拓宽眼界,开阔思路。希望李老师以后也辛苦联系他们,让学弟学妹们也享受这种待遇。

4结语

本文对机器智能课程的教学方法进行了探讨,针对不同模块的教学内容,提出并实践了专题文献调研、演讲、讨论、动手实验、学生评价、创新性研究、专家讲座等教学方式,收到了较好的效果。今后还要紧跟智能科学与技术的发展进一步丰富本课程教学的前沿性和创新性,在力图编一本比较好的教材的同时,着手研究多种资源和手段的运用。

参考文献:

[1] 李蕾,王婵,王小捷,等.“机器智能”课程建设初探[J]. 计算机教育,2009(6):86-92.

[2] 陈白帆,蔡自兴,刘丽珏. 人工智能精品课程的创新性教学探索[J].计算机教育,2010(19):27-31.

[3] 王甲海,印鉴. 人工智能教学与计算思维培养[J]. 计算机教育,2010(19):68-70.

[4] 刘兴林. 大学本科人工智能教学改革与实践[J]. 福建电脑,2010(8):198-199.

[5] 韩洁琼,余永权. 人工智能课程教学方法研究[J]. 计算机教育,2010(19):71-73.

[6] 白洁,毕季明,李伟. 人工智能课程教学改革初探[J]. 中国教育技术装备,2010(36):43-44.

[7] 朱红,李果. 人工智能问题求解策略的教学研究[J]. 中国信息界,2011(2):70-71.

[8] 王璐,陆筱霞. 应用DBR的人工智能课程教学[J]. 计算机教育,2010(19):64-67.

[9] Jeffrey L. Popyack. Blackjack-playing agents in an advanced AI course[C]//ITiCSE '09,New York:ACM Press,2009:208-212.

[10] PDavid M. Hansen, Joseph Bruce, PDavid Harrison. Give students a clue: a course-project for undergraduate artificial intelligence[J]. ACM Newsletter,2007:44-48.

[11] Douglas D. Dankel, Jonathan Ohlrich. Students teaching students: incorporating presentations into a course[C]// ACM Special Interest Group on Computer Science Education,New York:ACM Press,2007:96-99.

[12] Ingrid Russell, Zdravko Markov, Todd Neller et al. MLeXAI: A Project-Based Application-Oriented Model[J]. ACM Transactions on Computing Education,2010(1):1-36.

Teaching Practice of Machine Intelligence

LI Lei, LIU Pingan, WANG Xiaojie, ZHONG Yixin

(Department of Intelligence Science, Beijing University of Posts & Telecommunications, Beijing 100876, China)