人工智能教育专业范文

时间:2023-08-23 16:09:58

导语:如何才能写好一篇人工智能教育专业,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

人工智能教育专业

篇1

关键词:人工智能;案例式教学;兴趣引导教学法;问题驱动教学法

中图分类号: TP309 文献标识码:A 文章编号:1009-3044(2014)03-0599-02

人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的综合性技术学科[1],是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透、迅速发展且与人类生活密切相关的综合性新学科,其核心研究领域包括模式识别、自然语言处理、机器学习、数据挖掘、人工神经网络和专家系统等等[2]。

语言信息处理是语言学与计算机科学交叉形成的一门新型学科,其课程体系以语言学、计算机应用、应用数学和认知科学为主干,研究内容是自然语言的自动化信息处理技术,是人类语言活动中信息成分的发现、提取、存储、加工与传输[3]。目前该方向的主要应用领域包括机器翻译、文献检索、信息提取、自然语言的人机接口等。由此可见,为语言信息处理专业开设人工智能课程是必须的。该文针对“人工智能”课程自身特点和语言信息处理专业研究生培养目标,并结合笔者多年来的教学经验,分别从课程内容设定、教材选择、教学方法、考核方式等多个方面对该课程的教学改革进行了探索与研究。

1 以“精”“典”为基本要求的教学内容选择

“人工智能”课程的突出特点研究内容涉及面广而学时数较短(大部分高校的研究生专业安排的课程的时数在36到48学时之间)。因而授课时不能追求内容“大而全”,必须“精”,选择重点、核心基础知识进行学习,选择与专业方向最相关的“典”型应用领域进行重点详细介绍,使学生在有限的时间内学到最有用的知识。“人工智能”课程教学内容总体可以分为三大部分。

第一部分是基础理论知识,学习人工智能中知识的表示方式(谓词逻辑表示法、产生式知识表示法、框架表示法、语义网络表示法等)。语言信息处理专业学生本科专业背景不同(有文科,有理工科),所以该部分教学内容难点在于教学进度和难易程度的均衡。本部分内容可安排8~10学时。

第二部分是搜索与推理,对使用特定知识表示方式表达的知识和问题进行推导或搜索,得出相应结论或搜索结果。本部分安排10~12学时,重点在于启发式搜索。

第三部分是人工智能中的典型应用领域。对于该部分内容的选择要以学生专业为中心进行,选择与学生专业相关性较大的领域进行教学,以期能够有助于学生了解并掌握学术的主流发展趋势,从而能够更好地培养自身的科学素养和创新能力。本部分主要学习机器翻译、机器学习、自然语言处理、数据挖掘、多Agent系统等。本部分安排18~36学时。

2 选择“最合适”的教材

教材是教师教和学生学的主要凭借,教材的好坏在很大程度上决定了教师能否成功“教”与学生能否顺利“学”。教材的选择要以教学对象的特点和教学目标为依据,选择最合适的教材。在广泛研读目前比较热门的人工智能教材的基础上,结合教学目标和教学对象的特点,选则清华大学出版社出版﹑蔡自兴和徐光祐编著的《人工智能及其应用》(第4版)[1]作为教材。该教材总体也可以分为三部分:第一部分论述了人工智能的三大技术, 即知识表示;第二部分论述推理及搜索; 第三部分论述人工智能的主要应用领域,包括专家系统、机器学习、自动规划、分布式人工智能和自然语言理解等。与第三版本科生用书相比,增加了如本体论和非经典推理、决策树学习和增强学习、词法分析和语料库语言学等(非常适合笔者的教学对象)。

3 创新型人工智能课程教学方法

“人工智能”课程涉及的知识面广,既包括基础理论,也包括具体应用,即有抽象复杂的计算,也有繁杂的系统实现,为此,如何激发学生的学习兴趣并保持学生的学习兴趣是本课程教学的关键。此外,因为是研究生教学,所以更突出学生的主体地位,注重培养学生的学习兴趣、自主学习的意识和能力。为此,笔者主要采用了以下几种教学方法。

3.1 兴趣引导教学法

常言“兴趣是最好的老师”,如何培养学生对本门课程的学习兴趣,激发学生对本门课程的求知欲,是一门课程首要任务。

为了提高学生的学习兴趣,笔者在第一节课让学生观看美国科幻电影“机器人”的相关片断,通过机器人安德鲁非凡的创造能力、情感表达能力和自学习能力让学生更好地了解人工智能的目标、意义,激发学生探索人工智能的兴趣;在学习“博弈策略”及“极大极小分析法”时,笔者通过让学生来参与“一字棋”对决游戏说明博弈树的层次结构原理,通过“人机对弈”说明“α-β剪枝技术”引入的必要性;通过“啤酒与尿布”的故事说明数据挖掘技术在现实生活中的应用,让学生认识到人工智能并不是虚无抽象的学科,而与人们的生活息息相关,激发起学生用人工智能相关技术解决现实问题的兴趣。

3.2 问题驱动教学法

在讲授基础理论时,如“不确定性推理”、“数据挖掘”等这一类型内容抽象、算法复杂的知识时,采用了问题驱动式的教学方法。

教师首先提出与内容相关的若干问题,并为学生相关的资料或向学生提供找到问题的一些线索,让学生带着问题去思考、分析和讨论等方式来查找答案,主动获取知识,应用知识,教师在必须的时候还需给予一定的引导和帮助。如在讲授产生式知识表示法时,以“动物识别系统”问题原型,给出学生系统模型,让学生编写一个能够用来进行动物识别的应用程序。

此教学法很好地培养学生解决问题的能力,形成研究的态度,提高认知能力。

3.3 实践教学法

“实践是检验真理的唯一标准”。人工智能课程中,能够动手实践的知识一定要让实践。

在讲“专家系统”的构造步骤时,用“营养专家系统”为案例进行介绍,将该专家系统分解为一个个小的具体任务(如知识库构建、规则库的构建、界面设计等),并分配给不同的学生,学生按照专家系统的一般构造步骤去完成相应的任务,最终完成一个完善的系统,从而达到掌握专家系统构建的教学目标。

实践教学法可以提高学生分析、解决问题的能力和动手能力,并可以进一步加深对理论知识的理解。

3.4 案例教学法

案例教学法是将案例讨论的方法运用到课堂教学活动中去,教师根据课堂教学目标和教学内容的需要,通过设置一个具体的案例,引导学生参与分析、讨论、表达等活动,让学生在具体问题情境中积极思考、主动探索,以提高教与学的质量和效果,培养学生认识问题、分析问题和解决问题等综合能力的一种教学方法[4]。案例教学法中教师扮演设计者和激励者的角色,鼓励学生积极参与典型案例的讨论,重点掌握教学进程,引导学生思考,组织讨论研究,进行总结、归纳,同时教师也参与到学生共同研讨。不但可以发现自己的不足,也可以从学生那里可以了解到大量感性资料。该教学法有利于调动学生学习主动性,通过生动具体的案例介绍可以促进学生对知识的理解和实际应用。

人工智能授课中,对于产生式系统和自然语言理解系统的有关概念及系统构成技术,采用了案例教学法。

在介绍产生式系统时,我们以动物识别系统为案例进行介绍。案例教学通常可以分为3个步骤,即案例引入、案例分析和案例总结。案例引入过程介绍产生式的语法和语义、产生式系统的组成及工作原理后,通过屏幕演示动物识别系统的运行过程使得学生能够获得老虎、金钱豹、斑马、长颈鹿、鸵鸟、企鹅、信天翁七种动物的一些特征;案例分析阶段通过向学生展示使用Prolog编写的动物识别系统源程序,详细介绍设计思想以及实现过程。该过程是案例教学的关键,教师引导学生进行案例分析,之后由学生进行补充,师生共同讨论力求系统得以更完善;案例总结阶段由老师对学生的讨论情况进行总结,在总结讨论情况的基础上提出一些问题(例如如何进一步提高系统的效率?)。

在介绍自然语言理解系统时,以自然语言情报检索系统LUNAR[5]为例进行介绍。从LUNAR系统的词法分析、语义解释和问题回答三个阶段进行详细分析。经过案例引入、案例分析和案例总结三个阶段,使得学生对LUNAR系统的设计步骤、关键技术及设计思路有深入的了解。之后,要求学生写出案例分析书面过程,并完成课后作业“指挥机器人的自然语言理解系统SHRDLU”。

4 课程考核方式的改革

研究生教育以培养学生的能力和素质为主要目标。人工智能课程的考核方式也以此为目标,采用以考察理解应用为目的的论述题,或结课论文形式进行,同时注重平时考核。平时考核以学生查资料的能力、阅读相关文献即完成课后作业的情况为考核对象。

5 结束语

为了提高人工智能课的教学质量,根据课程及教学对象的特点,结合教学过程实际问题,采用了合适的教材,安排了合适的学时,在教学过程中综合各种教学方法的优点,并采用了适当的考核方式。教学结果表明,通过这些尝试,提高学生学习的兴趣和积极性,取得较好的教学效果,学生能够有意识地使用人工智能中的相关知识、思想来进行学术研究。

参考文献:

[1] 蔡自兴,徐光祐.人工智能及其应用——研究生用书[M]. 第3 版. 北京:清华大学出版社,2004.

[2] 廉师友.人工智能技术导论[M].西安:电子科技大学出版社, 2002.

篇2

关键词:人工智能;信息管理与信息系统;教学改革;课程调整;主动性

中图分类号:G64

文献标识码:A

文章编号:1009-3044(2017)10-0127-02

1.引言

随着大数据与人工智能的兴起以及美国推出“人工智能+”国际国内掀起一股人工智能的浪潮,有专家预测,下个十年必将是人工智能的十年,而人工智能不再是主流方向的时候则是机器人大规模使用,人类真正能够从繁重、简单重复性工作中解放出来的时候。而今年三月份谷歌推出的AlphaGo与韩国围棋九段李世石的世纪大战也让越来越多的人认识到未来的机器人有可能在高智力领域取代人类。面对如此紧迫的处境,人类除了进入这个行业了解机器人的思考方式外似乎别无它法。而要想了解机器人的思维方式,所需的知识储备并不多,仅仅包括相关的数学、计算机能力,具体为数学建模的能力、概率统计基础、优化模型的能力以及编程能力,表现在具体课程上为高等数学、概率统计、凸分析、数值分析、机器学习、数据挖掘、C语言(或其他任意主流编程语言)。而对于信管专业的学生而言,所学课程包括经济、管理、数学、计算机等专业入门课程,门类繁多,学生难免会找不到未来发展方向而陷入迷茫。而限于有限的精力,若干重要课程设置为“考查”科目则会让学生想当然以为这些课程“不重要”。这就造成一方面其他专业的学生因先修课程基础不足无法理解人工智能专业课程的内容,而信管专业的学生基础足够但不够扎实而迷茫。因此我们拟将人工智能相关内容融入信管专业课程中,让学生感兴趣的同时,提高就业竞争力。

2.信管专业教学中面临的主要问题

信管专业开设课程内容较多,门类复杂,我们基于本校学生实际总结了信管专业学生在学习中的主要问题。

2.1学习主动性不足

由于学习了多个学科门类的基础课程,导致学生知识面呈现扁平结构,似乎“什么都会,而又什么都不会”。而且若干重要课程开课时间安排在大三,许多学生面临实习、考研等的选择,加之课程内容较繁杂,基础知识不扎实,一些同学面对一些较难的内容时产生无力感,同时也有社会压力较大的影响,使得部分同学对本专业课程也失去了兴趣,遇到问题不主动寻求老师帮助,对课程相关的一些国际先进技术以及经典案例没有任何思考等。同时对自己前途也很迷茫,学习态度消极,进而产生了读书无用论,反过来劝说低年级学生学习不要用功学习,形成恶性循环。

2.2基础课程掌握不牢

高年级课程的先修课程一般有:高等数学、线性代数、计算机程序设计、运筹学、数据结构、数据库技术以及概率论与数理统计等课程。若干机器学习经典算法的理解需要较好的数学基础,如贝叶斯分类器需要对概率论与数理统计有较好的认识;线性回归模型需要熟练掌握线性代数中矩阵变换的方法以及运筹学中求解优化问题的思想;决策树算法需要理解熵的概念;神经网络算法需要理解激活函数以及正则函数的选择对解得影响等,而每个算法的实现都需要有较好的编程基础。在某些班级授课过程出甚至出现不知道如何求解线性方程组的情况。由于一些同学没有熟练掌握先修课程,导致学习本课程的难度增加,进而降低了学生学习的兴趣。

2.3对实践认识不足

在讲授机器学习问题涉及的算法都会详细解释每个算法的来源、步骤等细节,大部分同学能够理解,但是忽视了实践环节,课后没有自己编程实现,理解不够深刻,致使后续课程开展不顺利。在授课过程中出现过一个算法讲了三遍学生仍然停留在听懂的阶段,由于部分同学不重视实践,导致在后续学习中比较吃力。

综上所述,在讲授高年级课程的教学过程中存在许多缺陷,归根结底为学生学习主动性不够,学习兴趣不足,基础不扎实等。这种状况对学生的发展极其不利,也不适应社会对信息管理人才的要求,因此需要为学生选择一个适合的发展方向,激发学生学习本方向课程的兴趣。

3.解决方法

针对如上提出的问题,结合我校信管专业学生实际,我们从五个角度提出了解决方法。

3.1调整部分课程的课程大纲

由于本方向所需数学以及编程基础较强,本专业学生所学学科较多,针对此,需要小幅调整若干课程的授课计划。具体为:1)在运筹学中适当加入凸分析基础知识以及解法,减少线性规划以及排队论的课程;2)概率统计课程加入随机数生成课程,强调统计学部分课程,弱化经典概率知识;3)增加数值分析课程,内容强调数值计算,强化学生数值计算的能力;4)部分课程适当增加实验课程,提高学生编程能力。

3.2适当加入当前人工智能最新技术,激发学生的学习兴趣

学生对本学科课程的认识不足,部分学生觉得若干课程与考研科目无关,对课程重视不足。加入相关视频资料可以将学生的注意力吸引到课程上来,比如加入经典电影“点球成金”,让学生了解数据揭示了一些表象不能展示的事情;加入短视频“科技改变生活”,让学生了解将来的生活是什么样的,需要哪些技术,这些技术有哪些是自己能做的;加入机器人最新技术,让学生了解机器人发展现状而不被电影误导;加入AlphaGo对战李世石的比赛让学生认识到人工智能的能量;加入经典案例能够使学生对一些算法产生浓厚兴趣,比如加入“啤酒和尿片”案例,让学生了解到关联关系的重要性,认识到一些简单的算法也能够产生巨大作用。

3.3适当加入就业前景分析,激发学生学习的内在动力

当前人工智能飞速发展,让学生认识到此领域的潜在力量,了解到此领域的薪资水平以及就业创业环境,对增加学生的学习动力将有很大的影响。对比各行业的发展前景,互联网行业的目前占据在前列(这从总理对互联网+的重视程度即可看出),而机器学习方向作为互联网行业的一份子,则站在互联网的最前端,理性的学生将会看到其中巨大的汇报。

3.4以具体案例项目带动学生学习能力,确保学生考研就业时有较大优势

在学习高年级课程时将增加具体案例项目,在带动学生学习能力的同时,确保学生就业时的优势。如在介绍贝叶斯算法时鼓励学生设计垃圾邮件分类系统;在介绍人工神经网络时鼓励学生设计文本识别系统;在介绍HMM算法时鼓励学生设计自己的语音识别系统。这些项目的完成将会让学生理解算法、编程能力以及团队协作能力有极大的提升,对就业有极大的促进作用,同时也确保学生在考研面试时有极大的优势。

3.5适当加入一些专题讨论,弥补先修课程基础薄弱的不足

学生基础薄弱对学习理解专业课程若干内容影响甚大,比如某些学生对函数极值问题认识不足导致在学习最小二乘估计时给出损失函数后不知道该如何处理;某些学生对线性代数矩阵变换不熟练导致在学习线性模型时得到正则方程后不知该如何继续进行,当系数矩阵不满秩时不知道怎么解决。通过设置一些专题讨论,比如矩阵方程求解、优化问题、C语言读写 文件等弥补先修课程基础薄弱的不足。

篇3

关键词:高职教育;人工智能;转型发展

一、高职教育现状

(一)客观层面

(1)社会面。当前社会发展处于转型关键期,高职教育迎来全新发展机遇,对人才培养质量不断提高。传统思想中,家长学生都带着有色眼镜看待高职教育。随着社会给技术技能型人才提供很多高薪岗位,部分学生主动选择高职院校进修学业,提高自身技能水平。高职院校必须以社会发展趋势为导向,及时调整自身发展战略。(2)政策面。在新课程改革视域下,政府高度重视高职教育的发展,出台了多项扶持政策,如《国家职业教育改革实施方案》《职业学校专业顶岗实习标准》《关于推进高等职业教育改革创新引领职业教育科学发展的若干意见》等,极大的推动了高职教育的稳定发展。

(二)主观层面

(1)教学理念。高职教师受传统思想影响,往往重视成绩和理论知识,亟需引进新的教学理念,并落实在实际教学中。高职院校已经意识到人工智能时代,自身转型创新的必要性,正积极将全新的教学理念贯穿在人才培养过程中。(2)教学方式。高职教育逐渐创新教学方式,将顶岗实习、校企合作、实训教学等应用在常规教学中,适应时展,彰显职教特色。但在实际教学中,教师理念未发生变化,能力无法满足新型教学方式需求,存在亟需改进优化的地方。(3)教学体系。只有完善的教学体系,才能为高职教育的改革创新提供依据参考。当前高职教育体系中含有诸多不足,如学科单一、理论与实践比重不协调、知识内容陈旧等。高职教育要想适应新时展趋势,应积极完善教学体系。

二、人工智能现状

(1)国家战略。近年来,国家高度重视人工智能发展,国务院《关于印发新一代人工智能发展规划的通知》(国发〔2017〕35号),提出科技创新的主要方向是人工智能,提倡积极构建全新的人工智能科技创新协同机制,进一步完善人工智能教育体系,实现人才储备和梯队建设的目标,推动智能经济的发展。各部委也积极颁布一系列政策,如《智能制造2025》《“互联网+”人工智能三年行动实施方案》《机器人产业发展规划(2016-2020)》等[2]。可见,国家为人工智能技术的发展提供了充足动力,人工智能已成为国家战略的一部分。(2)产业发展。多年的探索,人工智能技术有了明显提升,在问题求解、泛逻辑理论、不确定推理、拓扑学、图像处理、模式识别、专家系统等方面有了显著研究成果,一部分成果甚至领先世界水平。例如我国在模式识别领域的研究,文字识别、语言识别、虹膜识别都取得优异成果,被广泛应用在生物医药、机器人视觉研究、卫星遥感、自主导航、军事等领域。企业十分关注人工智能技术的发展应用,像360人工智能研究院、阿里人工智能研究院、百度人工智能研究院等。人工智能技术的深度研究,使应用和商业价值最大化。据不完全统计,2017年人工智能产业创造700亿元市场价值,预计在2020年产业规模超过1600亿元。

三、人工智能推动新时代高职教育转型发展的必要性

(一)技术技能型人才的需求

高职教育发展的目的是培养适合岗位需求的技术技能型人才。人工智能时代,先进技术的广泛应用,大部分岗位对人才的需求发生明显变化,逐渐形成了“机器换人”的局面。企业中简单、重复、劳动强度大的岗位,都由智能机器人予以代替。例如在京东电商的物流中,出现无人机配送方式,直接冲击了传统人工物流配送模式。相信在不久的将来,会有更多的智能机器人走向物流配送的工作岗位,形成全新的工作体系。此外,在生产制造的质检环节,由于传统人工监测方式存在诸多不足,应用人工智能的图像识别技术,可以实现对产品质量的动态检测。可见,人工智能时代会有大批岗位“消失”,取而代之的是智能化机器人。高职教育必须转变以往的教育模式,顺应时展趋势,结合社会岗位对技能人才的需求,调整高职教育方向,实现高职教育价值。

(二)国家发展战略的要求

以往的发展致力于“中国制造”,但新时代“中国制造”已无法提升综合国力,国家必须调整发展战略。人工智能时代将“中国制造”转变为“中国创造”“中国智造”。这一发展战略的转变,能看出先进科学技术在国家发展中的重要地位。为了2025年实现“中国智造”的目标,高职院校创新人才培养模式,顺应国家发展战略的调整。同时,高职教育转型过程中,转变以往以理论、成绩为主的思想观念,对人才进行更加系统的培养,调整理论知识、实习实践之间的关系比例。人工智能时代的高职教育转变与创新,可以加大对学生创新意识的培养力度,使人才综合素养得到更好提升,满足“中国创造”的需求。

(三)学生自身价值实现的需求

时代的发展使高职学生的思想发生变化,传统的高职教育虽能提高学生专业能力,但并不满足当前企业对工作岗位的需求,学生无法实现自身价值。曾经的学生,没有认识到自身与社会的关系,存在“得过且过”等不良思想。新时代,高职学生逐渐认清自身地位,意识到自己与国家民族是“命运共同体”,是实现伟大复兴“中国梦”的主要力量。高职教育转型创新,根据时展要求、学生需求,合理调整教学方案与计划。

篇4

关键词:应用型本科院校;人工智能;电子信息工程;专业建设

一研究背景

在发达国家,应用型本科院校一直占有很大的比重。在我国,应用型本科院校也逐渐成为高等教育大众化的主力军,对我国高等教育系统未来发展越来越重要的作用。金陵科技学院作为教育部应用科技大学改革试点战略研究单位、中国应用技术大学(学院)联盟创始单位,也正在积极地去探究相关的应用型专业建设模式。电子信息工程专业作为学校的一门深度涉软专业,也要紧跟南京城市软件建设发展方向,这对应用型电子信息工程专业培养既是机遇又是挑战。随着社会的不断发展和科学技术的不断进步,电子信息工程的应用也越来越广泛,对人们的生活产生了非常大的影响。,不但改变着人们获取信息、存储信息和管理信息的方式,而且为人们进行信息的获取、存储和管理提供了新的途径和方法,目前,各行业大都需要电子信息工程专业人才,而且薪金很高。2015年5月8日,备受瞩目的《中国制造2025》由国务院正式下发,这是我国实施制造强国战略第一个十年的行动纲领。该规划二个突出特点是,将"加快新一代信息通信技术与制造业的深度融合"作为贯彻始终的主题,提出坚持自主研发和开放合作并举,加快建立现代电子信息产业体系,为推动信息化与工业化深度融合、实现制造业由大变强、建设网络强国提供强有力的基础支撑。在今年,随着国家“两会”的盛大召开,人工智能首次被提升到国家发展战略高度,人工智能技术的重大突破将带来新一轮科技革命和产业革命,大力发展人工智能技术是中国经济转型升级的重要动力。电子信息技术的巨大成功和进步,使人工智能可以深层次、多维度地参与到各个行业各个领域中,使科技的进步快速融入到跨界合作中。比如,电子信息技术的成熟,使人工智能可以深度服务于医疗卫生事业、配合甚至取代医生进行精确的手术治疗。在无人驾驶领域,无人驾驶汽车、无人驾驶飞机、无人驾驶舰船都已经陆续投入使用;在军事领域,人工智能的运用更是已经炉火纯青,俄罗斯与美国的人工智能作战部队和相关系统,已经在反恐作战中屡立战功,威力无比,作战效能与性价比远远超越人类士兵。由此可看出,人工智能在电子信息技术大发展的当下,终于在应用层面开始发光发热,现出巨大的生命力和后续无穷无尽的成长潜力,人工智能在各行各业的广泛应用,是国家经济结构战略性调整、产能升级改造、产业结构优化、核心技术创新获得成功的关键。随着BAT、华为、大疆无人机等高科技企业在人工智能应用和开发上的不断探索,刺激更多人才和资本向人工智能商业应用领域涌入。目前,基于人工智能学习背景下,软硬件相关知识过硬的电子信息类专业人才已经成为社会上最为紧缺的人才,薪水待遇很高。

二需要解决的关键问题

作为应用型本科院校,如何将“人工智能”新概念融入到电子信息工程专业建设中,根据社会发展的需求,校企紧密结合,培养出复合型的,应用型的社会紧缺人才,是需要去解决的关键问题。1.像当年互联网的崛起一样,人工智能真正的发展才刚刚兴起,相关的概念及定义还不完全定型,如何把握好未来人工智能的发展方向,有针对性地在传统的电子信息工程课程计划中规划与人工智能息息相关的课程,比如人工智能原理,机器学习,深度学习等课程,将两者有机融合,在人才培养上面临较大的挑战。2.人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的崭新概念。如果要将“人工智能”融入到电子信息工程专业建设中,就不仅需要学生学好如模拟电子技术,数字电子技术,数字信号处理,单片机技术,C/C++程序设计等传统的课程,打好基础,还需要加强在数据挖掘,神经网络等以数学为基础的课程方面的建设,扎实学生的数学物理基础。这对学生的学习能力要求更高,老师的教学水平也提出更高的要求。因此,如何加强此方面的师资专业培训,是一个该课题需要解决的关键问题。3.一个专业人才的培养,不仅需要优秀的师资力量以及良好的学风,还需要有相关的硬件实验平台作为支撑。如何根据“人工智能”新概念,针对性地新建一些诸如智能传感器实验室,人体特征识别实验室,机器人实验室等,把电子信息工程专业中的电子器件技术,信号处理技术等应用于人脸识别,智能家居,机器人等热门领域,根据学生的兴趣爱好因材施教,提高学生的动手能力,也是该课题需要去解决的一个关键问题。

三研究内容

本文以“人工智能”新概念下的电子信息工程专业教学及实践模式为研究内容,重点研究如何将人工智能相关的理论及实验课程建设融入到传统的电子信息工程专业培养方案中,做到无缝结合,在培养模式上需要有一定的理论创新,以更好地适应人工智能类的高新电子信息技术企业对相关应用型人才的要求。目前拟以现有电子信息工程专业的课程体系和专业方向为基础,形成以“人工智能”为导向的应用型电子信息工程特色专业建设,在未来的专业发展规划中,逐渐形成物联网、智能家居、机器人,无人机,人脸识别,语音交互,智能驾驶等不同的专业方向,增加学生的就业面,提高学生的就业层次,加强学生的就业竞争力。主要具体体现在以下几个方面:

(一)实践教学的形式多样

可采用以“学生兴趣爱好”为依据的引导式教学实践模式,在扎实学生数学物理等理论的基础上,将最新的人工智能概念贯穿在电子信息工程专业课程体系中,通过不同的应用型实验项目拓宽学生的知识面,提高学生的主动学习能力,动手实践能力,创新能力以及独立开展研究的能力,将课堂教学、校内实验和校外企业实习三者相互结合,鼓励学生参加诸如全国大学生电子设计大赛,全国大学生智能设计竞赛,中美创客大赛等赛事,以确保培养出高素质的应用型专业人才。同时,让学生从大二开始就自选课题、进实验室、根据兴趣爱好组建不同研究方向的实验团队,并为学生按照不同的研究方向配备专业教师,以此让学生融入到教师的科研工作中去,形成所谓的本科生导师制制度,由相应的导师全程指导,开展科学研究,培养学生的科技创新能力和动手实践能力。

(二)注重提高教师的教学及科研水平

在努力提高学生学习能力的同时,注重提高应用型电子信息工程专业教师的教学及科研水平,使其能够很好地将“人工智能”新概念用于电子信息工程专业的教学中,指导学生参加相关的各种竞赛,提高教师团队的实践能力及技术水平。通过海内外招聘和内部强化培养(教师博士化、教师双师化、教师国际化)等举措,加强师资团队建设;通过鼓励教师积极开设MOOC课程,参加教师技能大赛以及国内外教学培训,从多方面提高教师的教学水平。

(三)建立完善的校企合作制度,为学生提供相应的实习基地

企业工程师可以参与相关的人才培养方案修订和部分的教学实践工作。这种合作制度既可以提高教师的科研应用水平,也可以为学生提供就业机会,增强学生的实践创新能力。

(四)注重课程大纲修改,实验室平台建设

以改革传统的电子信息工程专业的培养模式为目标,总结在“人工智能”新概念下教学及实践的相关经验,形成一个有鲜明特色的电子信息工程专业培育模式。应用型本科院校电子信息工程专业人才未来的发展战略和改革方向,应重点考察“人工智能”新概念下专业人才培养模式的优缺点。重点关注“人工智能”新概念下的教学及实践课程大纲修订、教师教学及科研能力培训体系构建、实验室软硬件平台建设、校企合作培养模式探讨及校外实习基金建设等工作。

四结语

本文探讨和研究了“人工智能”新概念下应用型电子信息工程专业培养模式,结合金陵科技学院电子信息工程专业的发展情况,对原有的专业培养模式做了一定的理论创新,引入了“人工智能”新概念,从理论和实践教学,学生学习能力和教师教研技能培养,校企合作办学,实验室建设等方面进行了一系列的探讨。

参考文献

[1]姚俊.电子信息工程专业人才培养模式研究[J].山东社会科学2016(S1):357-358.

[2]叶全意,徐志国,吴杰,等.应用型本科院校电子信息类专业大学生科技创新能力培养[J].教育教学论坛,2016(46):93-94.

篇5

关键词:人工智能;本科高年级教学;教学改革

中图分类号:G642 文献标识码:B

1 引言

人工智能是计算机科学与技术学科类各专业重要的基础课程,在信息类相关的许多高年级本科和研究生都开设了人工智能课程。人工智能是一门前沿性的学科,它主要研究计算机实现智能的基本原理和基本方法,同时人工智能也是一门多学科交叉的综合学科,它涉及计算机科学、数学、心理学、认知科学等众多领域。广义的人工智能涵盖了模式识别、机器学习、数据挖掘、计算智能、神经网络、统计学习理论等众多研究方向。人工智能作为计算机学科的重要分支,已成为人类在信息社会和网络经济时代所必须具备的一项核心技术,并将在未来发挥更大的作用。

由于人工智能课程的学习难度较大,内容更新比较快,也繁多,使得教学有一定的难度。特别是针对本科高年级的人工智能教学,由于本科生的研究意识相对较弱,而人工智能比较强调科研性,所以如何教好本科高年级的人工智能课程是一项非常具有挑战性的任务。

本文通过分析本科高年级的教学特点和人工智能课程的自身特点,在如何提高教学质量这一问题上提出了几点思考。

2 本科高年级的教学特点

中国的本科教育,由于历史和经济发展水平等诸多原因,目前的定位还是培养某方面专业人才的专才教育。本科高年级学生在完成了低年级公共基础课程和部分专业基础课程的学习之后,迫切希望了解本专业的应用领域和发展前景,所以在教学过程中要注意内容的应用性和专业性。另一方面,本科高年级学生也是研究生教育的储备人才,在教学过程中要适时的进行科研引导,这样能够让毕业生保持对科学的兴趣,从而为研究生阶段进一步深入研究打下基础。本科生一般于4年级的10月份开始着手毕业设计,在本科高年级的教学过程中还要注意与毕业设计的内容相结合,这样可以让学生提前做好准备,选择适合自己的方向。

3 人工智能课程的学科特点

与信息类其它专业课程相比,人工智能具有应用性、研究性和发展性三个重要学科特点。首先,人工智能是一门应用性很强的学科。人工智能学科的主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。人工智能技术广泛应用于模式识别、数据挖掘、智能控制、信息检索、智能机器人等领域,在日常生活中,随处可见人工智能技术的应用实例;其次,人工智能技术具有很强的研究价值,是计算机科学领域中重要的研究方向。技术进步无止境,研究者们不断追求开发出效率更高、更智能的人工智能技术:最后,人工智能是一门正在发展中的学科。随着信息化、计算机网络和Internet技术的发展,人类已步入信息社会和网络经济的时代,它们为人工智能提出了许多新的研究目标和研究课题,人工智能的应用领域以及技术算法都在不断发展。

4 人工智能教学的三点思考及对策

4.1 注重应用性和介绍性

在教学实践中,笔者发现,本科高年级学生一般比较关心各种人工智能技术的应用领域和使用方法,而对基础性理论和技术细节不是很感兴趣。他们一方面希望能学到很多较新和较实用的人工智能算法,并且最好可以看到使用效果;另一方面又希望老师的教学主要停留在介绍性层面,不想花太多时间在复杂的理论理解上。这也比较符合本科高年级的教学特点,本科阶段主要是培养具备较强应用性和基础科研素质的专业人才。传统的人工智能教学主要讲授知识表示和搜索推理技术,大部分实例都是解答式或推证式的。由于其知识的抽象性,又加之其应用实例较少,所以往往教师感觉难讲,学生在学习过程中也感觉乏味,对讲授的内容大多都是死记其方法和步骤,因此影响了教学效果。针对这一问题,笔者认为,在设计人工智能教学时,要注重内容的新颖性、实用性和介绍性。除了讲授那些仍然有用的和有效的基本原理和方法之外,要着重介绍一些新的和正在研究的人工智能方法和技术,特别是近期发展起来的方法和技术,如支持向量机、决策树、模糊集、遗传算法、蚁群算法等。这些内容的理论部分可以不必过分深究,教学重点主要放在介绍每种技术的产生背景、发展状况、应用领域和具体实现上。此外,要注意理论与实际应用密切结合,在教学过程中加入一些与课程内容结合的、可以用计算机实现的实际应用内容。考虑到目前应用最广泛的人工智能领域之一是模式识别,而研究模式识别的主要计算机工具是Matlab,所以笔者在教学过程中以手写数字识别作为教学实例,针对所介绍的每一种人工智能技术,都将其应用于手写数字识别当中,并讲解了这些技术的Matlab实现方法。学生在掌握了基本理论之后,可以按照实现步骤的指导,立刻上机见到算法的实际效果,加深对算法实现思路和方法的认识。

4.2 注重科研引导性

本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。本科教育一方面为社会培养了大批应用型人才,另一方面也要为我国的科研事业培养后备力量。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。针对这一特点,在本科高年级的人工智能教学中,还要注意对学生适时适度的科研引导。这样可以激发学生的研究兴趣,树立目标意识,找准研究方向,为未来的科研工作打下基础。在教学过程中,可以引导学生思考每种人工智能技术的优点是什么?缺点是什么?有没有改进的办法?比如BP神经网络是计算智能中较为成熟的技术,具有强大的非线性学习能力,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等。近十年来,研究者逐渐把目光转移到另一种新的非线性学习工具――支持向量机上。同神经网络相比,支持向量机具有泛化能力强、不受局部最小问题困扰、理论背景完善等显著优点。在给学生讲解BP神经网络算法的时候,一方面可以通过手写数字识别实验展示其强大的非线性分类能力,另一方面也要告诉学生,BP神经网络并不是完美的,其缺点同样明显。然后引导学生对这些问题进行思考,讨论有没有更好的解决办法。此时,顺势引出支持向量机的内容,并且介绍支持向量机的研究现状和研究方向。通过两者的对比,学生不但了解到了较新的人工智能技术,又对人工智能研究中如何去发现问题、解决问题、人工智能技术的进化历程有了直观的印象。

4.3 教学内容与毕业设计相结合

本科毕业设计是对本科生用所学知识来解决实际问题和进行专业研究能力的检验,是本科高年级学生将要面临的一项重要任务。由于人工智能学科具有应用性和科研性的特点,人脸识别、网页检索、经济预测、基因数据处理等应用领域都离不开人工智能技术,所以人工智能方向为学生提供了丰富的毕业设计选题。针对这一特点,在本科高年级的人工智能教学中,可以适当穿插介绍有关毕业设计的内容。告诉学生哪些应用领域是目前人工智能研究的热点方向,哪些人工智能技术可以用来解决这些问题。通过向学生介绍具有一定应用价值和研究意义的题目,然后引导他们查找阅读相关技术文献,分析问题,解决问题,最后编写代码和撰写论文。比如笔者给学生提供的选题包括:(1)基于支持向量机的上市公司信用评价;(2)正则化回归在股票预测中的应用;(3)基于肤色的人脸检测;(4)基于内容的网页图像检索等。这些题目应用性强,具有一定科研深度但是难度又不至于太大,学生选择这些题目的积极性很高。通过将教学内容与毕业设计相结合,不但加深了学生对课程的理解,又使其找到了合适的毕业设计题目,可谓一举两得。

篇6

【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统

人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。

1传统的诊断学教学方法存在的问题

诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。

2人工智能应用于诊断学教学的重要意义

2.1教师方面

将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。

2.2学生方面

将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。

2.3教学过程

针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。

3人工智能在诊断学教学中的应用

3.1智能教学系统

智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。

3.2智能网络组卷阅卷系统

诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。

3.3智能仿真教学系统

诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。

4总结及展望

篇7

关键词:人工智能;研究型实验教学;民族关系

人工智能是计算机科学的一个分支,是一门研究运用计算机模拟和延伸人脑功能的综合性学科,对它的研究涉及控制论、信息论、系统论、语言学、神经生理学、数学、哲学等诸多的学科及领域,是一门综合性的交叉学科[1]。

人工智能的研究、应用和发展,在一定程度上代表着信息技术的发展方向,同时信息技术的广泛应用也对人工智能技术的发展提出了迫切的需求。今天,人工智能的不少研究领域如自然语言理解、模式识别、机器学习、数据挖掘、智能检索、机器人技术、人工神经网络等都走在了信息技术的前沿,有许多研究成果已经进入人们的生活、学习和工作中,并对人类的发展产生了重要影响[2]。

实践教学环节在大学教育中是一个非常重要的教学环节,是提高人才素质与能力的重要途径。人工智能课程除了具有较强的专业性之外,还具有突出的实践性,为了能深入理解和掌握所学内容,必须把讲授和实践结合起来。本文结合该课程实验教学,将研究型教学的理念引入到实验教学,并对教学过程中的经验和问题加以初步的总结。

1研究型教学模式背景

研究型教学是相对于以单向性知识传授为主的传统教学提出的,是指教师以课程内容和学生的学识积累为基础,引导学生创造性地运用知识和能力,自主地发现问题、研究问题和解决问题,在研究中积累知识、培养能力和锻炼思维的新型教学模式。研究性教学是对现有的大学课堂教学模式的突破。有利于开发大学生的创造潜能,提高学生适应社会需要的创造性和创新能力,充分展现现代大学培养人才、发展科学、服务社会的三大基本职能[3]。

19世纪初,德国著名教育家洪堡最早提出了教学与科研相统一的原则,为研究型教学模式的发展奠定了基础。20世纪50、60年代,美国著名教育心理学家布鲁纳提出了著名的“发现教学模式”[4],成为后来探究性学习和研究型教学的先导。20世纪70年代,美国研究教学专家萨奇曼正式提出了研究训练教学模式。他认为学生会本能地对周围新奇事物发生兴趣,并想方设法弄清这些新奇事物背后究竟发生了什么,这是一种进行科学研究的可贵的动力。

自此,研究型教学理念开始广泛使用。现在,哈佛大学、牛津大学、剑桥大学等世界著名大学,都非常注重学生能力的培养,普遍采取了研究型教学模式。以美国高校为例,虽然美国高校83%的教师在课堂教学中主要采用讲授法进行教学,但在整个教学过程中都渗透着研究型教学的方法,如积极引导学生参与教学过程,开设研究性课程,引导学生积极主动地参与科研活动等。我国自20世纪90年代初推出211工程建设以来,清华大学、北京大学、人民大学、复旦大学、浙江大学等一些重点大学都提出了建设世界一流的综合性研究型大学的目标。这些高校在实现从单向知识传授的传统型教学向关注创新性教育的研究型教学转变方面进行了许多有益的尝试。

2研究型实验教学

本科教学不仅要培养学生的应用能力,还要培养学生具备基本的科研素质。大学是培养未来一线创新人才的主要基地,必须从本科教学人手,深入探索研究型教学的手段和方法,才能满足未来经济增长和社会发展的需要,才能符合建设研究型大学的需要。特别是近几年来我国对科研的投入不断增加,研究生招生规模逐年增大,本科高年级学生打算继续读研的也不在少数。而人工智能是计算机相关学科非常活跃的研究课题,其涵盖的分支非常广泛,如模式识别、机器学习、数据挖掘、计算智能、统计学习理论等,都是目前国际和国内热门的研究方向。

人工智能课程在计算机专业人才培养方案中占据着重要的位置。在专业理论方面,它承续了离散数学中的逻辑知识;在专业方法方面,是数据结构、算法分析与设计的继续;在专业工具方面,是面向对象程序设计的生动实例。并且人工智能的每一部分内容都可以作为一个深入的研究课题,课堂上讲解的内容不可能面面俱到,学生们也不可能对人工智能的每一领域都做很深入的学习。并且人工智能涉及很多的数理逻辑知识,有些显得难以理解,并且往往让学生感到比较枯燥,学生的学习兴趣就渐渐淡薄,学生往往被动“听讲”,难以获得预期的教学效果。

针对这一特点,在人工智能教学中,如何引导学生系统学习人工智能的知识、激发学生的研究兴趣,树立目标意识找准研究方向,为未来的科研工作打下基础,研究型实验教学就成为了人工智能课程教学的一个重要环节和必然选择。

2.1实验教学中加强学生的研究导向

在实验教学中,如果照搬一些教材中的例子或习题教学,一方面学生们会缺乏兴趣,另一方面学生对这个领域的知识缺乏全面的了解。应不断提出一些学生们感兴趣的开放性课题,比如基于支持向量机的人脸识别、基于肤色的人脸检测,基于内容的图像检索等,培养学生们的学习兴趣,让学生们逐渐深入的学习某一领域的知识。比如BP神经网络,在模式识别、经济数据分析、生物信息学、数据挖掘等众多领域都取得过成功应用,是一种具有强大的非线性学习能力的计算智能技术。然而BP神经网络算法自身也存在着一些缺点,如会有局部最小解、解受初值影响较大、理论解释不完善等,而支持向量机在这些方面具有显著优点。我们可以设计一个人脸识别的实验,用神经网络和支持向量机分别实现,并作以比较。让学生们在了解人工智能新技术的同时,也培养学生们如何分析问题、解决问题的科研能力。

2.2人工智能课程实验

该课程是一门对实验技术有较高要求的课程,对于基本原理和方法的实现,要求学生进行严格的计算机专业技能训练和培养良好的科研工作作风。因此对课程中的技能及技术性内容,除单独进行必要的基础训练外,还融入到综合和研究型试验中,通过多次反复实验练习,达到牢固掌握人工智能原理和人工智能的问题求解技术的目的。

该课程的实践环节主要是实践项目,由具备较强工程实践能力的任课教师和助教负责,学生可在全天候开放的专用机房完成。在实践环节的设计上,我们尝试把验证性实验和开发性实验相结合,结合实验教学进度,安排相应的开放实验,开放性实验以科学研究实验为主。并在课程的教学过程中,不断深化和扩展教学内容,结合人工智能学科的发展趋势和本院老师的最新研究成果,对实验内容进行更新。

课程主要设置三种层次的实验:1)基本原理和算法编程,测试例设计及程序测试实验;2)分析综合实验;3)研究型设计实验。整个实验包括课前讨论、实验操作、实验报告、结果讨论、总结提高等六个环节。对于综合性和研究型实验,把学生分成5个人一小组,每小组选做其中的一个。学生从指导老师处了解到实验课题后,即着手查资料,研读文献,钻研有关理论。在此基础上,学生先提出实验方案,经与老师讨论后,即可开始实验研究。

3实验平台的构建

民族关系问题对被访对象,特别对少数民族被访对象是非常敏感的问题,对民族关系的评价又存在个体层面、群体层面、不同阶层人群之间的差异,因此,仅仅以传统的文献分析、问卷统计和现场观察等民族学方法来进行调查,得到的数据会存在较多误差。

因此结合本校的民族特色和民族学领域独特的研究优势,将信息认知技术引入民族关系研究,运用图像、心电和脑电数据进行分析,将分析的结果和心理场景测试及民族学调查结果进行相互印证和参数修正,从而获得尽可能客观的数据,这些数据将有助于建立一个客观、完备、科学的民族关系监测体系,并真实全面地评估民族关系,从而使决策机构及时做出正确的决策。基于多信息融合的民族关系监测预警系统总体框图如图1所示。

目前该平台已经搭建,由北京市公共安全信息监测平台建设、北京市公共安全信息监测平台建设关键技术研究、基于多源信息融合的民族信任研究等多个重大项目支撑。在这个平台的下面,涉及到人脸识别、表情识别,视频监控、认识等领域,小波分析、神经网络、支持向量机、模糊数学、信息融合等人工智能知识得到了具体的应用。学生可以根据自己的兴趣爱好,自愿参加到该平台下的某一项目,切实对自己所学知识有一个深刻的理解和掌握。

4结语

研究型实验教学激发了学生的学习兴趣,不但使学生更好地掌握了人工智能的基本概念、基本理论和基本技术,也切实提高了学生的实际动手能力和编程能力。研究型实验教学在实践过程中还有以下问题需要改进:

1) 研究型实验教学的理念很难普及。很多教师对研究型教学模式的内涵未能准确把握,把研究型教学模式等同于学生实习或者写论文。

2) 研究型实验教学的辅导老师素养需要提高。研究型实验教学作为体现创新教育要求的现代教学模式,需要的不是知识传授型的教师,而是高素质的研究型教师。教师不仅是单一的教者,更应该成为一个学者,教师不仅要有研究型教学的教育观念、快速接受新知识的能力和高超的教学技能,要能够合理地规划和设计实验内容。

3) 需要建立一套合理的学生学业和教师绩效的评价体系。

参考文献:

[1] 王万森. 人工智能原理及其应用[M]. 北京:电子工业出版社,2007.

[2] 蔡自兴,徐光佑. 人工智能及其应用[M]. 北京:清华大学出版社,2004.

[3] 李得伟,张超,李海鹰. 大学工科专业课程实施研究型教学的探讨[J]. 高等教育研究,2009(9):74-75.

[4] 彭先桃.大学研究性教学的理念探析[J].教育导刊,2008(3):56-58.

Exploration and Practice of the Research Experiment on Artificial Intelligence

ZHANG Ting, YANG Guo-sheng

(College of Information Engineering, Minzu University of China, Beijing 100081, China)

篇8

AI最先商业化的项目,应数2011年初次亮相的IBM人工智能认知系统Watson。2016年,借助商务领域的积累切入具体应用,Watson的商业模式逐渐明朗,并为IBM的第四次转型贡献了亮丽业绩。

然而还不够快。受传统业务下滑拖累,IBM 2017年一季度营收继续下滑。

拖着铅球,Watson在与未来赛跑。

百年商业帝国的第四次转型

与眼下最热的围棋AI等通用人工智能不同,IBM的“人工智能”一开始便是为解决商业问题而生,其方向是商业领域的增强人工智能(Intelligence Augmentation)。2007年8月,几个人工智能专家告诉IBM高级副总裁约翰?凯利,他们要创建世界上第一个处理非结构化数据、可与人互动的人工智能系统。2011年人工智能认知系统Watson初次亮相,就打败了美国问答游戏电视节目《危险边缘》的连胜纪录保持者和最高奖金得主。2014年,IBM专门组建Watson部门,并陆续投入数十亿美元。

2011年IBM百年之际,《经济学人》周刊曾撰文总结IBM三次重大转型:从机械制造到计算机制造、从大型机制造到包括个人电脑在内的分布式计算机系统、从计算到服务。2016年初,IBM董事长兼CEO罗睿兰宣布IBM正式进入第四次转型,目标是成为一家认知解决方案云平台公司,“未来五年,我们所作的每一个决策,无论个人或专业机构,都将受到Watson的协助。”

2017年4月,“天工开物 人机同行”2017 IBM中国论坛在北京举行,IBM展示了其作为认知解决方案和云平台公司在全球范围内的突破性进展,及与中国本地伙伴在电子、能源、教育、汽车、医药、高性能材料及相关服务等行业或领域的合作成果:

神思电子采用IBM 的Watson Explorer,在金融和医疗行业锁定“智能客服”、“实体服务机器人”和“自助设备智能升级”领域,提升服务质量与效率。与杭州认知合作,应用IBM Watson肿瘤解决方案帮助中国医生获得循证型癌症诊疗的决策支持,从而为患者提供个性化治疗方案。隆基泰和与IBM共同合作,借助Watson平台构建综合能源云平台,为工业商业企业构建完整的客户能耗视图、用能预测及能效水平的分析和洞察能力打造智慧能源服务体系。

此外,IBM为上海世外教育集团打造“儿童英语口语辨识及评价系统”帮助6-15岁学生学习英语,与禾嘉股份共同推出基于区块链的医药采购供应链金融服务平台,在精细化工行业,默克正在利用IBM IoT技术打造全新智能物流与智能工厂,而一汽大众也将采纳IBM大数据、云计算、认知计算等技术打造佛山创新中心,建立智能工厂。

除了垂直行业,IBM“商业人工智能”也在为专业人士提供增强智能,提高工作效率和业务水平。目前,Watson系统已进入法律、医疗、教育、金融,零售,服b设计等60多个职业领域示范人机协作,将专业人士从重复劳动中解放出来。论坛上,IBM大中华区董事长陈黎明表示,“我们相信,企业大规模采用人工智能技术的爆发期就在当下,并将为各行业和专业带来巨大的创新价值。”

拖着铅球赛跑

商业的残酷在于,仅凭方向正确,未必能赢得赛跑。除了亚马逊、微软、谷歌这样的外部竞争者,IBM对云计算和Watson孤注一掷,更大的压力来源于自身:新兴业务的增速能否超越传统业务下滑的速度。

4月19日,IBM2017年一季度财报,其“战略业务小组”(IBM重点发展的云计算、分析、社交、安全及移动产品)营收增长12%,至78亿美元。Watson所属的认知解决方案业务板块营收同比增长逾2%,达41亿美元;云计算业务营收增长33%至亿美元,净收入为23亿美元。

与战略业务表现亮丽形成对比的是,受传统硬件和软件业务增长停滞的拖累,IBM整体业绩依然继续在下滑:公司一季度营收同比下滑2.8%,降至181.6亿美元,低于预期的184亿美元。其公司营收连续20个季度下滑,并创下2002年一季度以来最低水平。

财报后,IBM股价下跌超过8美元,跌幅近5%。其大股东伯克希尔哈撒韦2016年报显示持有8120万股IBM,也就是说,如果巴菲特一季度没有减仓,将损失约6.5亿美元。

有趣的是,之前尽管和比尔?盖兹关系很好,巴菲特开始尝试购买科技股的时候,并没有买微软的股票,而是选择了IBM,几乎全程体验了一把IBM转型带来的缓慢复苏。

2015年,巴菲特入股IBM时正是其收入连年下滑之际,2016年初,IBM股价已跌至不足120美元。一年之后,2016年IBM财报显示,IBM云业务当年实现137亿美元营收,同比增长35%,占IBM全年总营收的17%;云业务年化营收达86亿美元,同比大幅增长63%;计入“技术支持及云平台”项目的年毛利率达41.9%;以Watson为主的IBM认知解决方案营收达182亿美元,毛利率高达81.9%。2016年,IBM股价上涨了20%。

2014-2016年,IBM犹如传统企业转型的一个缩影:借助自身在商务领域的积累,在云服务和人工智能领域大力投资,切入具体应用,商业模式逐渐明朗。

并购与合作

IBM对云服务和Watson期许甚高,Watson的十年布局也逐渐步入收获季。随着医疗、物联网、金融、零售、时尚、教育等多个行业标志性样本的出现,Watson的商业版图正在扩张。

Watson成为全球医疗健康第一人工智能系统,其秘籍是不断吸收大量非结构化数据并加以学习。为了“喂饱”Watson, IBM不断收购医疗健康领域的公司,两年间花费超40亿美元。除了加大并购,IBM为拓展商务版图同时也采用了更实际的方式:与垂直领域巨头合作,补充基础数据和垂直行业领域的专业知识。

2016年10月,IBM宣布与通用汽车合作,Watson为其新版车机系统OnStar提供技术支持;与全球教育机构培生合作,Watson为其学生提供自然语言下的学习指导。今年3月19日,IBM认知商业战略在中国正式落地一年之际,万达网络科技集团与IBM在北京签订战略合作协议。万达网络科技集团正式进军公有云业务领域,万达也将成为Watson在中国落地的重要基础设施。

从另一方面来看,万达选择IBM,很大程度上是由于IBM这部分业务的体量。IBM云业务在2016年实现137亿美元营收。亚马逊AWS 2016年营收122亿美元;微软未透露Azure云业务的实际营收,摩根大通分析师估算约26亿美元;谷歌也未披露云计算业务营收,外界估算在10亿美元左右。从总体营收规模来看,IBM云计算业务其实并不输于AWS、微软云和谷歌云。

篇9

关键词:人工智能技术;教学方法;编程能力

中图分类号:TP3 文献标识码:A 文章编号:1009-3044(2014)16-3865-02

1 概述

2008年11月16日,中国科协成立50周年新闻会在北京召开。在新闻会上,“五个10”系列评选活动,即10位传播科技的优秀人物、10部公众喜爱的科普作品、10个公众关注的科技问题、10个影响中国的科技事件、10项引领未来的科学技术评选结果揭晓。10项引领未来的科学技术是:基因修饰技术;未来家庭机器人;新型电池;人工智能技术;超高速交通工具;干细胞技术;光电信息技术;可服用诊疗芯片;感冒疫苗;无线能量传输技术。

人工智能技术学科是计算机科学中涉及研究、设计和应用智能机器的一个分支。指人类的各种脑力劳动或智能行为,诸如判断、推理、证明、判别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,可以用某种智能化的机器来予以人工实现[1]。

通过《人工智能技术》课程的学习,使学生对人工智能技术的发展概况、基本原理和应用领域有深入了解、对主要技术及应用有一定掌握,并对现代人工智能技术发展的方向有所研究。通过人工智能技术课程的学习与研究,启发学生对人工智能技术的兴趣,培养知识创新和技术创新能力,并能将人工智能技术融入到今后所开发的计算机软件之中。

《人工智能技术》是一门众多学科交叉的新兴课程,其涵盖范围广,涉及知识点多,知识更新快,内容抽象,不容易理解,理论性强,而且需要较好的数学基础和较强的逻辑思维能力,这给该课程的讲授带来了一定困难。《人工智能技术》也是一门应用型学科,怎样将理论运用到实践中,使学生将学到的人工智能技术知识和思想运用到自己的实际课题,这也是该课程需要解决的问题之一。

因此,对《人工智能技术》课程教学来说,我们要了解课程的最新信息,把握课程的特点,帮助学生找到好的学习方法,使他们能充分发挥自己的创新思维能力,提高学习兴趣,该文给出了《人工智能技术》课程的教学与实践的探索。

2 教学与实践的探索

2.1 教材和实验教学内容的选取

1) 人工智能技术是整个计算机科学领域发展最快,知识更新最快,最前沿的学科之一。在教材选用方面,我们采用了蔡自兴教授等主编,由高等教育出版社出版的《人工智能基础》这本教材。蔡自兴教授的主要研究领域为人工智能、机器人学和智能控制等。这本教材是作者在美国国家工程院院士、普度大学教授傅京孙先生的指导和鼓励下编写,借鉴了国内外人工智能技术研究领域专家的最新研究成果和学术书籍的长处,该书比较全面地介绍了人工智能技术的基础知识与技术,材料新,易于理解,兼顾基础及应用[2]。

此外,我们还给学生自主学习提供多种类型的学习资料,其中包括参考书目,如:Russel S, Norvig P.等编著的《Artificial Intelligence: A Modern Approach》一书,人工智能技术国内外期刊,如电子学报,计算机学报,人工智能与模式识别,Artificial Intelligence,Journal of Artificial Intelligence Research,Engineering Applications of Artificial Intelligence和International Joint Conference on Artificial Intelligence,AAAI: American Association for AI National Conference等人工智能技术会议,使学生能够掌握人工智能技术的更多前沿动态,提高学习兴趣。

2) 配套的实验教学内容。《人工智能技术》是一门理论性和实践性都很强的课程,实践性教学环节对该课程尤为重要。除了完成课本上的作业之外,还注重实验教学,培养学生的创新能力、算法设计能力和编程能力。首先,每个章节设置相应的实验,而实验内容经过严格的考虑,如:五子棋游戏,产生式系统,旅行商问题,传教士和野人问题,BP神经网络实现简单的分类,遗传算法、人工生命程序等,要求学生运用所学章节的知识,独立地设计和实现实验内容。实验报告包括简述实验原理及方法,给出程序设计流程图,源程序清单,实验结果及分析等内容,通过这种方式,进一步加强学生的信息获取能力和研究能力。

2.2 教学方法和手段的改革

人工智能技术课程交叉性强,涉及面广,传统的教学方法手段单一,缺少交流,课堂气氛沉闷,激发不起学生的学习兴趣,教学效果不理想。人工智能技术这门课程内容抽象,如何激发学生的学习兴趣是本课程需要解决的主要问题,也是关系教学改革成败的关键。本课程需采用多种方法进行教学,以此来激发学生的学习兴趣。

1) 问题启发式教学。《人工智能技术》这门课程中有很多似是而非、引人入胜的问题,主要是用计算机模拟人类的智能来解决这种问题。在教学中,有目的的提出这些问题,鼓励学生思考,提出自己的想法和解决方案,并进行分析和比较,这样强化学生的主动学习意识,提高学习积极性[3]。

2) 个性化学习和因材施教。学生中存在计算机专业和非计算机专业本科毕业的差别,由于他们每个人的基础不同,有的计算机知识比较匮乏,因此有必要针对每个学生的学习进度,课堂作业和实验报告情况进行及时评估,对学生提出个性化的教学。例如:在实验教学中,要求有能力和兴趣的学生可以做探究性和创新性的附加实验,从而引导学生发挥个性的空间,而对稍微吃力的学生则要求完成基本的实验,更注重基础知识的学习和夯实,这样就能达到因材施教的目的。同时对不同层次的学生进行分析,进一步提出学习建议,并进行有针对性的指导。

3) 多媒体使用和多学科知识的融合。本课程PPT课件图文并茂,提纲挈领,便于学生理解。课堂讲授、板书与PPT手段相结合,注重课程中的关键词用英文表示,并适当指定英文参考书,使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。PPT课件运用了大量多媒体技术,如动画、声音、图像,通过动画和视频演示抽象的概念、算法和过程,使人工智能技术中抽象的知识形象化,在课件中融入了文学,历史等其他学科的相关知识,便于学生较好地理解知识难点和重点[4]。

4) 师生互动和课内外答疑。在教学中,改变了传统的老师讲,学生听的教学模式。针对人工智能技术的实用性,适当提问,收集学生学习情况,尽量使用实例进行讲解。设置了实验讲解互动课程,对于实验的讲解,学生可以提出疑问,然后在课堂上展开讨论,学生可以看到问题从提出、分析到解决的整个过程,让学生自己在讨论中总结结论。为了解决教学中存在的疑难问题,还设有课后答疑,使学生能将所有的问题都理解透彻。

5) 理论研究与实践结合。在教学内容的安排上,注重学生的理论研究和动手能力,适当布置一些课程相关的论文和实验编程。通过课程论文,可以培养学生钻研问题的兴趣; 通过查阅科技文献使学生掌握如何查找相关文献的技能,可以培养学生撰写科技论文的能力。通过实验实践,使学生可以更加清楚地了解人工智能技术基本概念和难点,也能了解算法的设计具体运行过程,并对其进行验证,提高了学生的编程能力和和学习兴趣。

6) 考试考核方式改革。本课程的考核考试也是一个值得探讨的问题,本课程应采用多种综合考试方法,注重学生对基础概念、知识和基本的技能的掌握以及理论联系实际的能力。平时作业考核成绩,实验实践教学成绩、提交课程论文成绩,以及最后的期末考试成绩形成一种有效的考试考核方法,促进学生主动学习,提高教学质量。实验的评价指标在于算法设计、编程的准确性和实验结果及分析。课程论文评价指是选题是否严谨科学和具可研究性,论文结构、思路是否严谨,论文内容科学性、正确性,能否提出自己的见解。考查查阅科技文献的能力主要通过是否查找到权威的、最新文献以及撰写是否规范。

2.3 学生学好《人工智能技术》课程的建议

《人工智能技术》是一门理论与实践相结合的应用课程,学生如何学习这么课程,也是我们应该探讨的问题。

学生应该正确看待《人工智能技术》这门科学的发展。人工智能技术孕育于20世纪30、40年代,形成于60、70年代,发展至今,人工智能技术只有短短60多年的历史,它是一门不断发展和完善的崭新学科,还有许多课题处于探索中,理论和技术还远未成熟,我们应该对它有科学的认识。

针对非计算机专业本科毕业的学生,除了课堂听讲之外,还应该课下自学该课程的先修课程,如:数据结构、离散数学等课程。人工智能技术中涉及到大量的数学知识,如:模式识别需要具有较好的概率论,数理统计知识,另外还会用到少量随机过程、模糊数学的一些知识。人工智能技术是一门应用课程,编程语言的掌握必不可少,涉及到SVM算法,粒子群算法,免疫算法神经网络,遗传算法等算法,实现这些算法要求学生具有较强的编程能力。

学生应该多读,多查阅资料,特别是国外的期刊文献和重要国际会议论文,多了解人工智能技术最前沿的信息,理论联系实际,加深对基本算法的理解,并将人工智能技术的知识运用到自己所研究的领域,以做到学以致用。

3 结论

人工智能技术在一定程度上代表着信息技术的前沿,该文对《人工智能技术》的课程教学进行了一些探讨,教学与实践效果有了显著提高,但仍然有许多方面还需要我们继续探讨和改进。

参考文献:

[1] 蔡自兴,徐光佑.人工智能技术及其应用[M].北京: 清华大学出版社,2003.

[2] 蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能技术课程建设[J].中国大学教学,2004(1):28-29.

篇10

Abstract: In view of the characteristics of artificial intelligence curriculum, including abstract content and complex algorithm, and the actual needs of undergraduate teaching, combined with teaching practice, this paper discusses and sums up the teaching reform and innovation of undergraduate artificial intelligence curriculum from the teaching system, teaching content, teaching methods and assessment methods.

P键词: 人工智能;创新;本科

Key words: artificial intelligence;innovation;undergraduate

中图分类号:G642 文献标识码:A 文章编号:1006-4311(2017)22-0230-02

0 引言

人工智能是计算机科学的一个分支,是当前科学技术中正在迅速发展、新思想、新观点、新理论、新技术不断涌现的一个学科,其属于一门边缘学科,同时也是多个学科交叉而成的一门学科,包括语言学、哲学、心理学、神经生理学、系统论、信息论、控制论、计算机科学、数学等[1]。当前人工智能已经是很多高校计算机相关专业的必修课程,它是计算机科学与技术学科类各专业重要的基础课程,其教学内容主要包括自然语言理解、计算智能技术、问题求解和搜索算法、知识表示和推理机制、专家系统和机器学习等,国内外很多大学都意识到了其重要性,纷纷对其展开了教学和研究。人工智能课程包含多个学科,具有内容抽象、理论性强、知识点多等特点,且算法复杂,但是多数高校采用的教学方式仍是传统的课堂教学方式,即“教师讲、学生听”的教学模式,这种信息单向传输教学模式以教师为主体,学生只是在被动的接收知识;存在过分重视理论教学,忽视实践活动教学的问题,导致教育内容无法和社会接轨;人工智能教材理论性过强,学生在学习过程中常常感到枯燥乏味,进而对学习该课程失去热情[2],久而久之,不仅人工智能课程的教学质量和效果无法达到预期,甚至学生还会产生厌学心理。针对人工智能课程中现有的各项问题,本文作者结合自身丰富人工智能教学实践经验,参考人工智能课程特点和教学目标,从多个方面探讨和总结了人工智能,包括教学内容、教材选择、教学方法和考核形式等。

1 教学内容优化与更新

人工智能是一门崭新的学科。开设本课程首先是确定教学内容。通常来讲,人工智能学科的内容包括两个部分,具体:一是知识表示和推理;二是人工智能的应用。前者是人工智能的重要基础,后者主要介绍了几种人工智能应用系统,包括自动规划和机器视觉、机器学习、专家系统等。另外,课程内容中还包括了一些人工智能应用的实例,将实践和理论紧密结合起来[3]。

随着时代的发展和科技的进步,人工智能学科也取得了较大发展。基于此,人工智能学科也应该与时俱进,更新人工智能教学大纲,进一步完善其教学内容。修订后的人工智能教学大纲将人工智能分成两个部分,即基础部分和扩展应用部分。前者包括计算智能、搜索原理、知识表示等,后者包括智能机器人、智能控制、多智能体、自然语言理解、自动规划、机器学习、知识工程等。

教学内容的选择和确定应综合考虑多项因素,不仅要重视基础知识,也应注意推陈出新,随着科技的进步做到与时俱进,同时教学内容应符合现实的需求,能够与社会接轨,将理论和实践紧密结合起来,只有这样人工智能课程的教学质量和效果才能事半功倍。

2 教学策略及教学方法的改革创新

由于人工智能课程具有算法复杂、内容抽象、理论性强、 知识点多的特点,传统的教学模式已经无法满足人工智能课程的需求,教师应探索更加有效的教学模式和方法,确保人工智能课程能够取得良好的教学质量和教学效果。具体的改革和创新人工智能课程的手段和方法主要包括以下几个方面:

2.1 激发学生的学习兴趣 无论是经验还是常识都在告诉我们每个人最好的老师就是兴趣,学生只有对某门学科存在兴趣,才会更加主动积极的学习该门课程,从而获得良好的教学效果。比如,作者在课程的一开始先播放了一段著名导演斯蒂文・斯皮尔伯格的《Artificial Intelligence》的相关片段,由这个电影学生知道了世上存在人工智能的机器人,学生们随着电影情节的发展而深深感动,与此同时教师让学生思考和谈论人工智能是什么?研究人工智能的意义在哪里?实践发现,在课堂中加入电影因素,能够大大提升学生们的注意力,让学生更加专注在教学任务中,有效提高了学生探索人工智能的积极性和主动性。此外,在教学中还可以用动画、视频、图片等手段将反映人工智能最新研究和应用的成果展示出来,让学生更直观的感受人工智能的奥妙,从而投入更多热情学习人工智能课程。

2.2 面向问题的案例教学法 案例教学法是一种以案例为基础、以能力培养为核心的一种教学方法[11]。针对学校学生特点,我们采取了以下几种教学形式实施案例教学。①讲解式案例教学:这种案例通过教师的讲解,帮助学生理解抽象的理论知识点。案例的呈现有两种基本形式:一是“案例―理论”,即先给出教学案例,然后再讲解理论知识;二是“理论―案例”,即教师先讲解理论知识,再给出教学案例;通过情境体验与案例剖析激发学生认知的兴趣,引导学生对将要学习的内容产生注意,有利于教师导入新课。②讨论式案例教学:在课程初期将学生分成若干学习小组,每小组3~4人;教师将提前设计好的一题多解的教学案例以及收集的相关资料分配给每个小组,要求学生在课余时间通过自学和组内讨论的方式给出问题的不同解决方案。③辩论式案例教学:在课程后期,采取专题辩论的方式对综合应用案例进行讨论,能有效地启发学生全方位地思考和探索问题的解决方法,加深学生对人工智能的理解。

2.3 个性化学习与因材施教 在开展课程教育过程中应注意对学生进行个性化教学,结合学生特点因材施教。比如,在日常教学中多观察学生情况,鼓励那些应对教学任务后仍存在余力的W生深入探索较深层次的课程及相关知识,同时友善面对学习较差的学生,分析其学习过程中面对的困难,有的放矢地采取应对措施,帮助其不断进步;在教学过程中让学生以读书报告的形式多多思考,鼓励学生发散性思考问题,鼓励优秀学生进行深一步的探讨,并且教师应帮助具有新颖思想或论点的学生将其智慧以科技论文和发表文章的形式转化为成果。

2.4 注重综合能力培养 在研究型教学中任务驱动是一种常用的教学方法,其中心导向是任务,学生在完成任务的同时也在吸收和掌握知识。通常来讲,该教学方法的步骤是:教师提出任务师生共同分析以得出完成任务的方法和步骤适当讲解或自学、协作学习完成任务交流和总结。”[3]该教学模式不仅有利于培养学生的创新能力和创新意识,还能够培养学生解决实际问题的能力,提高其综合实力。不仅如此,由于该教学模式通常是以小组协作的方式进行,教师给出研究范围,学生自愿结组并选择具体的题目,经过分析和讨论后以程序设计或者论文的形式协作完成研究。由此可知,学生是在以团队的力量解决问题,这十分考验学生的团队协作能力,对于学生团队合作精神的培养至关重要,且在完成任务的过程中学生需要查阅大量的资料,久而久之学生收集资料和创新能力势必会得到提升。

2.5 采用启发式教学 人工智能的很多问题都较为抽象,对学生理解力的要求较高,因此,在实际的教学过程中教师应有意识的就课程内容提出相关问题,让学生自己独立思考,鼓励学生提出自己的想法和解决方案。然后回归到课程上,对比分析教材上的解决方案和学生自己的解决方案,如此不仅培养了学生独立思考的能力,也增加了学生参与教学活动的意识,提高了学生的学习热情。比如,在讲到较为抽象的“遗传算法”时,先提出一个问题,即“遗传算法如何用于优化计算?”,然后从“达尔文的生物进化论”入手,讨论“遗传”、“变异”和“选择”作用,之后举例分析,启发学生思考“遗传”、“变异”和“选择”的实现,最后师生一起导出遗传算法用于优化计算的基本步骤。如此既完成了教授遗传算法的目的,也锻炼了学生逻辑思维的能力,教学效果良好[4]。

3 作业和考核方式的改革创新

过去的课程作业都是单一书面习题作业,发展至今,课程作业形式已经发生了变化,更加丰富多样,包括必须交给教师评阅的书面家庭作业和不必交给教师的课外思考题目、口头布置的思考题或阅读材料以及大型作业等。其中通过网络就可以完成上交作业,并且教师批阅作业后也可以通过网络返回给学生,实现了网络化。课程的考核方式较之以前也发生了较大变化,加强了平时思维能力的考核,更加注重学生实验能力和动手能力的培养,不再是绝对的一次考试定成绩,而是在总评成绩中加入30%的平时成绩,如此不仅减轻了学生的期末负担,也迫使学生更加重视平时的学习思考,有利于课程教学质量的提升。

4 结束语

本文是以提高教学质量为目标,结合教学实践,从教学体系、教学内容、教学方法、考核方式等方面对本科人工智能课程的教学改革进行了探讨,总结了该课程在教学和实践方面的一些教改举措。这些举措符合二十一世纪高校教学的要求,可以支持教师提高教学手段现代化的水平,同时更贴合学生的学习需求。作为该课程的授课教师应始终保持对教学内容的不断更新、教学方法的多样化,才能激发学生的学习兴趣,培养他们的思维创新和技术创新的能力,最终提高本课程的教学质量。从学生的反馈来看,作者所总结的教学实践具有明显的教学效果。但仍有许多方面做得不够,今后将继续在教学过程中不断总结成功的经验,吸取失败的教训。

参考文献:

[1]蔡自兴.人工智能及其应用[M].三版.北京:清华大学出版社,2007.

[2]谢榕,李霞.人工智能课程教学案例库建设及案例教学实践[J].计算机教育,2014(19):92-97.

[3]蔡自兴,肖晓明,蒙祖强.树立精品意识搞好人工智能课程建设[J].中国大学教学,2004(1):28-29.