人工智能网络教学范文
时间:2023-08-20 15:07:19
导语:如何才能写好一篇人工智能网络教学,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
【关键词】人工智能;诊断学教学;智能教学系统;智能组卷系统;智能阅卷系统;智能仿真教学系统
人工智能(artificialintelligence,AI)的概念最早是在1956年的Dartmouth学会上提出的,随着计算机核心算法的突破、计算能力的迅速提高以及海量互联网数据的支撑,目前已被广泛地应用于各个领域[1-2]。近年来,人工智能也给教育教学领域带来了机遇,人工智能+教育正如火如荼地开展和推进,改变着传统的教育形式及生态[3-4]。2018年教育部《高等学校人工智能创新行动计划》,各大高校在人工智能及其教育发展上有了纲领性的指导[5]。医学教育作为教育教学诸多领域的一隅,乘着人工智能发展的东风,各大高校在推进医学教学改革方面进行了大量积极的探索与尝试[6-8]。诊断学是由基础医学过度到临床医学的桥梁课,其教学质量的良莠直接影响到医学生的培养质量,传统的教学方法难以满足现代医学教学的要求,如何发挥人工智能的应用优势,让其更好地应用于诊断学的教学工作,也是诊断学课程教改的重要研究方向。
1传统的诊断学教学方法存在的问题
诊断学是学习临床基本技能最重要的一门课程,其内容包括症状学、体检检查、实验室检查及辅助检查等四大块,分为理论课和见习课,目前大多数医学院理论课采用的是以大班的形式在多媒体教室讲授,而见习课则采取分小组的模式进行,多年的教学实践发现该教学模式取得的教学效果不尽人意,尤其是近年来随着全国各大医学院校的扩招,出现了师资及教学资源配套的相对不足,上述教学模式的问题逐渐凸显。理论知识以老师讲授为主,采取的是“满堂灌”的教学模式,然而该部分教学内容知识点繁多,知识串联度不高,课堂灵活度、生动度较为薄弱,学生听完课以后对课程内容印象不深,知识掌握度差,同时由于学生的学习主观能动性差异大,不能进行课前充分预习的学生在课堂上更加难以跟上老师讲授的节奏。见习课是对理论知识进行实践,培养学生的实践操作能力,前期理论知识掌握度差又会影响见习的教学质量,导致教学过程形成恶性循环[9]。见习课主要采取老师讲授要领及演示操作流程,之后学生们互相练习的教学方法,该部分内容需反复加强练习,同样的动作要领反复锤炼才能熟练掌握,因课堂见习时间有限,而老师讲授及演示需占用大部分时间,学生动手实践机会不多,老师对学生的操作手法、操作内容、操作顺序等重要内容进行指导和勘误的时间少,学生操作的规范性难以保证,在以后的临床实践中,往往存在实践操作能力的缺陷。上述教学模式教师与学生们之间除了课堂时间,其余时间是脱节的,不能很好地沟通,学生们有疑问的知识点难以得到老师的及时解答,教学活动中没有充分反馈,各个教学环节难以进行教学反思,形成教学相长的良性循环。课后复习及阶段性总结复习是课堂知识内化及升华的重要方面,传统的教学模式通常是给学生布置课后作业,学生完成后上交由老师批改留档,这个环节学生与老师缺乏有效的沟通,且由于学生们学习主观能动性差异,课后没有老师的监督及针对性地辅导,课后作业的质量良莠不齐,教学质量欠佳是显而易见的。随着现代医学的发展及研究的开展,涌现了一大批新的诊断方法与手段,譬如关于肿瘤诊断的分子marker,评估预测疾病活动度及预后相关的指标,在临床上已经常规应用,但由于教材更新需要周期,很难跟新进展同步介绍,另外由于课时有限,难以全面地就学科前沿及新进展进行讲授[10]。
2人工智能应用于诊断学教学的重要意义
2.1教师方面
将人工智能应用于诊断学教学实践,削弱了教师的知识权威而强化了教师的价值引导,对教师的个人能力提出了更高的要求,促使教师踏实践行终身学习并持续更新自身知识结构。互联网高速发展的时代,知识呈几何指数更新并出现大爆炸,基于各种互联网即时通讯平台及手机APP,诊断学体格检查、理论知识讲授相关的小视频及研究进展不胜枚举,这就要求教师及时获取、更新知识并进行相应的知识储备。人工智能的应用促使教师从单人施教发展为团队施教,为开发更具个性化的课程教学注入团队的力量。基于大数据的人工智能可以减少诊断学教学过程中的机械性、重复性工作,如平时作业的批改、考勤统计等,减轻了教师的工作负担,教师可以将更多的精力投入到医德医风、医患沟通能力以及体格检查手法的规范化培养上,更多的心思放在丰富课程内容及教学形式上。同时大数据可以及时反应学生的学习动态,教师可以根据学生的反馈及课程评价有针对性地对学生进行相应的辅导。
2.2学生方面
将人工智能应用于诊断学教学实践,可以实时动态记录学生的学习情况及暴露的问题,如是否按时完成课程任务、测试中哪些知识点容易出错等,人工智能系统能够对这些数据进行关联分析和深度挖掘,并且可视化呈现相应的数据,有利于教师及时掌握学生的学习进度、参与度以及学习效果,并根据具体的学情分析数据来调整辅导和教学方案。基于人工智能强大的算法和分析,可以为学生定制个性化的教学内容及进度,提供更有针对性的课堂内容和随堂测试,并对测试及平时作业进行智能批改,真正做到查漏补缺。诊断学课程内容相对枯燥,学生们的学习兴趣有限,基于人工智能的教学方式可以寓教于乐,在课程中将一些比较零散的知识点可以设置成互动小游戏,营造出良好的课堂氛围,提高学生们的学习兴趣及学习效率。
2.3教学过程
针对教学过程,人工智能亦发挥着至关重要的作用。第一,诊断学作为桥梁课程,是一门必修课,包括临床医学五年制、八年制、法医学、基础医学等相应专业的学生均需要学习,人工智能拥有超强的计算能力和强大的“记忆力”,面对众多不同专业的学生,可以根据大数据进行分析,制定出适合不同专业学生的完备教学目标。教学活动开展过程中,人工智能还可以根据学生的课堂及课后测试表现,依据分层教学的要求自动设置梯次教学目标,帮助学生们逐步提升学习能力和知识掌握度。第二,人工智能可以凭借自身信息化的特点,对各种教学资源进行分析,为教师和学生选择更优质更合适的资源提供依据,促进个性化的教与学。第三,传统的教学方式、教学内容相对有限,人工智能基于大数据能够启发新的教学思路,创新教学方法,为诊断学教学提供更多的可能性。
3人工智能在诊断学教学中的应用
3.1智能教学系统
智能教学系统是教育技术学中重要的研究领域,其根本宗旨是使得学生的学习环境更加优良和谐,智能教学系统能够及时有效地调用最新最全的网络资源并充分优化后供学生学习,使得学生能够更加全方位、多角度地学习专业知识,提高学习效果[11]。智能教学系统大致由领域知识部分、教师部分及学生部分3个部分构成[12],其中领域知识部分又称为专家部分,这一部分既包含了需要讲授的内容及掌握的技能,又可以添加专家的学术成果,既能够保证学生对于基本概念、基本理论及基本技能的掌握,又能够拓宽知识面,增加知识的广度。智能教学系统的教师及学生部分主要是为设计和制定教学方案及策略服务,基于大数据基础上,根据课程的特点、历年教学情况、学生身心发展特点及学习实际情况,制定更加个性化、高效的教学方案,促成教师因材施教,取得更加理想的教学效果。
3.2智能网络组卷阅卷系统
诊断学教学内容包括理论和见习两大块,教学过程中教师的大量时间用于出题、阅卷、批改平时作业等与考核相关的工作,并且在出题过程中需要围绕相对固定的重难点内容不断创新题型,消耗教师大量的精力。智能网络组卷阅卷系统能够充分发挥其优势,将教师从繁冗的考核相关工作中解脱出来,使得教师的教学更高效,教师能够把更多的时间。智能网络组卷系统能够有效收集和分析知名高校教学团队编写的在线题库,实现教学资源的共享,通过随机抽题组卷、答案随机排序、题型随机排序以及设置避免与历年考卷重复等,显著提升试卷的质量,亦能改善考试作弊的顽疾,客观地考核学生对知识的掌握度。智能网络阅卷系统有简明的阅卷流程,能够更有效地识别试卷及答案,能够明显降低传统人工阅卷方式因疲劳带来的出错率,使得工作效率更高、考核结果更公正。
3.3智能仿真教学系统
诊断学教学的见习部分是学生提高技能的重要环节,常常采用分小组在病房完成的方式进行,在课程的开展过程也凸显出了各种各样的问题,譬如因学生分组进行询问病史、体格检查,重复次数多,患者难以多次配合;在教学时间段内病房缺相应的病种,无法对所学的症状进行直观的学习;传染病流行期间出于对学生健康安全的保护,无法进入病房见习等等,此时智能仿真教学系统能够发挥重要的补充作用[13]。人工智能可以根据提供的海量真实临床病例,由医学专家整合其临床特征,联合计算机专家,根据相应的教学要求,形成虚拟病人学习系统,学生在仿真诊疗环境中,进行问诊、体格检查、诊断以及给出治疗方案,同时系统能够自动发现学生在问诊及诊断过程中的错误,通过实践、纠错再实践,提高学生采集病史、体格检查的能力,同时能够加强学生的临床思维的训练,夯实临床基本功[14-16]。
4总结及展望
篇2
【关键字】人工智能;教育;进展
【中图分类号】G40-057 【文献标识码】A 【论文编号】1009―8097(2008)13―0018―03
人工智能是一门综合的交叉学科,涉及计算机科学、生理学、哲学、心理学、哲学和语言学等多个领域。人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能,其长期目标是实现人类水平的人工智能。[1]从脑神经生理学的角度来看,人类智能的本质可以说是通过后天的自适应训练或学习而建立起来的种种错综复杂的条件反射神经网络回路的活动。[2]人工智能专家们面临的最大挑战之一是如何构造一个可以模仿人脑行为的系统。这一研究一旦有突破,不仅给学习科学以技术支撑,而且能反过来促使人脑的学习规律研究更加清晰,从而提供更加切实有效的方法论。[3]人工智能技术的不断发展,使人工智能不仅成为学校教育的内容之一,也为教育提供了丰富的教育资源,其研究成果已在教育领域得到应用,并取得了良好的效果,成为教育技术的重要研究内容。
人工智能的研究更多的是结合具体领域进行的,其主要研究领域有:专家系统、机器学习、模式识别、自然语言理解、自动定理证明、自动程序设计、机器人学、博弈、智能决策支持系统、人工神经网络和分布式人工智能等。[4]目前,在教育中应用较为广泛与活跃的研究领域主要有专家系统、机器人学、机器学习、自然语言理解、人工神经网络和分布式人工智能,下面就这些领域进行阐述。
一 专家系统
专家系统是一个具有大量专门知识与经验的程序系统,它使用人工智能技术,根据某个领域中一个或多个人类专家提供的知识和经验进行推理和判断,模拟人类专家的决策过程,以解决那些需要专家决定的复杂问题。[5]专家系统主要组成部分为:知识库,用于存储某领域专家系统的专门知识;综合数据库,用于存储领域或问题的初始数据和推理过程中得到的中间数据或信息;推理机,用于记忆所采用的规则和控制策略的程序,使整个专家系统能够以逻辑方式协调地工作;解释器,向用户解释专家系统的行为;接口,使用户与专家系统进行对话。近几十年来,专家系统迅速发展,是人工智能中最活跃、最有成效的一个研究领域,广泛用于医疗诊断、地质勘探、军事、石油化工、文化教育等领域。
目前,专家系统在教育中的应用最为广泛与活跃。专家系统的特点通常表现为计划系统或诊断系统。计划系统往前走,从一个给定系统状态指向最终状态。如计划系统中可以输入有关的课堂目标和学科内容,它可以制定出一个课堂大纲,写出一份教案,甚至有可能开发一堂样板课,而诊断系统是往后走,从一个给定系统陈述查找原因或对其进行分析,例如,一个诊断系统可能以一堂CBI(基于计算机的教学,computer-based instruction)课为例,输入学生课堂表现资料,分析为什么课堂的某一部分效果不佳。在开发专家计划系统支持教学系统开发(ISD)程序的领域中最有名的是梅里尔(Merrill)的教学设计专家系统(ID Expert)。[6]
教学专家系统的任务是根据学生的特点(如知识水平、性格等),以最合适的教案和教学方法对学生进行教学和辅导。其特点为:同时具有诊断和调试等功能;具有良好的人机界面。已经开发和应用的教学专家系统有美国麻省理工学院的MACSYMA符号积分与定理证明系统,我国一些大学开发的计算机程序设计语言、物理智能计算机辅助教学系统以及聋哑人语言训练专家系统等。[7]
目前,在教育中,专家系统的开发和应用更多的集中于远程教育,为现代远程教育的智能化提供了有力的技术支撑。基于专家系统构造的智能化远程教育系统具有以下几个方面的功能:具备某学科或领域的专门知识,能生成自己的提问和应答; 能够分析学生的特征,评价和记录学生的学习情况,诊断学生学习过程中的错误并进行补救教学;可以选择不同的教学方法实现以学生为主体的个别化教学。[8]目前应用于远程教育的专家系统有智能决策专家系统、智能答疑专家系统、网络教学资源专家系统、智能导学系统和智能网络组卷系统等。
二 机器人学
机器人学是人工智能研究是一个分支,其主要内容包括机器人基础理论与方法、机器人设计理论与技术、机器人仿生学、机器人系统理论与技术、机器人操作和移动理论与技术、微机器人学。[9]机器人的发展经历了三个阶段:第一代机器人是以 “示教―再现”方式进行工作;第二代机器人具有一定的感觉装置,表现出低级智能;第三代机器人是具有高度适应性的自治机器人,即智能机器人。目前开发和应用的机器人大多是智能机器人。机器人技术的发展对人类的生活和社会都产生了重要影响,其研究和应用逐渐由工业生产向教育、环境、社会服务、医疗等领域扩展。
机器人技术涉及多门科学,是一个国家科技发展水平和国民经济现代化、信息化的重要标志,因此,机器人技术是世界强国重点发展的高技术,也是世界公认的核心竞争力之一,很多国家已经将机器人学教育列为学校的科技教育课程,在孩子中普及机器人学知识,从可持续和长远发展的角度,为本国培养机器人研发人才。[10]在机器人竞赛的推动下,机器人教育逐渐从大学延伸到中小学,世界发达国家例如美国、英国、法国、德国、日本等已把机器人教育纳入中小学教育之中,我国许多有条件的中小学也开展了机器人教育。
机器人在作为教学内容的同时,也为教育提供了有力的技术支撑,成为培养学习者创新精神和实践能力的新的载体与平台,大大丰富了教学资源。多年来,我国中小学信息技术教育的主要载体是计算机和网络,教学资源单一,缺乏前瞻性。教学机器人的引入,不仅激发了学生的学习兴趣,还为教学提供了丰富的、先进的教学资源。随着机器人技术的发展,教学机器人种类越来越多,目前在中小学较为常用的教学机器人有:能力风暴机器人、通用机器人、未来之星机器人、乐高机器人、纳英特机器人、中鸣机器人等。
三 机器学习
机器学习是要使计算机能够模仿人的学习行为,自动通过学习来获取知识和技巧,[11]其研究综合应用了心理学、生物学、神经生理学、逻辑学、模糊数学和计算机科学等多个学科。机器学习的方法与技术有机械学习、示教学习、类比学习、示例学习、解释学习、归纳学习和基于神经网络的学习等,近年来,知识发现和数据挖掘是发展最快的机器学习技术。机器学习(自动获取新的事实及新的推理算法)是使计算机具有智能的根本途径,对机器学习的研究有助于发现人类学习的机理和揭示人脑的奥秘。[12]
随着计算机技术的进步和机器学习研究的深入,机器学习系统的性能大大提高,各种学习算法的应用范围不断扩大,例如将连接学习用于图文识别,归纳学习、分析学习用于专家系统等,大大推动了在教育中的应用,例如在建构适应性教学系统中,用机器学习与朴素的贝叶斯分类器动态了解学生的学习偏好,有较高的准确率[13]。基于案例的推理(case-based reasoning,CBR)是一种新兴的机器学习和推理方法,其核心思想是重用过去人们解决问题的经验解决新问题,在计算机辅助教育方面,已经出现了基于CBR的图形仿真教育系统,并且,针对个体特征的教育教学方法研究也有所突破。[14]另外,数据挖掘和知识发现在生物医学、金融管理、商业销售等领域的成功应用,不仅给机器学习注入新的生机,也为机器学习在教育中的应用提供了新的前景。
四 自然语言理解
自然语言理解就是研究如何让计算机理解人类的自然语言,以实现用自然语言与计算机之间的交流。一个能够理解自然语言信息的计算机系统看起来就像一个人一样需要有上下文知识以及根据这些上下文知识和信息用信息发生器进行推理的过程。[15]自然语言理解包括口语理解和书面理解两大任务,其功能为:回答问题,计算机能正确地回答用自然语言提出的问题;文摘生成,计算机能根据输入的文本产生摘要;释义,计算机能用不同的词语和句型来复述输入的自然语言信息;翻译,计算机能把一种语言翻译成另外一种语言。由于创造和使用自然语言是人类高度智能的表现,因此对自然语言处理的研究也有助于揭开人类高度智能的奥秘,深化对语言能力和思维本质的认识。[16]
自然语言理解最早的研究领域是机器翻译,随着应用研究的广泛开展,也为机器人和专家系统的知识获取提供了新的途径,例如由MIT研制的指挥机器人的自然语言理解系统SHRDLU就可以接收自然语言,进行人机对话,回答关于桌面上积木世界中的各种问题。同时,对自然语言理解的研究也促进了计算机辅助语言教学和计算机语言设计等方面的发展,例如“希赛可”网络智能英语学习系统,这个基于网络的“人-机”语境的建立,突破了普通英语教师和传统的单机的多媒体教学软件所能具备能力限制,也比建立于网络的“人-人”语境更具灵活性,可以为远程学习者提供良好的英语学习支持,在国内第一次系统地将用自然语言进行的人机对话系统应用在计算机辅助外语教学上,在国际上也是一种创新。[17]
五 人工神经网络
人工神经网络就是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能的元件(即人工神经元),按各种不同的联结方式组织起来的一个网络,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能,例如可以用于模仿视觉、模式识别、声音信号处理、控制、故障诊断等领域,人工神经元是人工神经网络的基本单元。[18]人工神经网络有两种基本结构:递归(反馈)网络和多层(前馈)网络,两种主要学习算法:有指导式学习和非指导式学习。
人工神经网络从模拟人类大脑神经网络的结构和行为出发,具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题,[19]这使人工神经网络具有更大的发展潜能,目前已经开发和应用的人工神经网络模型有30多种。人工神经网络在教育中的应用大多是与教学专家系统相结合,以此来改进教学专家系统的性能,提高智能性,使其在教学过程中对突发问题具有更好的应对能力。人工神经网络在学校管理中也得到应用,例如采用误差反传算法(BP)的多层感知器已应用于高校管理之中。
六 分布式人工智能(Distributed Artificial Intelligence,DAI)
分布式人工智能是分布式计算与人工智能结合的结果,研究目标是要创建一种能够描述自然系统和社会系统的精确概念模型,主要研究问题是各Agent之间的合作与对话,包括分布式问题求解和多Agent系统两个领域。[20]分布式人工智能系统一般由多个Agent组成,每个Agent又是一个半自治系统,Agent之间及Agent与环境之间进行并发活动并进行交互来完成问题求解。[21]由于分布式人工智能系统具有并行、分布、开放、协作和容错等优点,在资源、时空和功能上克服了单智能系统的局限性,因此获得了广泛的应用。
分布式人工智能中的Agent和多Agent技术在教学中的应用逐渐受到关注。在教学中引入Agent可以有效地提高教学系统的智能性,创造良好的学习情境,并能激发学习者的学习兴趣,进行个性化教育。目前,Agent和多Agent技术多用于远程智能教学系统,通过利用其分布性、自主性和社会性等特点,提高网络教学系统的智能性,使教学资源得到充分利用,并可实现对学习者的学习行为进行动态跟踪,为学习者的网络学习创造合作性的学习环境。在网络教学软件中应用Agent技术的一个典型是美国南加利福尼亚大学(USC)开发的教学Adele(Agent for Distance Education - Light Edition) [22]。Agent技术在网络教学软件中取得的良好效果,促进了研究者对分布式人工智能在教育中的应用研究。
综上所述,科学技术的发展将会推动人工智能技术在教育中应用的广度和深度。从人工智能的应用趋势来看,人工智能在教育中应用的扩展可以通过以下三个方面进行:一是人工智能与其他先进信息技术结合。人工智能已经与多媒体技术、网络技术、数据库技术等有效的融合,为提高学习效率和效度提供了有力的技术支持,而引起教育技术界广泛关注。[23]例如人工智能技术通过与多媒体技术相结合,可以提高智能教学系统的教学效果;与网络通讯技术相结合,可以提高和改进远程教育的智能性。二是人工智能应用研究领域间的集成。人工智能应用研究领域之间并不是彼此独立,而是相互促进,相互完善,它们可以通过集成扩展彼此的功能和应用能力。例如自然语言理解与专家系统、机器人的集成,为专家系统和机器人提供了新的知识获取途径。三是人工智能的研究和应用出现了许多新的领域,它们是传统人工智能的延伸与扩展,这些新领域有分布式人工智能与Agent、计算智能与进化计算、数据挖掘与知识发现以及人工生命等[24],这些发展与应用蕴藏着巨大潜能,必将对教育产生重要的影响。
技术发展不断发挥着引导教育技术研究的作用,一种新兴技术的出现总是会掀起相应的研究热潮, 引发对技术在教育中应用的探讨、评价以及与传统技术的对比。[25] 人工智能作为一门交叉的前沿学科,虽然在基本理论和方法等方面存在着争论,但从其研究成果与应用效果来看,有着广阔的应用前景,值得进一步的开发和利用。
参考文献
[1] 史忠植,王文杰.人工智能[M].北京:国防工业出版社,2007:1.
[2][11][18][19] 《计算机与信息科学十万个为什么》丛书编辑委员会,计算机与信息科学十万个为什么(8):人工智能[M].北京:清华大学出版社,1998:5,189,78-79,84.
[3] 任友群,胡航.论学习科学的本质及其学科基础[J].中国电化教育,2007,(5):1-5.
[4][21] 蔡瑞英,李长河.人工智能[M].武汉:武汉理工大学出版社,2003:12-13.
[5][12][15][20][24] 蔡自兴,徐光.人工智能及其应用(第三版)――研究生用书[M].北京:清华大学出版社,2007: 12-14,19-20.
[6] [荷]山尼•戴克斯特拉,[德]诺伯特•M. 西尔,[德]弗兰兹•肖特,等.任友群,郑太年主译.教学设计的国际观第2册:解决教学设计问题[M].北京:教育科学出版社,2007:67.
[7] 任友群.技术支撑的教与学及其理论基础[M].上海:上海教育出版社,2007:42-43.
[8] 路利娟.应用专家系统提升现代远程教育的智能化[J].中国教育技术装备,2007,(12):79-80.
[9] 陈恳,杨向东,刘莉等.机器人技术与应用[M].北京:清华大学出版社,2007:6.
[10] 关注机器人幼儿教育――访鲍青山博士[DB/OL].
[13] 柏宏权,韩庆年.机器学习在适应性教学系统中的应用研究[J].南京师范大学学报(工程技术版),2007,7(4):76-79.
[14] 杨健,赵秦怡.基于案例的推理技术研究进展及应用[J].计算机工程与设计,2008,29(3):710-712.
[16] 自然语言理解[DB/OL].
[17] 贾积有.人工智能技术的远程教育应用探索――“希赛可”智能型网上英语学习系统[J].现代教育技术,2006,16(2):26-29.
[22] Erin Shaw, W. Lewis Johnson, and Rajaram Ganeshan, Pedagogical Agents on the Web[DB/OL].
篇3
先给大家重点推荐一本期刊:中国职业技术教育
中国职业技术教育杂志征稿信息
《中国职业技术教育》杂志是由中华人民共和国教育部主管,教育部职业技术教育中心研究所、中国职业技术教育学会和高等教育出版社共同主办的一份综合性中文期刊,集政策指导性、学术理论性和应用服务于一身,是教育部指导全国职业教育工作的重要舆论工具,是服务各级各类职业教育机构的主要阵地。
中国职业技术教育投稿栏目:主要有职教要闻、专稿专访、综合管理方略、课程教材、教研与教学、师资队伍建设、研究与探讨、职业指导、职业培训、高等职业教育等栏目。
再给大家推荐职业教育范文:人工智能背景下职业教育变革及模式建构
董文娟1,黄尧2(1.天津大学教育学院,天津300350;2.北京师范大学国家职业教育研究院,北京100875)
摘要:顺应人工智能时代的浪潮,基于新兴技术的职业教育变革及新模式建构势在必行。该文从职业教育智慧化、经济发展、政策保障、信息化生态重构四个方面,剖析了人工智能时代职业教育变革的现实诉求,并进一步分析了当前职业教育外部环境及其自身发展的困境。人工智能背景下职业教育的变革体现出融合、创新、跨界、终身化的新特征。基于此,从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面,探究职业教育的变革路径及模式建构。最后探讨了职业教育模式变革还面临回归教育本质、规避技术弊端等挑战,并提出“适应—引领人工智能”的发展目标。
关键词:人工智能;职业教育变革;模式建构;智慧化
“人工智能的迅速发展将深刻改变人类社会生活、改变世界。特别是在移动互联网、超级计算等新理论、新技术及经济社会发展强烈需求的共同驱动下,人工智能发展呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。”[1]人工智能作为新一轮产业变革的核心驱动力,为我国供给侧结构性改革下的“新常态”经济发展注入新动能,使人们的思维模式和生活方式发生了深刻变革。近年来,国家高度重视与社会经济发展联系最为密切的职业教育,积极推进职业教育信息化,运用人工智能改革教学方法和人才培养模式,构建新型智能职教体系,提升信息技术引领职业教育创新发展的能力。
一、人工智能背景下职业教育变革的现实诉求
人工智能对传统教育理念产生了革命性冲击,职业教育结构不断调整,劳动力素质与市场需求的矛盾、学习方式与自我价值实现的矛盾等促使职业教育向智慧化、智能化发展。目前,我国处于教育信息化2.0、工业4.0的新时期,全球范围内新一轮的科技革命和产业变革正在加速进行。“一带一路”“中国制造2025”人工智能等重大国家战略的提出,及以新技术、新产业为特征的新兴经济模式要求教育领域,尤其是职业教育培养行业、产业急需的技术技能型、智慧型人才,具备更高的创新创业能力和跨界整合能力,促进智慧化发展,助力经济转型升级。
(一)职业教育智慧化诉求:职业教育信息化发展的必然选择
“智慧教育是以物联网,大数据等信息技术为依托,创造智慧教学环境,转换教育方法,内容与手段,注重教育网络化,个性化和智能化的一种教育新模式。”[2]智慧教育作为“一种由学校、区域或国家提供的高学习体验、高内容适配性和高教学效率的教育行为(系统)”,被视为教育信息化发展的高端形态[3]。因此,职业教育的智慧化并非简单的数字化,强调信息技术推动职业教育教学模式和方法的变革,改变思维模式,创建价值等方面共享的学习共同体,培养创新型、智慧型人才。
职业教育智慧化是职业教育信息化发展的必然选择。目前,我国的职业教育信息化水平正在稳步提高,投入持续增加,各种智能信息技术应用于教育教学、实习实训、测量评价等领域,并逐步成熟,正在努力打造一个信息化、智慧化的现代职业教育生态系统。新时期我国很多地区及职业院校积极提升现有信息化系统的智慧化水平,积极创建智慧校园、智慧社区等,逐步实现了组织管理的智慧化、资源环境的智慧化和服务评价的智慧化。
(二)经济发展诉求:人工智能时代的新兴经济需要高技能智慧型人才
人工智能时代职业教育运用移动互联网、大数据等新兴技术,与经济及其他部门跨界融合,不断创造新产品、新业务,推动职业教育模式创新,形成了以互联网为基础设施、人工智能为实现手段的经济发展新常态。人工智能时代是以现代科学技术为支撑的新时代,各行各业的运作发展和对知识技术的掌握要求达到了更高层面,相应的教育需求也有所提升,市场环境渴求勇于创新、个性化的高技能智慧型人才。职业教育要应对行业上升发展的劳动力需求问题,基于人工智能应用,提高技能培养层级,以适应新的社会劳务需求。现代企业生产依托互联网科技,与智能化设备直接联接,通过数据分析和应用,促进科技成果转化为生产力。劳动密集型企业已不适应现代行业、产业发展,需升级为网络智能型,与此同时,职业院校的课程模式、专业设置、实习实训、师资结构等也做出相应的调整和革新,既促进了职业教育的智慧化、智能化,又推动了产业升级和工业变革。
(三)政策保障:国家从宏观层面保障人工智能时代的职业教育发展
2016年是我国人工智能元年,2017年我国颁布了《新一代人工智能发展规划》,提出了“将发展人工智能放在国家战略层面进行系统谋划和布局”,这预示着我国人工智能时代的全面到来,为我国职业教育的发展提供了良好的宏观政策环境。人工智能给职业教育带来了符合时代精神的新内容,积极融合信息技术,整合职业教育资源,提升公共服务水平,影响和改变了原有的教育生态。紧密依托信息共享平台,突破时空限制,让学习者自我选择,更加人性化和智能化。我国很多职业院校已经开启了智慧校园的行动计划,一些大中城市也在积极制定实施智慧城市的发展规划,在良好的政策保障中提升智慧化水平。
(四)信息化生态重构诉求:人工智能时代的职业教育变革是对职业教育信息化生态系统的重构
“依据《2006-2020年国家信息化发展战略》,我国正在有序推进数字教育向智慧教育的跃迁升级和创新发展。”[4]在新兴智能信息技术的催促下,技术变革带来了职业教育系统的颠覆性创新改革,打破现有的条条框框,改革传统教育模式,再造教育业务新流程。在职业教育领域创新应用物联网、大数据、人工智能等先进技术,提升各科各门教育教学业务,打造各级各类智能实训部门、培训机构,覆盖贯通中高职院校,整合系统内外现有资源,推进智慧教育生态有序发展,为各类用户提供最适合、最智能的职业教育资源和服务,完成对职业教育信息化生态系统的重构。
二、当前职业教育发展的现实困境
人工智能对各行各业的影响具有革命性和颠覆性,可能带来新的发展机遇,也可能带来不确定性的挑战,比如可能会改变就业结构、影响政府管理、威胁经济安全等,还可能会冲击法律与社会伦理,影响社会稳定乃至全球治理。当前,人工智能与“大众创业、万众创新”浪潮席卷而来,职业院校既是人工智能应用的战场,又是培养技术创新型人才的“梦工厂”[5]。人工智能时代的职业教育信息化发展迅速,影响是广而深的,对职业教育外部环境及其本身都造成了极大的冲击。
(一)职业教育外部环境发展困境
“据联合国教科文组织预测,到2020年,人工智能将替代20亿个工作岗位”[6],那些技术含量低、重复性强的技能将被智能机器、数码设备所替代,工业机器人也将大面积应用。智能设备替代行业劳动力,能够降低劳动成本,且具有高效、易操作等竞争优势。传统职业教育培养模式很难适应未来行业、产业的发展需求,人工智能冲击职业教育就业岗位,撼动其所依附的岗位基础,对职业教育的生存与定位产生了威胁。因此,根据智能时代职业教育的岗位特征与需求,提升职业人才的知识结构和专业技能,是新形势下职业教育的发展方向。
(二)职业教育自身发展困境
近年来,人工智能在职业教育领域内的应用和提高是目前职业教育的发展趋势。我国重视职业教育信息化、智能化发展,各级各类职业院校在信息化基础设施建设、校园信息化管理等方面都有了显著提升,但信息技术与职业教育的深度融合仍不够紧密,表现出信息化管理效率低、科学决策水平低等现象。人工智能背景下职业教育自身发展的困境表现在:
1.课程与教学困境
职业院校新课程改革提倡构建智慧课堂,制定个性化学习计划,注重课堂实施效果。但目前的实际课程教学仍是以教师为中心,强调知识的灌输,重视统一性和计划性,与教育改革提倡的个性化教学相去甚远。教学方法、教学理念更新慢,很难激发学生的内在学习动力,创新性思维弱,使得个性化教育的无法实现。近年来,中央、省、市、县四级教育平台逐步建立起来,课程与教学的层级设计逐步完善,但在实施的过程中,各级平台之间存在沟通不畅等问题,各级资源内容不系统,不衔接,导致无序叠加和资源的重复浪费,“精品课程”等项目丰富了课程资源,但质量不高。在线课程与教学以传统的科目、章节为单元,构建系统性的在线教育内容,为用户提供专业化的知识选择,但由于受时间条件等限制,大多数受教育者习惯于碎片化学习,连贯性和整体性差,缺乏对课程与教学体系的系统性学习。
2.认知困境
随着人工智能时代的到来,许多职业院校将“未来教室”“智慧课堂”定位为未来发展方向,进行了多种尝试和改革,如MOOC混合教学、翻转课堂、多屏教学等,但“管理者和施教者对智慧教育的理解多停留在‘智慧课堂=多媒体+传统教学的层面’,教学观念和思维依然固化,并没有因为新技术的参与而得到实质改变”[7],缺乏对多媒体网络架构和智能学习平台的深层认识,更缺乏对管理评价和互动交流等模块的理解与掌握,虽投入大量人力财力采购了数量巨大、设备精良的多媒体设备和智能服务设备,但没有充分有效使用,大大限制了智慧教育的发展潜力。
3.用户困境
传统教学以群体教育为基本单元,教师和学习者作为学习共同体,在管理、学习的互动过程中形成强大的群体约束力,促进双方共同进步。在信息化教育时代,学习者自由掌握学习时间和进度,遇到问题可能无法及时解决并获得反馈,无法进行面对面交流,因此,基于人工智能网络化学习平台,学习者需要高自控力、高学习能力才能适应这种全新的学习方式。
4.评价困境
传统的评价方式多依靠经验和观察,智慧型评价则是基于学习过程的一种发展性评价,以采集到的学习数据为客观基础。在人工智能、数字信息化环境下教育效果的评价实际要受到很多因素的影响和局限,在信息技术与职业教育融合的过程之中,许多智能技术应用于教育教学实践,难以进行定性定量的智慧评价,如互动交流及深层次的学习评价等。
三、人工智能背景下职业教育变革的新特征
人工智能带来了思维模式的创新,改变了人们认识问题、思考和解决问题的方式,越来越多地依赖人与智能网络的协同创新。人工智能背景下的职业教育变革围绕经济社会发展大局,“主动服务国家重大发展战略,加大虚拟现实、云计算等新技术应用,体现校企合作、知行合一等职教特色,以应用促融合、以融合促创新、以创新促发展。”[8]人工智能背景下职业教育的变革必将加速推进职业教育的现代化、智能化进程,表现出了融合、创新、跨界和终身化的新特征。
(一)融合
人工智能技术科学应用于当前职业教育,在最短的时间内整合、重组大量的知识信息,形成科学的技术技能知识体系,为职业教育资源、企业资源、产业资源、社会资源等一切有可能联结的资源融合提供了可能。为促进职业教育的智慧化发展,在现有的合作模式、集团模式、产教融合模式等实体协作发展的基础上,建立智能互动的智慧教育供给平台、常态化智慧课堂和大数据化智慧教育生态系统,为我国新兴经济发展提供高技能、智慧型人才支撑。
(二)创新
信息化时代下“变”为创新立足之要点。创新时代最需要提升的就是创造智慧。“由知识的理解记忆,转向知识的迁移、应用并最终指向创造发明”[9],以提高学习者的学习能力和应用能力,提升其创新思维和智慧思维,不断开拓人类社会发展的高度和宽度。智能化、信息化的时代是创新不断的时代,是原有知识不断被更新、技术不断被升级的时代。人工智能促使社会化协同大规模发展,促进职业教育体系核心要素的重组与重构,创新生产关系,呈现出新的协作架构,开创了新的教育供给方式,增加了教育的选择性,推动了教育的民主化。学习者能够按照自己的价值观、兴趣与爱好等选择适合自己个性发展的学习方式和学习内容,促进学习者个性化、多样化发展,最终实现教育公平。
(三)跨界
智能科学与职业教育连接起来,搭建起两者沟通的桥梁,跨越了人工智能虚拟教育和线下实体教育的界限,实现了两者之间的融合。教育供给由竞争资源转变为协同合作,直线型的中心组织管理转向去中心化、泛化管理。通过大数据智能技术平台、远程教育平台等对职业教育资源进行整合共享,跨越教育边界,与市场、行业、企业以及职业教育培训机构对接,提供更加便捷的智慧化服务。
(四)终身化
人工智能时代职业教育的变革坚持“以人为本”的教育理念,满足学习者在任意时间、任意地点、以任意方式、任意步调终身学习的需求[10]。打破了地域和时间的限制,体现了教育的泛在化、个性化和终身化,与终身教育理念的发展目标不谋而合。人工智能时代社会经济发展加快,人们追求高层次自我价值的实现,充分体现出终身学习的必要性和紧迫性。目前,我国正在积极创建泛在学习环境,致力于构建终身化学习型社会,努力创造有利条件向全民提供终身教育与学习的机会。
四、人工智能背景下职业教育发展的模式建构
人工智能背景下职业教育的变革预示着全新思维意识形态、社会发展形态的变革,重塑职业教育可持续发展的新思维,重构信息时代职业教育的价值链和生态系统。智能化技术科学将现代职业教育内部各要素,以及内部要素与外部环境之间,通过虚拟技术和智能化手段互联贯通,突破传统教育价值的链状模式,使职业教育由传统模式走向“人工智能+职业教育”模式的建构。人工智能对职业教育课程、教学、评价、管理、教师发展等方面产生系统性影响,为职业教育提高教育质量和提升服务水平提供了技术支持和现实路径,解决不能兼顾职业教育规模和质量的矛盾问题。下面将从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面来探究职业教育的变革路径及模式建构。
(一)人工智能背景下职业教育的课程模式
人工智能时代的信息知识、科学技术正在以前所未有的速度增长、更新和迭代,呈现出了碎片化、多元化、创新性、社会性的特征。人工智能背景下职业教育的课程模式是为学习者提供按需可随时选择的知识储备智能模式,解决了传统职业院校课程教学的滞后性,呈现的是现代职业教育的前沿信息和内容。课程革命愈演愈烈,灵活多样的微课、慕课等形式层出不穷,在线课程将成为常态,信息传播媒介、知识获取方式等都发生了巨大改变,课程内容和结构的表现形态、呈现方式、实施及评价等也都进行了相应变革。智能化信息科学技术为课程的设计、架构、实施提供了快捷和便利,为学习者的个性化、终身化选择提供了多种渠道。人工智能背景下职业教育的课程模式的建构表现为:首先,线上线下融合的大规模开放课程融入现代职业教育,课程的表现形态和实施途径呈现出智能化、数字化、立体化的特征,成为学校常态课程的有机组成部分,为学习者提供了更多的可选择机会,使实施个性化课程成为可能。现代职业教育的课程内容强调学术性与生活性相互融合与转化,融入社会资源,立足于我国社会经济的新常态和学习者的全面发展,实现社会化协同发展,共赢共创;其次,课程实施的空间得以拓展,跨越了社会组织边界、职业院校边界,将从班级、年级、全校扩展到网络社区以及更大的空间。课程的整体结构从分散走向整合,以技术为媒介,形成跨学科、多学科整合的课程;最后,课程内容的组织、课程的实施逐步模块化、碎片化、移动化与泛在化,社会化分工更加精细,教师也将承担教学设计、技术开发、在线辅导等不同的角色。
(二)人工智能背景下职业教育的教学模式
人工智能时代将信息技术有效地融合于职业教育各学科的教学过程,从知识的传递转变为认知的建构,从注重讲授和内容,转变成重视学习过程[11],构建“以教师为主导,以学生为主体”的以数字化、智能化为特征的智慧教学模式,重视学生的主体地位,引导学生“自主、探究、合作”。人工智能背景下职业教育的教学模式的建构表现为:首先,人们的学习方法、认知方式和思维模式已经发生了巨大的转变。信息化教学使得信息技术已成为学习者认知的必要工具,认知方式也由“从技术中学”转型为“用技术学”。其次,信息化教学的重点从“面向内容设计”转变到“面向学习过程设计”,更加重视学习者发现问题、分析和解决问题能力的培养,关注学习者的学习过程,以及其获得学习活动的体验。同时,信息化教学要将课堂内的学习知识和课堂外的实践活动联结互动,按照学习者的个性化需求和认知方式自主选择学习内容。第三,智慧教学将成为课堂教学的新重点。日常教学工作形态不再是点线面的连接,而是呈现为智能化、立体化的教学空间,智慧课堂将会促进学习者的深度学习、交互学习和融合学习,智能备课、批阅以及个性化指导等也将成为教育者新的教学工作形式。从机械评价学习结果转变成适应性评价学习结果。第四,在线教学、整合技术的学科教学法将成为新的教学形态,促进教育均衡发展,实现跨学校、跨区域的流转。移动学习、远程协作等信息化教学模式,能够实现教师的“教”与学生的“学”的全面实时互动,最大限度地调动学习者的主观能动性,提升教学质量与人才培养质量。
(三)人工智能背景下职业教育的学习模式
智能系统和互联网络为学习者提供了丰富多元的学习资源和环境,推进了教育教学活动与学习环境的融合发展,人工智能背景下职业教育的学习模式也逐步建立起来,具体表现为:首先,智能时代的互联网络全面覆盖每一个人、每一个角落,活动空间由课堂内拓展到课堂外,学习与非正式学习正在互相补充、互相与融合,导致学习者的学习行为变化、学习方式的革新。其次,基于互联网出现了一批创新的学习方式,借助情景感知技术及智慧信息技术,进行真实过程体验的情境学习,促进学习者知识迁移运用的情境化和社会化。第三,借助互联网云技术和各种应用工具,学习者可根据自身学习需求,选择最优学习方式,也可利用数据分析技术,追踪记录学习路径和学习交互过程,随时随地获取个性化教学服务和量身定制的学习资源,拓宽了智慧教育视野。第四,各职业院校开始拓展校园智慧学习的时间和空间,以实现虚拟和现实相互结合的智慧校园育人环境。推进网络学习空间建设,加强教与学全过程的数据采集和分析,“引导各地各职业院校开发基于工作过程的虚拟仿真实训资源和个性化自主学习系统”[12],强化优质资源在学习环境中的实际应用。
(四)人工智能背景下职业教育的环境模式
智慧教育环境是以大数据、多媒体、云计算等智能信息技术为基础而构建的虚实融合、智能适应的均衡化生态系统。信息技术与职业教育的深度融合,为师生的全面发展提供了智慧化的成长环境,如智慧云平台、智慧校园。人工智能背景下职业教育的环境模式的建构表现为:首先,智慧教育环境将信息技术与职业教育服务结合、面对面教学和在线学习结合,形成数字化的、虚实结合的职业教育智能服务新模式。其次,智慧教育环境将促进各种智能化、数字化信息技术融入职业院校的各个业务范围和业务领域,与系统内的其他业务横向互联、纵向贯通,且信息能够适时生成和采集,全过程实现数字化与互联化。第三,智慧教育环境能够感知学习者所处的学习情境,理解学习者的行为与意图,满足学习者的个性化需求,提供多元化的适应服务和智能感知的信息服务。互联网应用基于智能数据分析,实现智能调节与自动监控,为学习者提供定制式的学习服务和个性化的学习环境。未来教室必将变成“虚拟+现实”的智慧课堂,在网络空间中参与线上课程、线下活动,实现线上线下互动交流。同时,智慧校园的创建和管理,能够对每个班级、学区进行动态管理,构建出一个以问题、任务为线索,学生实现自主学习的知识体系和促进师生互动、生生互动的智慧管理平台。到2020年,“90%以上的职业院校建成不低于《职业院校数字校园建设规范》要求的数字校园,各地普遍建立推进职业教育信息化持续健康发展的政策机制”[13],以学习者为中心的自主、泛在学习普遍开展,精准的智能服务能够满足职业教育的终身化定制。
(五)人工智能背景下职业教育的教师发展模式
人工智能背景下职业教育的变革对教师的专业发展、素质能力提出了新要求,改变了教师的能力结构和工作状态。教育信息化大背景下,互联网技术、多媒体手段的产生、智能化设备的使用极大提高了教师的专业发展和能力素养,以适应新课程改革与教育信息化的要求。人工智能背景下职业教育的教师发展模式的建构表现为:首先,新时代教师专业发展的内在要求和外在环境都要求教师能够认识、了解和应用互联网新技术工具,促使教师专业发展能力和素养的提升和丰富。其次,教师的专业发展要面向实际、情境化、网络化的教学问题,教师需要在多变的教育情境中综合运用核心教学技能,将信息技术知识、学科内容知识、教学法知识很好地融合并迁移运用。新时代的教师要学会掌握使用智能化设备和数字化网络资源,积极加强与其他专家、教师的合作,或远程工作,形成基于智慧教育技术的多元化的学习共同体。教师的工作状态由个体的单独工作转变为群体的共同协作,大大提升了教师的工作效率。第三,信息化背景下教师的教学理念要发生转变,由促进学生“接受学习”转变为“主动建构”,由“被动适应”转变为“主动参与”,越来越强调以学生为中心的过程体验,从了解信息技术转变为掌握智慧教育技术,保持学科知识,教学方法,核心技术的动态平衡,促进学生智慧学习的发生。第四,信息化教师要学会使用智能化教育技术,积极开发数字化学习资源,创设丰富多元的教学活动,鼓励学生掌握智能信息工具,学会探究和解决问题,发展提升学生的创新思维能力和信息化学习能力。教师的信息化教学能力和素养全面提升,信息技术应用能力实现常态化。
(六)人工智能背景下职业教育的评价模式
现代教育价值趋于多元,以互联网为基础的智能化信息技术使教育评价在评价依据、评价内容、评价主体等多个方面实现了全面转变。人工智能背景下职业教育的评价模式的建构表现为:首先,互联网信息技术应用于学习过程使得伴随式评价成为可能,更加关注学习者的个体差异和特点。强调过程评价和多元共同评价,更加客观全面,重视评价过程的诊断与改进功能,以促进学习者的个性化发展。其次,互联网、大数据、智能云技术的出现使得评价的技术和手段多样化、智能化,节省人力物力财力,提高了评价的科学性、针对性。第三,以大数据为基础的适应性评价因人而异,可获得及时反馈,可真实地测评学习者的认知结构、能力倾向和个性特征等,从知识领域扩展到技能领域、情感、态度与价值观,构建以学习者核心素养为导向的教育测量与评价体系,促进学习者发展。
(七)人工智能背景下职业教育的管理模式
智能化信息技术、云计算技术、大数据技术等能够促进大规模社会化协同,拓展教育资源与服务的共享性,提高教育管理、决策与评价的智慧性,因此,基于互联网的教育管理必将逐步走向“智慧管理”模式。人工智能背景下职业教育的管理模式的建构表现为:首先,互联网将家庭、学校、社区等紧密、方便地联系在一起,拓宽了家长和社会机构参与学校管理的渠道,各利益相关者可共同参与现代职业院校的学校管理,协作育人。其次,新时代的职业院校管理模式通过可视化界面进行智能化管理,业务数据几乎全部数字化,能有效降低信息管理系统的技术门槛,使管理工作更加轻松、高效。通过深度的数据挖掘与分析,能够实现个性化、精准资源信息的智能推荐和服务,为管理人员和决策者提供及时、全面、精准的数据支持,以提高决策的科学性。第三,通过互联网信息技术可以实现全方位、随时的远程监督与指导,从督导评估转变为实时评估,可以实现大规模的实时沟通与协作,促进社会化分工,促进职业院校内部重构管理业务流程,使管理智能化、网络化、专业化。
(八)人工智能背景下职业教育的组织模式
人工智能时代信息科学技术的蓬勃发展冲击着学校内部的组织结构向智能化、网络化的方向发展,各职业院校需要合理调整内部组织结构和资源分配,通过互联网加快信息流动等方式,提高各职业院校组织管理的效率和活力。人工智能背景下职业教育的组织模式的建构表现为:首先,当今时代人工智能的产生不可能替代学校教育,但可以改变学校教育的基本业务流程。人工智能推动了学校组织结构向网络化方向发展,教学与课程是提供信息数据的重要平台,学校组织则构成了教育大数据生态系统。其次,“互联网+职业教育”的跨界融合将打破学校的围墙的阻隔,互联网将学校组织与企业、科研院所等社会机构紧密联系起来,提供优质教育资源供给,共同承担知识的传授、传播、转化等功能,促进学校组织体系核心要素的重构。第三,建设“智慧校园”,实现线上线下融合的智慧校园育人环境,实施一体化校园网络认证,推动智能化教育资源共建共享,实现职业教育信息化建设的均衡发展。
五、人工智能背景下职业教育的模式变革面临的挑战及发展目标
人工智能将推进大数据、云技术等智能信息技术深层次融入职业教育课程与教学、组织与管理、评价与反馈等领域,形成社会化多元供给,为学习者提供多样化的参与方式、自主选择的学习形式和及时获得反馈的评价途径,有利于实现职业教育的共建、共享、共治。但其全面实现,还面临着诸多挑战。
(一)挑战
首先,职业教育的新模式建构需要充足的资金支持。各职业院校积极建构智慧校园,努力实现智慧化产学研环境,打造一体化智慧城市网络等核心技术的开发,都需要资金的根本保障。政府要给予资金政策保障并加强监管,资金管理部门要合理规划,合理利用,专款专用,落到实处。其次,职业教育的新模式建构的成果表现离不开学习者对技术的理解、掌握和应用。在实际实施过程中,教育工作者既要利用信息技术优势变革职业教育,也要避免技术中心主义倾向,“避免一味追赶技术新潮而不顾学生身心健康等,技术本身是一个祸福相依的辩证法。”[14]第三,“目前的教育实践中,仍未能充分实现人机合理分工和双边优势互补。人工智能终端系统擅长逻辑性、单调重复的工作,而人类则更适合情感性、创造性和社会性的工作。”[15]现阶段,信息化技术水平还有待提高,智能机器不能完全胜任知识传播、数据处理等工作,有待于进一步开发和完善,绝对依赖互联网络和设备,还存在一定的风险。
(二)发展目标
人工智能时代职业教育变革重新架构了职业教育发展模式,完成了对资源的重新整合配置,改变了人的思维方式、学习方式和生活方式。人工智能时代下没有职业教育模式的改革,就不可能建构真正的现代化职业教育。人工智能背景下职业教育的发展目标可以概括为个三方面:
1.“智慧脑”与“智能脑”融通
随着第四次产业革命的到来,信息技术爆发式发展,造就了以电脑、互联网为基础的智能脑。职业教育智慧化发展的一个目标就是如何让学习者发挥人脑“智慧脑”与机器设备“智能脑”的“双脑”共同协作[16]。人工智能时代职业教育与信息技术的深度融合,就是要通过“智慧脑”和“智能脑”的协同作用,发挥互补优势,进行融通式学习,而不是简单地人脑与电脑的技术对接。
2.“现实世界”与“虚拟世界”结合
在人工智能时代,网络虚拟技术的发展使人类拥有了真实与虚拟两个世界,虚拟信息技术的兴起在一定程度上会影响职业教育的实体教育,实体教育的发展也需要虚拟技术的支撑。但在具体的学习实践中,还会存在利用这两个世界时顾此失彼、难以平衡的问题。目前,虚拟化教育技术在职业教育领域不断应用与推广,职业教育的发展模式不断优化,使得职业院校线上线下的边界逐渐消融,“现实世界”与“虚拟世界”更好地结合。人工智能时代职业教育的本质没有发生根本改变,学习者要学会利用这两个世界虚实融合、高度互动,充分发挥出自身的优势,更好地学习与生活。
3.职业教育“适应人工智能”发展为“引领人工智能”
人工智能为职业教育带来了强大的技术支持,为职业教育带来了便利。初始阶段的职业教育基本知识和技能被数字化和智能化,通过人工智能相关课程,云教育模式,个性化学习计划等,适应并应用人工智能,以提高职业教育的效率和质量。职业教育重在技术创新,对于行业技术发展具有一定的引领性作用。未来人工智能将成为职业院校快速发展和转型的技术支撑。“如某些职业院校基于自身优势专业与相关行业的智能自动化企业合作,实现以职业教育发展引领人工智能。”[17]目前,人工智能处于适应性大发展阶段,随着信息化技术的提高和智能化设备的普及,人工智能时代必将由专用人工智能时代步入通用人工智能时代。在通用人工智能时代,人工智能与职业教育深度融合高效协作,职业教育完全适应且完美应用于人工智能,进一步引领人工智能发展,由“人工智能+职业教育”发展为“职业教育+人工智能”的时代。
篇4
关键词:ICAI;系统模型;教学策略;综合集成方法论MSM;现代教育技术
中图分类号:G250.73 文献标识码:B 文章编号:1673-8454(2012)01-0030-04
计算机辅助教学(Computer Aided Instruction,简称CAI)是利用计算机来模拟教师的行为,通过学生与计算机之间的交互活动来达到教学的目的。即在计算机辅助下进行的各种教学活动,主要是以对话方式和学生讨论教学内容、安排教学进程、进行教学训练的方法与技术。CAI为学生提供一个个人化的学习环境,综合应用多媒体、知识库等计算机技术,这是传统CAI的主要应用方式。
在没有智能系统支持的情况下,传统CAI尽管可能具有良好的教学材料模型,但它往往仅借助于计算机来展示教学内容,并不能很好地根据它所教学生的学习特征,以不同的教学策略和教学方法来教授;只是盲目地传授知识给学生,如果某个学生不能接受提供的教学策略,系统没有为这个学生提供可供选择的另外的教学策略。目前使用的绝大多数CAI是将全部教学信息以编程方式预置于课件中,这样的CAI课件一旦制作完成,很难对课件进行更新和维护,尤其是在这样的CAI系统中,学生的学习仍然处于被动状态,即完全受计算机控制。
一、智能化计算机辅助教学概念
现代教育技术的日益发展以及与其他领先技术的结合,必然促使计算机辅助教学CAI的进一步发展。人工智能技术应用于CAI产生的基于网络环境的智能化CAI,就是现代信息化社会发展的产物,并在教育教学领域中有很好的发展前景。
人工智能是计算机科学的一个分支,它的目标是构造能表现出一定智能行为的,目的就是让计算机这台机器能够像人一样思考。人工智能的研究更多地是结合具体领域进行的,主要研究领域有专家系统、机器学习、模式识别、博弈、智能决定支持系统、人工神经网络等等。人工智能技术与专家系统的成就,促使人们把问题求解、知识表示这些技术引入CAI,并借助于网络环境来实施,这便是智能型计算机辅助教学。
智能计算机辅助教学ICAI(Intelligence Computer Assisted Instruction)属于人工智能的一个分支,是以认知科学和思维科学为理论基础,综合人工智能技术,教育心理学等多门学科的知识对学生实施教育的一门新的教育技术。ICAI通过研究人类学习思维的特征和过程,探索学习知识的模式,利用信息化网络环境使学生获得个别化自适应性学习的获取知识方法,从而使学生的学习更有针对性,更有效。
ICAI依靠人工智能技术的进步,主要应在因材施教方面取得进展。其主要特点是:
(1)能自动生成适合学习者程度的学习内容。
(2)能根据学生的不同认知水平与学习风格选择教学策略和教学方法。
(3)能评价学生的学习结果,并不断地在教学中改善教学策略。
二、智能化计算机辅助教学研究现状
现阶段,在一些发达国家,如美国、日本、加拿大、英国、法国、澳大利亚等,CAI已经普遍存在于学校和家庭中,正起着越来越大的作用。而ICAI的研究还处于初始阶段。目前国内在这一领域的研究主要集中在CAI和ICAI的优缺点比较,ICAI的理论来源、系统特征、模块建设、发展趋势等基础理论知识的研究,基于相关课程或学科的实践研究还比较少见。智能教学系统的设计和开发是一项复杂的系统工程,由于需要考虑的因素较多,系统比较庞大,同时也依赖于人工智能等技术的发展,因而要建立完善的ICAI还是比较困难的。[1]因此ICAI有很大的理论和实践发展空间。
完善的ICAI系统需能够充分调动学生的主动性,并能通过分析推理,对某具体学生做出适合的教学决策。使学生获得个别化自适应性学习的学习方法,达到因材施教的目的。人工智能技术的发展必将会对ICAI的发展起到巨大的推动作用。随着计算机科学的发展,21世纪的教育教学辅助手段将是以ICAI为主线,多学科、多方位发展的新技术的体现,越来越多的教育工作者会从更多的视角审视ICAI,并从事ICAI的研究。相信ICAI将会在现代教育领域中有更广泛的应用。
“现代教育技术”既是教育技术专业的必修课程,也是大中专院校广泛设置的选修课程,适用范围非常广泛。本文以《现代教育技术》这门课程为主要研究对象,来研究智能化教学系统设计在具体实践中的应用。
三、ICAI决策系统的理论依据
1.综合集成理论
教育是以人为主体参与的活动,而人本身就是一个复杂巨系统,因此以这种大量的复杂巨系统为子系统组成的系统――教育系统,是一个复杂巨系统。依据系统与其环境是否有物质、能量和信息的交换,将系统划分为开放系统和封闭系统来看,学生的学习受到教师、同学、家庭及社会等因素的影响,所以教育系统是一个开放的复杂巨系统。
钱学森的理论和实践研究表明:现在能用的、惟一能有效处理开放的复杂巨系统的方法,就是定性定量相结合的综合集成方法论。综合集成方法论(Meta-synthesis Methodology MSM)是方法论上的创新,它是研究复杂巨系统和复杂性问题的方法论。[2]定性定量相结合的综合集成方法是将专家群体(各种有关的专家)、数据和各种信息与计算机技术有机结合起来,把各种学科的科学理论和人的经验知识结合起来,发挥这个系统的整体优势和综合优势。[3]它把人的经验、知识、智慧以及各种情况、资料和信息系统集成起来,从多方面定性认识上升到定量认识,从而达到解决复杂系统问题的目的。在解决问题的过程中,专家群体和专家的经验知识起着重要的作用。
教学系统设计是一个复杂的系统,它是由教育系统的复杂性决定的。教育系统具有复杂系统的基本特点,它在结构与功能上表现为规模大、相关因素多且相关方式复杂、目标多样等;在运动上表现为随机性、非线性等。用一般的理论方法无法全面合理地解决这一不良结构的问题,本研究尝试用综合集成方法论来指导、分析教学设计智能化过程。因此,运用综合集成理论的方法来研究教学设计系统,探讨具体科目的教学设计在设计过程中遇到的复杂性问题,进而构建科学合理的教学设计系统,具有重要的理论和实践价值。
2.教学设计理论
本文采用“双主”教学模式作为ICAI的教学设计的理论基础。“双主”教学模式既能发挥教师的主导作用又能充分发挥学习者认知主体作用,是在教师主导下的课堂中能让学习者参与进来共同学习的一种教学模式。
基于“双主”的教学模式,要求根据学习者的特征、学习内容、学习策略、学习目标等多种因素的不同情况研究它们的结合方式,以使系统达到理想的教学效果。
基于网络环境的ICAI相对于传统的CAI来说,充分体现了“双主”的教学模式。ICAI中有专门分析学习者学习方式和认知水平的学生模型,有专门为不同的学习内容选择不同的学习策略的策略库模型(也称为教师模型),有评价学习效果并反馈给系统的评价模型。学生模型是对学习者的学习特征进行分析,包括学习者的学习风格、认知水平。策略库模型包含有丰富教学策略和有一个智能推理机,能根据学生模型的信息和学习目标为学习者选择合适的学习策略,指导学习者学习。
3.建构主义学习理论
当代建构主义者主张,世界是客观存在的,但是对于世界的理解和赋予意义却是由每个人自己决定的。建构主义者认为学习者要以自己的经验为基础来建构现实,或者至少说是在解释现实,每个人的经验世界是用自己的头脑创建的。
学习过程同时包含两方面的建构:一方面是对新知识意义的建构,同时又包含对原有经验的改造和重组。建构主义者强调学习者在学习过程中能够灵活地建构起用于指导实践活动的图式,这种图式是对概念的丰富理解,依据个人经验背景的不同而不同。
教学应当把学习者原有的知识经验作为新知识的生长点,引导学习者从原有的知识经验中,生长新的知识经验。教学不是知识的传递,而是知识的处理和转换。
ICAI伴随着这种理论的发展而发展,它注重的是由学习者来控制学习过程,重视学习内容的知识结构和学习情境,让学习者主动构建对自己有意义的知识的活动。基于网络环境的ICAI积极地为学习者创设学习情境,帮助学习者用他们已有的知识去建构、生成、整合新的知识。
4.教学处方理论
“教学处方理论”是郑永柏博士于1998年提出的一种新型适合于信息化教学设计的理论,他通过对教学系统设计理论和计算机辅助教学设计方面的研究,建构了一种新型的教学系统设计理论――教学处方理论。该理论主要包括:六个基本概念、一个理论框架、三条基本原理和两个关于教学设计的知识库。[4]
该理论指出教学处方可以看作是教学设计者(有时可以看作是教师)依据系统分析后使用的各种教学模式、教学方法和教学内容处理模式的组合;说明了在特定教学条件下对特定教学结果的教学,以不同的学习理论和教学理论为指导将会采用不同的教学方法,即教学处方,这也是本研究的核心内容,是该系统设计的指导理论。“教学处方理论”具有更好的包容性、开放性,能够吸收和容纳丰富的学习和教学研究成果。
四、ICAI系统的模块结构
1.前端分析模块:认知能力、学习动机、认知风格
前端分析是美国学者哈利斯(Harless,J.)在1968年提出的一个概念,指的是在教学设计过程开始的时候,先分析若干直接影响教学设计但又不属于具体设计事项的问题,本文主要指认知能力、学习动机和认知风格方面的分析。前端分析模块主要是建立相应的学生特征类型的数据库。
认知能力的测量采用认记、理解、应用、分析、综合、评价六个维度,每个维度有“优、良、中、差”四个选项。通过数据分析找出学习者的现状和期望之间的差距,确定需要解决的问题是什么,并确定问题的性质,形成不同层次的教学设计项目的目标。
学习风格和学习动机通过专门的量表来收集数据。
2.内容分析模块
教学内容分析就是在确定好总教学目标的前提下,借助归类分析法、图解分析法、层级分析法、信息加工分析法等方法,分析学习者要实现总的教学目标,需要掌握哪些知识、技能或形成什么态度。通过对教学内容的处理,确定学习者所需学习内容的范围和深度,确定内容各组成部分之间的关系,为以后教学顺序的安排奠定好基础。
对教学内容的处理主要包括:教学内容的选择、教学内容的编排、确定单元目标及对内容进行初步评价、分析教学内容类别及性质等四个基本方面。在构建规定性教学内容处理模式库时,应对上述四个方面提供具体的方法。[5]
3.决策模块
教学策略(处方)的制定就是根据特定的教学目标、教学内容、教学对象等条件,来合理地选择相应的教学顺序、教学方法、教学组织形式。在数据库中建立可供选择的不同的教学策略(处方),是本文所研究的ICAI系统的主要模块,也是特色模块。
教学策略(处方)的制定包括教学顺序的确定、教学方法的选择、教学组织形式的选择等。教学顺序的确定就是要确定教学内容各组成部分之间的先后顺序;教学方法的选择就是要通过讲授法、演示法、讨论法、练习法、实验法、示范模仿法等不同方法的选择,来激发并维持学习者的注意和兴趣,传递教学内容;教学组织形式主要有集体授课、小组讨论和个别化自学三种形式,各种形式各有所长,须根据具体情况进行相应的选择。教学策略的制定是根据具体的目标、内容、对象等来确定的,要具体问题具体分析,不存在能适用于所有目标、内容、对象的教学策略。
4.评价模块
在基于网络环境的ICAI的评价模块,要依据前面确定的教学目标,运用评价量表,分析学习者对预期学习目标的完成情况,主要收集三个方面的基本信息,一是要收集关于教师对教学设计方案和教学方案实施结果的满意度的信息数据,二是要收集关于学习者对教学过程、教学策略的适应性的信息数据,三是要看与其他方法相比,本处方中所采用的方法是否有独到之处,是否有不足之处。[6]在数据分析的基础上,对教学策略和教学内容的修改和完善提出建议,并以此为基础对ICAI各个环节的工作进行相应的修改。
5.ICAI系统模型框图
学习者前端数据采集数据库包括:认知结构测量及分析系统、学习动机测量及分析系统、学习风格测量及分析系统和学生基本信息系统。系统模型如图所示。
五、ICAI决策系统实验数据来源
本课题实践研究的调查对象来自云南大学,是2008届市场营销教育和财会教育本科生,共89人,课程设置为现代教育技术。学生调查表包括本科生基本信息表,所罗门学习风格量表,学习者认知能力调查问卷,学习者学习动机调查问卷四份表格组成。实际收到数据表89份,有效数据表75份。数据表中的信息选项根据所占权重,统一折合成百分制进行处理。
六、总结
本文把教学设计理论、方法与“现代教育技术”课程相结合,拟研发出一个基于综合集成方法论的广义智能网络教学设计辅助系统。主要研究成果如下:
(1)把综合集成方法论引入解决教学设计这一不良结构问题;
(2)结合数字化方法和数据挖掘技术,它能对学习者进行数字化的前端分析;
(3)它所自动化给出的教学设计方案,可为青年教师提供良好借鉴,有利于教师因材施教、因风格施教、因需要施教;
(4)它所自动化给出的学习者学习建议方案,有利于促进学习者自主学习。
现有的CAI存在的许多问题随着新技术的不断出现而显得越来越不能适应新环境的需求,因此以基于网络环境的ICAI为代表的新计算机辅助教学系统,将是教育教学研究人员在教育技术上需要不断探求、努力实现的发展方向。
参考文献:
[1]杨采坚,董玉铭.智能教学系统设计[J].中国电大教育,1993(3).
[2]于景元,涂元季.从定性到定量综合集成方法――案例研究[J].系统工程理论与实践,2002.5.
[3]钱学森,于景元,戴汝为.一个科学新领域:开放的复杂巨系统及其方法论[J].自然杂志,1990(1).
[4]郑永柏.教学系统设计理论和方法研究:教学处方理论和ISD-EPSSS的设计与开发[D].北京师范大学博士学位论文,1998.
篇5
关键词:未来工作能力;高职院校;创新创业教育
1未来工作能力需求的变化
1.1工业4.0时代
无论是德国“工业4.0”战略、“中国制造2025”战略,还是美国“工业互联网”概念,它们的本质内容是一致的,都指向一个核心,即智能制造,也就是“互联网+制造”。机器人、人工智能和物联网是工业4.0时代的代表。工业4.0时代有5个重要的特点:(1)互联:互联工业4.0的核心是连接,要把设备、生产线、工厂、供应商、产品和客户紧密地联系在一起;(2)数据:工业4.0连接和产品数据、设备数据、研发数据、工业链数据、运营数据、管理数据、销售数据、消费者数据。企业利用数据分析,不断改善客户体验,满足客户对新商品和新服务的需求,生产和服务实现批量化个性定制;(3)集成:工业4.0将各种传感器、嵌入式终端系统、智能控制系统、通信设施连接形成一个智能网络。通过这个智能网络,使人与人、人与机器、机器与机器以及服务与服务之间,能够形成一个互联,从而实现横向、纵向和端到端的高度集成;(4)创新:工业4.0的实施过程是制造业创新发展的过程,制造技术、产品、模式、业态、组织等方面的创新,将会层出不穷,从技术创新到产品创新,到模式创新,最后到组织创新;(5)转型:由传统制造从大规模生产转向柔性化、个性化定制。毫无疑问,移动互联网、大数据、云计算、社会媒体和内存数据库技术的发展快速推动了实体和虚拟世界的结合,这些技术的发展为改变生产、产品销售方式和商业模式创新提供了空前的可能[1]。
1.2未来工作能力需求的变化
世界经济论坛最新报告预计,到2020年,科技的发展将导致15个主要发达和新兴经济体净损失逾500万个工作岗位。通过自动化或去中介化的方式可能将减少710万个工作岗位,与此同时也有210万个工作岗位将被创造,其主要集中在更为专业的领域,例如计算机、数学、建筑以及工程领域。传统的雇佣关系将发生巨大的变化,企业与员工之间是合伙人的关系,未来的工作也将由企业员工、自由工作者、外包和合作伙伴、人力资源平台、人工智能等协同完成。传统的雇员社会正在消失,员工将利用互联网知识、平台,创造任何自己想要创造的价值,未来的工作方式将更加多元化和复杂化。世界经济论坛在2016年开启了对“未来工作”的研究项目,从15个经济体的10个行业中选取了当今最大的企业,针对从现在起到2020年科技对就业、工作和技能的影响,调查了这些企业的人力资源管理者。受访者认为,到2020年,对解决复杂问题的能力以及社交技能和系统性技能的需求会远远高于对身体能力和知识性技能的需求。2020年的技能需求度依次为:“解决复杂问题的能力是36%、社交技能是19%、过程技能是18%、系统技能是17%、认知能力是15%、资源管理技能是13%、专业知识和技能是12%、身体能力占比4%”。对专业知识和技能的重视度已从传统的占绝对优势下降为12%[2]。由此可见,高职院校对学生职业能力的培养必须从单纯重视职业技能转化为培养学生具备利用已有的知识和技能,通过团队协作,创造性地解决复杂问题的能力。传统的以就业为导向,以专业知识和技能为教学主体,实践和公共理论课为辅的教学模式已经无法适应未来工作能力需求的变化。高职院校必须对开展创新创业教育的价值内涵、技能教学与创新教育的融合、高职学生创业实践的模式进行再认知,通过建立创新创业课程教育体系、深化校企合作、实施跨学科融合教学,增强学生的创新创业意识,提高学生用创造性思维解决问题的能力[3-4]。
2高职院校对开展创新创业教育的价值认知偏差
2.1创业教育的价值内涵
20世纪80年代中后期,西方国家提出了一种新的教育理念,即创业教育(EnterpriseEducation)。创业教育的价值是提高学生的创业素质,即培养学生的事业心、开拓进取精神和创新精神。我国在《关于大力推进高等学校创新创业教育和大学生自主创业工作的意见》《国务院办公厅关于深化高等学校创新创业教育改革的实施意见》等文件颁布以来,“大众创业、万众创新”席卷各行各业。以创新创业教育提升大学生就业竞争力,以创业带动就业,提升就业质量是当前社会背景下解决高校毕业生就业问题的重要方法之一。
部分高职院校对高职创业的理解存在偏差:(1)认为创新创业教育就是培养企业家和创业者,而学生连工作都找不到,怎么做企业家。(2)大多高校认为创业教育就是“技能教育”“致富教育”。常认为学生组建团队参加“挑战杯”和创业大赛,就是创业教育;在课堂上强调学生赚钱的本领和财富积累,就是创业教育。(3)认为高职学生创业就是学校申请建立创业孵化基地,各二级学院上报几个认为比较有前途的创业项目,学校给每个项目划定场地、指定指导教师,学生作为法人注册公司,各级领导巡查一番,至于后续经营怎样就无声无息了。高职创新创业教育的核心是培养高素质的应用型创新人才,积极提升大学生的创新意识、提高创业能力,是一种关注人的发展和人生规划的教育理念。无论是只传授理论,还是重视创业大赛排名,还是要求高职学生普遍去创业都是错误的。
3高职院校创新创业教育的开展
3.1拓宽校企合作的深度和广度
企业发展是社会经济增长的主要动力,创新创业是提升企业核心竞争力、实现企业可持续健康发展的不懈动力,而人才是创新的第一资源。从某种意义上讲,培养高职学生的创新创业精神至少是双主体的参与,即学校和企业。是什么因素导致我国目前企业参与高职人才培养的积极性不够呢?调查显示,企业认为目前影响校企合作的关键因素是:校企双方缺乏沟通、信息渠道不畅(40%),缺乏合作机制(24%),缺乏政府鼓励或政策支持(18%)以及学校缺乏针对性(9%)等。高职教育校企合作模式不仅取决于高职院校的合作意愿,还取决于经济发展的需求。从根本上讲,以共同利益链拉动产业链、创新链,促进两个主体积极参与高职创新创业教育的积极性,是实现双方共赢的关键。高职院校要想获得长远的发展,必须找准自己的定位。高职院校必须为地方经济和社会发展服务,利用区域发展的数据,研究区域经济发展的核心利益点,要根据经济和企业发展所需人才来对专业设置、课程选择、人才培养方式等做出调整。高职院校必须积极承担企业的相关研究项目,如市场调研、项目策划、技术研发创新及市场推广、业务能力培训。反之,企业则可以结合自身的产品/服务,参与支持高职学生的创业项目(如店铺装修、员工培训和创业发展指导等)、参与相关专业的人才培养方案设计、参与指导学生的技能大赛、给学生提供毕业实习的机会等。
3.2实现专业技能教育与创新创业教育的融合
在麦可思研究院公布的《2016年中国大学生就业报告》中显示,2015届高职高专毕业生自主创业的比例(3.9%)高于本科毕业生(2.1%)。高职学生一般表现为不喜欢长辈及教师的高压控制、不喜欢死记硬背和勤奋做题,但他们具有好奇心强、创意点子多、敢闯敢干等优点。目前课程教学中所采用的任务导向、项目引领、案例分析、角色扮演等方式强调专业知识和专业技能的训练,忽略了学生创新意识、创业能力的训练。高职学生创新创业能力的培养必须结合不同专业的特色,通过项目引领、任务驱动、技术服务等教学方法[5],培养学生的批判性思维能力和创造性精神,实现专业技能教育和创新创业教育的深度融合。
参考文献:
[1]赵世磊,张彦卿,部宗娜,等.创新创业教育与专业教育深度融合研究[J].职教通讯,2017(2):63-66.
[2]姜运隆.跨界与协同:高职创新创业教育的价值审视及机制研究———基于第四次工业革命视角[J].职教论坛,2017(2):22-25.
[3]杨理连,邢清华.高职教育深度校企合作机制创新的再思考[J].教育与职业,2013(24):16-18.
[4]李毅彩,李叶红,张刚平.校企合作视角的高职学生创业训练计划项目的开展[J].教育教学论坛,2015(10):224-225.
篇6
关键词:计算机;互联网;发展趋势
中图分类号:TP393 文献标识码:A 文章编号:1001-828X(2012)11-0-01
当前,世界经济正在从工业经济向知识经济转变,而知识经济的两个重要特点就是信息化和全球化。进入21世纪,网络已成为信息社会的命脉和发展知识经济的重要基础。从其形成和发展的历史来看,计算机网络是伴随着人类社会对信息传递和共享的日益增长的需求而不断进步的。本文拟对计算机技术下互联网的发展史、特点、对未来发展前景的设想作简要介绍。
一、计算机技术下互联网的发展史
计算机网络近年来获得了飞速的发展。20年前,在我国很少有人有人接触过网络,现在计算机通讯网络以及Internet已成为我们社会结构的一个基本组成部分。网络被应用于商业的各个方面,包括电子银行、电子商务、现代化的企业管理、信息服务业等都以计算机网络系统为基础。
Internet发展经历了研究网、运行网和商业网三个阶段。至今,全世界没有人能够知道Internet的确切规模。Internet正以当初人们始料不及的惊人速度向前发展,今天的Internet已经从各个方面逐渐改变人们的工作和生活方式。人们可以随时从网上了解当天最新的天气信息、新闻动态和旅游信息,可看到当天的报纸和最新杂志,可以足不出户在家里炒股、网上购物、收发电子邮件,享受远程医疗和远程教育等等。
二、计算机技术下互联网的发展特点
从80年代末开始,计算机网络技术进入新的发展阶段,它以光纤通信应用于计算机网络、多媒体技术、综合业务数据网络ISDN、人工智能网络的出现和发展为主要标志。90年代至下个世纪初将是计算机网络高速发展的时期,计算机网络的应用将向更高层次发展,尤其是Internet网络的建立,推动了计算机网络的飞速发展。据预测,今后计算机网络具有以下几个特点:
1.开放式的网络体系结构,使不同软硬件环境、不同网络协议的网可以互连,真正达到资源共享,数据通信和分布处理的目标。
2.向高性能发展。追求高速、高可靠和高安全性,采用多媒体技术,提供文本、声音图像等综合。
3.计算机网络的智能化,多方面提高网络的性能和综合的多功能服务,并更加合理地进行网络各种业务的管理,真正以分布和开放的形式向用户提供服务。
三、计算机技术下互联网的发展趋势
随着计算机技术的不断革新,互联网业也在不断发展,日益呈现出以下趋势:
1.运营产业化
以Internet运营为产业的企业迅速崛起,从1995年5月开始,多年资助Internet研究开发的美国科学基金会(NSF)退出Internet,把NFSnet的经营权转交给美国三家最大的私营电信公司(即Sprint、MCI和ANS),这是Internet发展史上的重大转折。
2.应用商业化
随着Internet对商业应用的开放,它已成为一种十分出色的电子化商业媒介。众多公司、企业不仅把它作为市场销售和客户支持的重要手段,而且把它作为传真、快递及其他通信手段的廉价替代品,借以形成与全球客户保持联系和降低日常的运营成本。如:电子邮件、IP电话、网络传真、VPN和电子商务等等的日渐受到人们的重视便是最好例证。
3.互联全球化
Internet虽然已有三十来年的发展历史,但早期主要是限于美国国内的科研机构、政府机构和它的盟国范围内使用。现在不一样了,随着各国纷纷提出适合本国国情的信息高速公路计划,已迅速形成了世界性的信息高速公路建设热潮,各个国家都在以最快的速度接入Internet。
4.互联宽带化
随着网络基础的改善、用户接入方面新技术的采用、接入方式的多样化和运营商服务能力的提高,接入网速率慢形成的瓶颈问题将会得到进一步改善,上网速度将会更快,带宽瓶颈约束将会消除,互联必然宽带化,从而促进更多的应用在网上实现,并能满足用户多方面的网络需求。
5.多业务综合平台化、智能化
随着信息技术的发展,互联网将成为图像、语音和数据“三网合一”的多媒体业务综合平台,并与电子商务、电子政务、电子公务、电子医务、电子教学等交叉融合。10-20年内,互联网将超过报刊、广播和电视的影响力,逐渐形成“第四媒体”。
我们处在一个信息化时代,国家和世界各国也以发展科技为目标,况且我们的生活与计算机密切相连,所以,计算机网络未来的发展无限光明。随着网络的发展,许多在现实中的问题都将在网上慢慢的得以实现,但随之带来的一系列网络安全因素也是我们值得考虑的问题。总之,未来网上的世界,我们拭目以待。
参考文献:
[1]高阳,王坚强.计算机网络技术发展趋势[J].图书情报工作,2009(02):5-20.
篇7
中学的美术教学是美术教育的基础。计算机辅助教学可以将图片、文字、声音等很好地组织在一起,将美术作品形象生动地展现在学生面前,使学生更好地领略艺术之美,有效提高中学美术的教学效果,促进美术教育事业的发展。本文对计算机辅助教学在中学美术教学中的具体应用进行了探讨,指出计算辅助教学的应用对中学美术学教学的发展具有重要意义,希望能为中学美术教育工作者提供参考。
关键词:
计算机辅助教学;中学美术教学;应用
现在我国很多中学的美术教学还是传统的教学模式,即重绘画而轻欣赏,教学内容多是绘画技法的训练,由教师通过粉笔和黑板来演示。这种教学模式缺少互动、课堂沉闷,不能很好地激起学生的学习兴趣,教学效果很差,而且还缺乏课外知识的拓展。我们都知道美术的学习需要通过大量美术作品的欣赏来获取艺术创造力和提高审美能力,因此这种教学模式是不科学的,与现代中学美术教育发展不相符的。大量的教学实践证明,计算机辅助教学的应用可以改善中学美术教学的现状。
一、计算机辅助教学概述
计算机辅助教学是指学校在计算机辅助之下展开的教学活动。计算机辅助教学通过多媒体技术、人工智能网络技术等新兴技术避免了传统教学中的单调枯燥,提供了全新的教学模式。在这种模式下,教学的载体和平台形式更丰富,更自由,教学的过程也更富有趣味,极大地提高了学生的学习效率,也优化了教学质量。随着科技的发展与计算机辅助教学模式的完善,这种技术已经被广泛应用于高校的教学中,并取得了良好的效果。近年来,计算机辅助教学也开始在各个中学里推行开来。
二、计算机辅助教学在中学美术教学中的具体应用
(一)激发学生的学习兴趣
我们都知道,教学的核心是激发学生的学习兴趣,提高学生的积极性。积极主动地学习可以事半功倍,提高学生的学习效率,而消极被动的学习却只会事倍功半,非常不利于教学活动的展开。美术作为一种思维艺术,尤其需要学生加强注意力,开发想象力,全身心地投入到课堂中。中学生正值心理活跃期,很容易开小差,但如果能把这份活跃引入到课堂中,就会获得很好的美术教学效果。多媒体课堂的引入使得老师可以利用PPT软件进行教学,教师通过对图片、文字等的组合编制课件,改善了传统美术课本的枯燥、单调,使得课程内容更加生动形象,从而激发学生的学习兴趣,使学生可以专注于课堂,并跟随教师的引导,展开思维与想象,更好地理解美术作品与相关理念[1]。
(二)改进美术欣赏方法
美术作品作为一种艺术化的表达,往往反映了作者的某种情感,单凭一幅或者几幅画很难使学生真正理解作者的意图,而且有些美术作品很抽象,需要补充大量的相关知识才能理解。在传统的美术教学中,一般由教师负责引导学生进行美术作品的欣赏,美术的作品形式是多样化的,教师个人不可能精通每一类作品,对不熟悉的便只能临阵磨枪的了解一下,不仅不能很好地传达作品的理念,还有可能误导学生。通过计算题辅助教学教师可以向学生播放一些作者的传记电影或美术作品的鉴赏视频等,有助于学生更好地了解作品的背景,从而加深其对作品内涵的了解。而且,有些美术作品还可以结合音乐来欣赏。艺术是相通的,也是可以相互补充、解释的,尤其是音乐和美术,向来都是紧密联系在一起的,通过音乐来欣赏美术作品,往往可以达到意想不到的效果。如山水墨画与音乐《高山流水》的结合,无疑是一种美的享受[2]。
(三)扩充资源库
中学的美术教学通常课件资源不多,学生要获得更多的知识就要求助于图书馆,而在当前我国重文化轻艺术的阶段里,中学本来就对美术教育不太关注,再加上美术资料一般都比较昂贵,很难投入大笔资金购置美术资料,也就不能满足美术对学生广开视野的要求。而随着信息技术的发展,学校开始广建校园网,其中一个重要环节就是资源库的建设。教师将美术课堂可能用到的资源上传到网站上,学生通过校园网即可进行在线浏览或下载,有助于学生的课前预习、课后复习以及平时的自主学习;而且,网络也是一个丰富的资源库,学生通过网络可以得到大多数需要的资料,为中学生的课外学习创造了良好的条件[3]。通过计算机辅助教学,丰富了课堂形式,活跃了课堂氛围,激发了学生的学习兴趣;通过各种载体与平台的运用,改善了美术作品的欣赏模式,促进了学生审美水平的提升;借助校园网的建设和网络的利用,丰富了学生的资源库。总之,计算机辅助教学作为一种全新的教学模式,在课堂中的应用表现出极大的优越性,有效地推动了中学美术教学的革新和发展,为我国美术教育事业的发展做出了贡献。教育工作者应该充分重视计算机辅助教学并加以利用。
作者:樊彦华 单位:河北省内丘县柳林中学
[参考文献]
[1]王凤宝.中学美术教学中计算机辅助角模式的应用[J].大众文艺,2015,(03).
篇8
【关键词】 学习风格;面向服务架构;学习风格判别组件
【中图分类号】 G40-057 【文献标识码】 A 【文章编号】 1009―458x(2016)05―0064―07
一、研究背景及相关研究
学习风格(Learning Style,简称“LS”)是学习者特有的认知、情感和心理行为,作为学习者如何理解信息以及学习者在学习环境相互作用下如何反应的相对稳定的指标[1]。根据学习者不同的认知过程分为不同类型的学习风格。很多教育理论学者以及研究者对这一观点表示认同,一致认为将学习风格整合到教育中可以更好地促进学习者个性化学习。有大量的相关研究证明并支持这一观点,例如Bajraktarevic、Hall和Fullick[2]、Graf和Kinshuk[3]等。目前主要是通过人工智能相关技术来实现学习者学习风格自动侦测,例如机器学习[4]、贝叶斯网络[5][6]、神经网络[7]以及基于规则的推理[8]等。很多智能学习系统,尤其是自适应教育超媒体系统(AEHS),大多数都具备不同的LS偏向性测试功能,并通过建立LS用户模型为学习者提供更好的个性化学习服务,如Tangow 系 统[9]、Protus 系统[10]、WHURLE 系统[11]、CS383 系统[12]等都使用了Felder-Silverman模型;AES-CS系统[13]使用了FI-FD模型;INSPIRE系统[14]使用了Honey-Mumford模型。这些传统的智能学习系统在一定程度上解决了个性化学习的问题,但是这些系统的功能模块之间存在着耦合性低、重用性差、不同系统之间很难实现资源共享等问题。
大量研究表明,采用面向服务架构(SOA)技术能很好地解决传统智能系统存在的问题。Dagger对学习管理系统(LMS)的演变进行了分析,指出了传统智能学习系统存在着以上问题,肯定了下一代智能学习系统应具有互操作性和扩展性这一未来发展的趋势,并通过案例证明了SOA架构的优越性[15]。
现在,基于SOA技术设计了很多学习系统架构,试图通过SOA架构技术解决传统学习系统存在的问题。其中,Mohammed提出了使用SOA技术构建一个E-learning学习管理系统,虽然该系统没有实现个性化学习资源推送服务,但可以对外提供服务接口[16];Cheng设计了一个可扩展的SOA E-learning系统架构,能使网络学习系统功能更完善、更灵活,但是如何实现这些服务没有进行详细设计[17];SLO 管理系统是一个基于SOA的学习资源管理系统架构,该系统架构采用SOA技术是为了实现教学资源共享,但没有使用学习风格模型对用户进行建模[18];孙艳提出了一种面向服务的E-learning系统架构,该系统可以实现教学设计、动态更新学习资源以及通过学习者个性特征分析提供个性化的学习指导。虽然该系统有个性化特征提取,但是并没有提到如何建立学习者个性化特征[19]。Canales提出了一个基于SOA自适应智能网络教育系统 (WBES)架构,详细介绍了用认知地图来构建学习者学习风格用户模型[20];Yaghmaie通过SOA架构设计了一个自适应学习系统,根据学习者学习风格自动过滤学习内容,实现个性化学习内容的推介[21];姜强设计的SOALS系统主要采用了Felder-Silverman模型,并使用学习行为来修正学习风格模型,最终实现个性化资源推送服务[22]。
现有的很多SOA 智能系统只是一个系统架构,虽然有些系统提供了学习风格判别和个性化推送功能,但是这些功能并不对外提供服务接口,导致不能实现资源共享。同时,现在的系统很多只采用了单一的LS用户模型,导致用户建模单一化和片面化,学习资源推送准确率低、效率低。此外,大部分SOA学习系统都没有建立LS用户模型,因此,这类系统不能提供个性化服务。
二、 SOALS系统架构及其服务模型
(一)SOALS系统架构
为了解决现有SOA学习系统存在的问题,基于SOA架构设计了一个智能学习系统架构(SOALS),并设计了一个学习风格判别组件(SOALS_pre),该组件采用了Felder-Silverman(简称“FS”)[23][24]和Field Independence/Field Dependence(简称“FI-FD”)[25][26]学习风格建立用户模型,使LS预测更加准确。通过对SOALS_pre组件进行封装,对外了一个学习风格服务(LstyleRMIService)。不同架构的学习系统通过绑定该服务接口可以实现学习者在不同环境下进行多模型的LS判别服务。同时,服务会把测试结果自动建立成标记的样本数据集,为LS测试服务提供样本数据资源。
该架构共有四层:第一层是资源层,第二层是组件层,第三层是服务接口层,第四层是用户表示层(如图1所示)。
资源层主要存储了各种服务所需要的资源,例如学习风格样本数据、学习行为样本数据、学习资源库(LOM标准)等。本系统通过Mysql 5.5设计了3个数据库,其中LSdata数据库主要用于存储学习风格样本数据;LCdata数据库主要用于存储学习行为样本数据;LRdata数据库主要用于存储学习资源,学习资源需要遵循LOM标准。
组件层是系统架构的核心层,也是系统的底层,它涉及组件的核心代码和对核心代码的封装。在系统中,学习风格判别组件(SOALS_pre)分别由LS组件、LS前测组件、LS维度筛选组件和LS预测组件组成。其中,LS组件提供了FS学习风格测试、FI-FD学习风格测试、LS维度筛选以及LS预测功能。LS组件要实现这些功能需要分别引用LS前测组件、LS维度筛选组件和LS预测组件。LS前测组件需要使用LSdata数据;LS维度筛选组件和LS预测组件需要使用LSdata数据和LCdata数据,如图1组件层所示。
服务接口层是SOA系统架构中最重要的一层,是服务使用者绑定和实现服务的入口。一个服务可能需要使用一个组件或者多个组件来实现其功能。同时,一个组件可以实现一个或者多个服务功能。本系统对外的LstyleRMIService学习风格服务需要使用LS组件、LS前测组件、LS筛选组件和LS预测组件来实现服务的功能,这个服务主要对外提供了三个服务接口:LS前测服务、LS维度筛选服务以及LS预测服务(如图1第三层中椭圆虚线框所示)。
表示层主要是指绑定并使用服务的各种系统。本文通过设计一个学习系统验证了服务功能具有可重用性,不同系统之间能实现资源共享。最后,对学习风格服务得到的实验结果与NBC分类器得到的实验结果进行了对比分析。
(二)SOALS_pre判别组件核心模型
1.LS前测服务模型
前测服务主要是从终端获取学习者学习风格问卷数据,并根据量化公式把问卷结果进行量化处理,最后把该量化的数据作为有标记的样本数据存储在LSdata数据库中。FS学习风格通过Solomon量化表进行学习风格计算;FI-FD学习风格通过改进的问卷调查表和量化表进行学习风格计算[27][28][29], LS前测服务模型如图2所示。
本文使用了标准的FS问卷进行学习风格样本数据采集,该问卷的量化方式遵循Solomon量化表规则(最大数-最小数+最大数的字母),通过这种规则得到的LS结果分别是:1a、3a、5a、7a、9a、11a;1b、3b、5b、7b、9b、11b。其中,a表示学习者在某种维度上LS左边的倾向值,b表示学习者在某种维度上LS右边的倾向值,值越大表示学习风格倾向性越大。为了使学习风格结果适用于数学建模,本文将Solomon量化表的结果进行量化处理,把LS结果量化为0到1之间的小数。通过量化关系表和所罗门学习风格理论,学习风格可以通过一个四元组进行形式化表示,如公式(1)所示[30]:
其中,中的i是学习者序号,表示学习者在学习风格t维度上的取值。当取值范围为时,学习风格偏向左边的维度;当时,学习风格绝对偏向左边的维度;当取值范围为时,学习风格偏向右边的维度;当时,学习风格绝对偏向右边的维度;当时,学习风格偏向中间的维度。
FI-FD学习风格采集的方式有很多种,本文主要采用问卷调查法获取学习者LS,并将FI-FD学习风格结果进行归一化处理,量化成0到1之间的小数。通过量化关系表以及FI-FD学习风格理论,FI-FD学习风格可以通过一元组形式化表示或公式(2):
其中,中的i是学习者序号;是i学习者学习风格维度上的偏向值。当取值范围为时,学习风格偏向左边的维度;当时,学习风格绝对倾向于左边的维度;当取值范围为时,学习风格偏向右边的维度;当时,学习风格绝对倾向于右边的维度;当时,学习风格偏向中间的维度。
2. LS维度筛选服务模型
LS维度筛选服务的主要功能是识别出学习者群体在不同学习环境下LS主导维度偏向。本模块沿用了前期工作中使用的维度筛选技术[31],并将其封装成LS维度筛选服务(如图3所示)。
学习者的学习风格会随着学习环境的改变而发生变化,由于一种学习风格模型不能完全描述出学习者在不同学习环境中的偏向,所以本文采用了FS学习风格模型以及FI-FD认知风格模型构建了一个多模型的学习风格用户模型。为了识别出学习者群体在不同环境下的主导维度偏向,需要使用两种样本数据:一种是学习者在某一学习环境下的学习行为样本数据,另一种是学习者在多模型下学习风格抽象样本数据。通过这些抽象样本数据就能够进行多模型下学习风格维度相似度识别,实现多标签分类向单标签分类的转化[32],从而识别出学习群体在当前学习环境下主导K维度LS偏向。
3. 学习风格预测服务模型
预测服务是对未知LS的学习者在某一环境下的学习风格偏向进行预测,其方法是把新学习者的学习行为根据主导K维度下学习行为样本进行聚类。可以采用初始化群集核心构造算法(Initialization Cluster Core Constructing Algorithm,简称“ICCCA算法”)和3-means聚类算法(如图4所示)。
(三)组件及服务接口设计
本文利用SCA规范设计了一个学习风格组件(SOALS_Pre组件),共包括4个组件。LS组件(LS_component)中有3个服务接口和3个属性;LS前测组件(FSDI_component)中有1个服务接口和1个属性;LS筛选组件(Rec_component)中有1个服务接口和3个属性;学习风格预测组件(Pre_component)中有1个服务接口和3个属性(如图5所示)。
三、实验
(一)样本数据采集
实验数据主要来自成都大学2014级和2011级本科生以及四川师范大学2014级和2011级本科生、2013级研究生计算机专业学生的学习风格样本数据和学习行为样本数据,共计320份。其中,有效样本数据298份,男生232人,女生66人,平均年龄为23岁;从学历层次来看,本科生262人,硕士研究生36人;从区域来看,成都大学136人,四川师范大学162人。
为了验证测试结果的一致性、稳定性和可靠性,在第一次采集数据后的第二周再一次对有效样本群体进行了学习风格偏向性采集,并通过SPSS软件采用了重测可信度的方法对所罗门学习风格量表中100个样本数据进行信度验证,其中重测可信度主要通过Cohen提出的Kappa系数来验证。当问卷调查Kappa系数大于0.75就可以表示重测的可信度很好。通过对学习风格的4个维度进行可信度验证,每个维度的Kappa系数分别为 active/reflective(0.881)、sensing/intuitive(0.879)、visual/verbal(0.896)、sequential/global(0.869)。通过这些结果很好地验证了该问卷的可靠性。
通过SPSS软件,使用了100个样本数据对所罗门学习风格量表的44道题进行探索性因子分析来验证问卷的效度,把取消最小系数设置为0.6,最终KMO得出的结果为0.73,说明该问卷及样本数据适合使用探索性因子分析来验证问卷的效度。该量表是目前心理学中比较成熟的量表之一,很多研究者都做过信度和效度检验,并对该量表测试的LS结果进行了肯定,如Livesay、Dee和Nauman[33],Van Zwanenberg等[34],Zywno[35],Felder和 Spurlin[36]等。
本文通过对实验所使用的50个训练样本数据进行处理,得到了LS维度偏向分布图(如图6所示)。X轴分别为A-R(活跃型/沉思型)、S-I(感悟型/直觉型)、Vi-Ve(视觉型/言语型)、S-G(序列型/综合型)和FI-FD(场独立/场依存)5个维度的取值,每个维度上有三个取值分别表示LS左边偏向、LS中间偏向、LS右边偏向(从左往右)。Y轴表示每个维度上不同LS偏向的学生人数。
(二)学习风格测试与预测
1. LS前测服务
本文设计了一个学习系统并绑定LstyleRMIService服务,在实验中让一名新学习者(C201110409121)通过前测服务进行了学习风格测试,得到学习风格测试结果(如图7、图8所示)。
2. LS维度筛选服务与LS预测服务
在实验中,在学习系统中选择“Java JDK平台搭建”作为学习环境(如图9所示)。
通过对实验所使用的50个训练样本数据进行维度筛选,得到的结果发现,这些训练样本在该学习环境下的主导维度偏向是视觉型/言语型(Vi―Ve)。将当前学习者(C201110409121)和另外49个学习者群体(除训练样本数据外,对剩下的样本数据随机选取)构成一个测试学习者群体,通过调用LS预测服务对该测试学习者群的学习风格进行偏向性预测。其中,“Main dimensions:Vi―Ve”是指学习者群体的该学习环境下主导K维度偏向;“Results of LS online questionnaire(LSOQ)”是指问卷测试的结果;“Results of Prediction”是指学习者在“Java JDK平台搭建”环境下通过学习行为预测的结果。数字1-50表示了50个测试样本的序号,其中当前学习(C201110409121)的序列为7(如图10所示)。
从LSOQ结果可以看出,有19名学习者偏向于视觉型;有1名学习者偏向中间的维度;有30名学习者偏向于言语型。而这50个测试样本在“Java JDK平台搭建”学习环境下进行学习风格预测的结果显示,有35名学习者偏向于视觉型,有14名学习者偏向于言语型,有1名学习者偏向中间的维度。其中,有32名学习者样本的LSOQ结果与预测结果一致(正确为64%)(如表1所示)。
通过以上的实验结果,可以看出大部分学习者在“Java JDK平台搭建”学习环境下并没有像传统预测方法一样预测“active/reflective”维度,而通过本文的维度筛选服务预测的结果是“visual/verbal”维度,而这个维度上的预测通常比较困难,以前的预测准确率都只有50%-60%左右(样本数小于300),部分技术预测准确率只能达到40%。因此,实验结果是令人满意的。
为了更好地验证维度筛选服务和预测服务的有效性,利用朴素贝叶斯分类器(Naive Bayes Classifier,简称“NBC”)对50名学习者在不同维度上进行了分类,结果如表2所示。
通过上面的实验结果可以看出,通过NBC分类器在Vi-Ve维度上预测的结果准确率达到62.5%,可以确定当前环境下学习者群体主要偏向Vi-Ve维度,这与本文实验维度筛选结果一致,但是本文预测的优于NBC分类器的结果,准确率可以达到64%。
四、结语与展望
本文通过SOA架构技术设计了一个智能学习系统架构(SOALS)和学习风格判别组件( SOALS_pre),并对外了一个学习风格服务(LstyleRMIService)。不同架构的系统通过绑定该服务接口,可以实现学习者在不同环境下多模型学习风格预测服务。本文通过一个学习系统对学习风格服务进行了绑定,并通过“Java JDK平台搭建”为主题(学习环境)对提供的服务功能进行验证,证明了学习风格服务的可重用性。最后,通过对比实验验证了学习风格预测的准确率优于NBC分类器。
本文设计的学习系统架构和学习风格判别组件(SOALS_pre)还存在以下问题:
第一,未能完全实现训练数据集自动动态更新;
第二,FS与FI-FD学习风格测试服务使用了同一个服务接口;
第三,学习风格用户模型太少,例如缺少Kolb等。
我们将会在未来工作中重点解决这些问题。
[参考文献]
[1] National Association of Secondary School Principals(US). Student learning styles: Diagnosing and prescribing programs[M]. NatlAssn of Secondary School,1979.
[2] N. Barjraktarevic, W. Hall, and P. Fullick, Incorporating Learning Styles in Hypermedia Environment: Empirical Evaluation, Proceedings of the workshop on adaptive Hypermedia and Adaptive Web-Based Systems, Nottingham, UK, 2003, pp.41-52.
[3] S. Graf and Kinshuk, Providing Adaptive Courses in Learning Management Systems with Respect to Learning Styles, Proceedings of the World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education, AACE, 2007, pp. 2576-2583.
[4] Orriols-Puig, J. Casillas, and E. Bernado-Mansilla, Fuzzy-UCS: AMichigan-Style Learning Fuzzy-Classifier System for Supervised Learning, IEEE Transactions on Evolutionary Computation,13(2), 2009.
[5] P. Garcia, A. Amandi, S. Schiaffino, and M. Campo. Evaluating Bayesian networks’precision for detecting students’learning styles[M]. Computers & Education, 2007,49:794-808.
[6] C. Carcia, G. Castillo and E. Millan. Designing a Dynamic Bayesian Network for Modeling Students’Learning Styles [M]. Proceedings of the 8th IEEE International Conference on Advanced Learning Techologies, 2008: pp.346-350.
[7] R. Zatarain-Cabada, M.L. Barron-Estrada, Viridiana Ponce Angulo, A.Jose Garcia and Carlos A. Reyes Garcia, A framework for Creating, Training, and Testing Self-Organizing Maps for Recognizing Learning Styles[M]. Proceedings of the 5th International Conference on E-learning and Games, 2010: pp. 53-64.
[8] Jeremi Z, Deved?i V. Design pattern its: Student model implementation[C]//Advanced Learning Technologies, IEEE International Conference on. IEEE Computer Society, 2004: 864-865.
[9] Paredes P, Rodriguez P. Considering Sensing-Intuitive Dimension to Exposition-Exemplification in Adaptive Sequencing[J]. Lecture Notes in Computer Science, 2002:556-559.
[10] Klasnja-Milicevic A, Vesin B, Ivanovic M, Budimac Z: E-Learning personalization based on hybrid recommendation strategy and learning style identification. Comput Educ 2011, 56:885-899.
[11] Brown E, Stewart C, Brailsford T. Adapting for Visual and Verbal Learning Styles in AEH[C]// Advanced Learning Technologies, 2006. Sixth International Conference on. IEEE, 2006:1145-1146.
[12] Carver C A, Howard R A, Lane W D. Enhancing student learning through hypermedia courseware and incorporation of student learning styles[J]. Education IEEE Transactions on, 1999, 42(1):33-38.
[13] Triantafillou, E., Pomportsis, A., Georgiadou, E.: AES-CS: Adaptive Educational System based on Cognitive Styles. In: The Workshop on Adaptive System for Web-based Education, held in conjunction with AH 2002, Malaga, Spain (2002).
[14] Papanikolaou K A, Grigoriadou M, Kornilakis H, et al. Personalizing The Interaction In A Web-Based Educational Hypermedia System: The Case Of Inspire. User Modeling And User-Adapted Interaction[J]. User Modeling and User-Adapted Interaction, 2003,13(3):213-267.
[15] Dagger D, O'Connor A, Lawless S, et al. Service-oriented e-learning platforms: From monolithic systems to flexible services [J]. Internet Computing, IEEE, 2007,11(3): 28-35.
[16] Jabr M A, Al-omari H K. e-Learning Management System Using Service Oriented Architecture 1[J]. 2010.
[17] Cheng Z, Huang T, NongJ.An extensible development platform for SOA-based e-learning system[C]//Computer Science and Software Engineering, 2008 International Conference on. IEEE, 2008, 5: 901-904.
[18] 李晓锋,吴产乐. 基于 SLO 与 SOA 技术构建新一代教学资源管理系统[J]. 中国电化教育, 2010,(1):029.
[19] 孙艳,崔怀林. 面向服务的个性化 E-Learning 系统分析与设计[J]. 广东技术师范学院学报,2010,31(06):19-22.
[20] Canales A, Pe?a A, Peredo R, et al. Adaptive and intelligent web based education system: Towards an integral architecture and framework[J]. Expert Systems with Applications, 2007, 33(4): 1076-1089.
[21] Yaghmaie M, Bahreininejad A. A context-aware adaptive learning system using agents [J]. Expert Systems with Applications, 2011, 38(4): 3280-3286.
[22] 姜强,赵蔚. 面向“服务”视角的自适应学习系统设计与实现[J]. 中国电化教育,2011,(2):119-124.
[23] Felder R M, Silverman L K. Learning and teaching styles in engineering education [J]. Engineering education, 1988, 78(7): 674-681.
[24] Felder R M. Matters of style [J]. ASEE prism, 1996, 6(4): 18-23.
[25] Witkin H A, Goodenough D R. Field dependence and interpersonal behavior [J]. Psychological bulletin, 1977, 84(4): 661.
[26] Witkin H A, Moore C A, Goodenough D R, et al. Field-dependent and field-independent cognitive styles and their educational implications[J]. Review of educational research, 1977.
[27] Maghsudi M. The Interaction Between Field Dependent/Independent Learning Styles and Learners’Linguality in Third Language Acquisition[J]. Language in India, 2007, 7(5).
[28] Wyss R. Field independent/dependent learning styles and L2 acquisition [J].The weekly column article 102. Retrieved June 28, 2005
[29] Brown H D,吴一安. Principles of language learning and teaching[J]. 2000.
[30] 黄兴禄. 基于SOA学习风格判别组件的设计与实现[D]. 四川师范大学,2014.
[31][32] J. Yang, Z. X. Huang,Y. X. Gao, H. T. Liu, Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique, IEEE Transactions on Learning Technologies, vol. 7 no. 2, 2014, pp.165-177.
[33] Livesay, G.A., Dee, K.C., Nauman, E.A., Hites, L.S.: Engineering student learning styles: a statistical analysis using Felder’s Index of Learning Styles. Presented at the Annual Conference of the American Society for Engineering Education, Montreal, Canada (June 2002).
[34] Van Zwanenberg, N., Wilkinson, L.J., Anderson, A.: Felder and Silverman’s Index of Learning Styles and Honey and Mumford’s Learning Styles Questionnaire: how do they compare and do they predict academic performance? Educational Psychology 20, 365-380 (2000).
[35] Zywno, M.S.: A contribution to validation of score meaning for Felder-Soloman’s Index of Learning Styles. Presented at the Annual Conference of the American Society for Engineering Education, Nashville, USA (June 2003).
[36] Felder, R.M., Spurlin, J.: Applications, Reliability and Validity of the Index of Learning Styles. International Journal on Engineering Education 21(1), 103-112 (2005).
收稿日期:2015-06-01
定稿日期:2015-12-29
- 上一篇:人工智能在体育教育的应用
- 下一篇:微观经济学要解决问题