化学反应工程研究方法范文

时间:2023-08-16 17:39:08

导语:如何才能写好一篇化学反应工程研究方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

化学反应工程研究方法

篇1

关键词:高职院校;化学反应工程;课程改革;改革实践

引言

进入新世纪以来,我国高职院校教育工作相对于先前有了较大的变化,对人才的培养也有了更高的目标。在高职化学反应工程教学中,遵照课程要求,针对性的逐渐完善化学反应工程教学体系,提升化学反应工程课程的教学质量,对高职院校教育工作的提升是非常关键的。在对“化学反应工程”课程的改革与实践中应从如下四个方面入手:

1、确定建设目标,深化教学改革,构建国内一流课程

化学反应工程包含了化工热力学、物理化学、控制与优化及化工传递过程等知识点,总体的知识领域较为广泛,对于培养高职学生的化学基础知识素养,提升学生的化学分析能力是非常关键的,因此,在进行高职“化学反应工程”改革时,应当首先认识到化学反应工程为所有化工课程的核心,为化工专业的专业主干课程。

外国知名大学在化学反应工程方面的研究及教学工作现对于国内对化学反应工程的研究及教学是较为超前的,因此,在进行化学反应工程课程改革时,全面的剖析国外知名大学同类课程的发展趋势,对提升化学反应工程课程改革的创新性及有效性是非常必要的。在具体的实施过程中,高职院校化学反应工程的教师可以首先通过互联网搜索国外知名大学的校园网站,跟踪了解国外知名大学在化学反应工程方面发展趋势,例如:剑桥大学、ARIZONA大学等国外知名大学内化学反应工程的课程设置等情况。其次,在化学反应工程课程教学中,可以借鉴国外知名大学化学反应工程的教学计划、教学资料,从而更好的开阔高职学生的眼界,激发学生学习化学反应工程课程的学习兴趣。第三,如果经济等方面的条件允许,高职院校化学反应工程课程的教师可以赴国外进行化学反应工程课程的访问与学习,亲身体检国外知名大学在化学反应工程课程教学方面所做的工作,学习化学反应工程的教学模式,这对于更好的开展化学反应工程改革有着重要的推动作用。

2、阐明基本原理,联系开发实例,教学内容精益求精

2.1精选了化学反应工程课程教学中基本原理的内容

化学反应工程的重点为将化学反应的机理阐明,将反应工程的基本理论、概念及研究方法介绍给同学,因此,在进行高职化学反应工程的课程改革时,应将化学动力学、理想流动反应器、间歇反应器、化学反应过程中质量与热量的传递,反应器稳定性及反应选择性作为化学反应工程的课程的主要讲解内容,并按照浓度效应与稳定效应展开相关的化学反应工程讨论工作,力求确切阐述、清楚表达,为高职学生更好的学习化学反应工程和化学反应器相关的知识打下坚实的基础。

2.2更新了反应工程课程教学中过程开发的案例分析

工业反应器为化学反应工程的主要研究对象之一,同时化学反应工程中理论联系实际的情况较多。很多高职教师在化学反应工程课程教学的过程中往往承担有与化学反应工程课程相关的科研项目,因此,这就为化学反应工程课程改革提供了较好的平台,教师可以将科研成果作为化学反应工程课程的具体案例进行开发与分析,从而更好的提升整个化学反应工程课程教学的精彩性,使之做到言之有物,更好的丰富整个化学反应工程课程的内涵,也能够帮助学生更好的了解与学习到化学反应工程在具体的开发过程中的作用与进展。

2.3 增加了生化、材料、环境等反应工程方面的内容

现阶段很多高职院校的化学反应工程教学缺乏教学所需的学习氛围,因此,在高职院校进行化学反应工程的改革时,增加了与化学反应工程相关的材料、生化及环境等方面的能够有效的反应出化学反应工程前沿的内容是有其必要性的。在具体实施时高职院校可以借此拓展课程内容的内涵,请学有专长的专家学者介绍生化反应工程、聚合反应工程、电化学反应工程、精细化学品反应工程、环境反应工程等新方向、新进展,有效的实现学生在学习化学反应工程课程时思路与眼界的开阔。

3、讲授研讨结合,试行双语教学,教学方法不断改革

高职院校在进行化学反应工程课程改革时,应重视教学方法的转变,传统的教学方式在一定程度上仍有一定的借鉴意义,因此,在进行改革时还应当继续坚持传统的教师讲授的方式,在教师讲授的同时,加入一定量针对性的讨论式教学方法,组织学生针对性的对化学反应工程的某些重要的知识点进行讨论。在化学反应工程课程具体讲授的过程中,注意应用归纳法、对比法及演绎法等方法,针对不同的化学反应工程内容,应采用不同的教学方法,在提升化学反应工程课程教学质量方面应下功夫,例如:在讨论串联反应优化问题上,引导学生精心制作了电子课件,并鼓励学生上讲台讲解,学生的积极性很高,既活跃了课堂气氛,学生本身也觉得收获很大。

其次,在化学反应工程课程改革时加入一定量的双语教学方式,能够较好的提升化学反应工程课程教学的质量,担任化学反应工程双语教学的教师一般均为博士学历,具有较多的国内外学习的经历,上课课件、板书全部采用英语书写,考试试题与解答也全部采用英语表达。双语教学试点吸引了一批具有较高外语水平的优秀学生参与,而上课教师也将国外化学反应工程教学思想与教学理念融入到课堂教学过程中,这对于提升学生学习的积极性有着较大促进作用。

4、结束语

在化学反应工程的教学改革的过程中,教师还应当充分的利用现代化教学设备,将教学的内容通过现代化多媒体技术呈现出来,更好的提升化学反应工程课程教学的生动性、形象性,这对于提升高职学生学习的兴趣也是较为重要的。

[参考文献]

[1]王琳琳,陈小鹏,梁杰珍,刘幽燕,韦小杰.改革地方院校课程教学模式和内容,培养学生工程与创新能力――以广西大学化学反应工程教学为例[J].实验技术与管理,2012,08:10-14.

篇2

化学反应工程是被教育部颁发的《目录》确定的宽口径化学工程与工艺专业的四门主干课程之一,也是涉及研究过程工业(即通过化学变化或物理-化学变化制造产品的工业,包括化工、石油、冶金、材料、轻工、医药、生化、食品、建材、军工、环境等) 中生产过程、生产装置、工艺技术规律的诸多专业重要的必修或选修的技术类或技术基础课程[1]。化学反应工程既包含化学现象,又包含物理现象,是一门综合性强、涉及基础知识面广、对数学要求高的专业技术学科,学生在学习时普遍感到理论抽象、计算繁琐,不少学生认为化学反应工程课程是大学中最难学习的课程之一。又加之我校为一所地方性本科院校,学生的基础知识并不扎实,实验和实习条件有限,因此,如何在较短的课时数内使学生能够系统地掌握本课程主要内容,培养学生的工程观念和创新能力,成为我校化学反应工程教学改革的重点。基于此,我们在传统教学方式的基础上,进行教学改革,引入师生互动教学模式,并取得了一些进展。

1 化学反应工程的主要内容和作用

化学反应工程是化工类专业的一门专业主干课程、核心课程,涉及物理化学、化工热力学、化工传递过程、优化与控制等。主要研究工业规模化学反应过程的优化设计与控制。该课程对于培养学生的工程意识、强化工程分析能力具有十分重要的作用[2]。本课程的基本内容包括反应动力学和反应器设计与分析两个方面,重点是介绍气——固相催化反应本征动力学、气——固相催化反应宏观动力学、理想流动反应器、反应器中的混合及对反应的影响、气液反应及反应器和流——固相非催化反应等基本理论。目的是使学生掌握研究工业规模化学反应器中化学反应宏观动力学的基本方法和基本原理,具备进行反应器结构设计、最优操作条件的确定和最佳工况的分析控制、过程的开发研究和模拟放大的基本能力。

2 化学反应工程教学现状与存在的主要问题

传统的化学反应工程教学方式单一,主要是教师在讲台上讲,学生台下听。课堂教学不具有主体性、创造性、全面性、发展性的行为,其不足之处有以下几方面:灌输式过多,参与式过少。教师的启发式与学生的参与体现得不够,学生被动听课,课堂气氛大多比较沉闷。结论型过多,问题型过少。教师教给学生的都是定论,启发学生思考问题、提出问题不够,学生的问题意识和提出问题、研究问题的能力较弱,授课效果不佳。现代教学理论认为,教学是一个双边互动的过程。在这一过程中,教师是主导,学生是主体,任何一方的作用都不能忽视[3-4]。所以我们在化学反应工程的教学中,根据地方院校的特点引入了师生互动教学法。

3 互动式教学法在化学反应工程教学中的运用

互动式教学是指在教师的指导下,利用合适的教学选材,通过教与学双方交流、沟通,激发教学双方的主动性,拓展学生思维,培养学生发现问题、解决问题的能力,以达到提高教学效果的一种教学模式[5]。这种教学模式需要营造多边互动的教学环境,在教学双方平等交流探讨的过程中,达到不同观点碰撞交融,进而激发教学双方的主动性和探索性,从而提高教学效果。互动式教学常用的方式有多种,本教学改革选择问题教学法、案例教学法、上课提问、课后互动多种方法进行教学,由传统的讲授式转向讲授与提问、讨论相结合的教师与学生双向交流的启发式教学。在教改过程中,我们充分发挥互动式教学法的优势,努力寻找互动式教学与化学反应工程教学的最佳结合点,促进了化学反应工程教学的开展。

3.1问题教学法与案例教学

问题教学法是指围绕问题展开教学双方互动。一般为:提出问题—思考讨论问题—寻找答案—归纳总结。比如,在讲授多级cstr串联的计算及优化时采用此教学方法。首先提出两个问题,第一个问题是分析多级cstr串联的必要性,第二个问题是如何求串联体系的转化率。然后引导学生根据平推流和全混流反应器的优缺点和两种理想流动反应器数学模型的建立方法进行思考、讨论;进而利用已学知识点寻找答案,教师最后归纳总结。在讲授反应器中的混合及对反应的影响这章时,充分利用案例教学。案例教学一般程序为案例解说—尝试解决—设置悬念—理论学习—剖析方案。在这一章中利用案例教学,启发学生学会根据所测得的停留时间分布情况,利用非理想流动模型解决实际工业生产中的操作型和设计型问题。

3.2加强课堂提问

篇3

一、“以学为主”的多样化课堂教学

龚克指出,[5]大学教育区别于基础教育的标志之一,应是从以教为主转变为以学为主。改进以“管灌”为主的培养模式,激发学生的主动求知欲是真正提高教育质量的关键。在化学反应工程课程的双语教学中,我们也在逐渐转变观念,采用多种多样的课堂教学方法,改变完全以教师为中心的讲授式教学为多种教学方法并用,以提高学生学习的主动性为目的,着力提高课堂教学效果。下面拟对主要采用的几种教学方法进行介绍。

1•讲授式教学:即教师系统地向学生传授科学知识。由于本课程采用双语教学,学生在学习中往往花费较大精力在理解语言、语法上,反而忽视了课程知识,导致学习效果不够理想。[6]针对这一问题,我们在教学中改变传统的灌输式教学,采用多种形象、生动的手段,如大量的图示、动画,以图文并茂的方式进行讲解,避开学生在语言方面的障碍,使其注意力转移到课程知识的学习,引导学生不要过多关注语言、语法,强调英语语言以“用”为目的,提高学生对知识的接受效果。课堂上经常设问,激发学生克服语言障碍从课本中寻找答案的兴趣。教学中重视双语应用实效,根据学生接受知识的程度,逐渐提高英文讲授和表述的比例;鼓励学生多运用英文,从看例题、做习题开始,到逐渐习惯用英文写作业和考试答卷。

2•互动式教学:即授课过程中教学双方经常进行交流互动。例如在教学中,教师提供工业反应器范例,由学生自行发现反应器的设计特点并主动质疑,然后全班讨论或小组讨论,继而选出学生代表,用英语表达自己对该反应器设计特点的认识和分析原理,最后教师作总结或纠正要点。教师经常选出教材中较为生动的典型章节或例题,提出问题,由学生自行阅读课本,让学生带着兴趣学习,引导学生猜读不熟悉的单词;以学习课程知识为重点,让学生自行讨论阅读的内容,最后教师强调这部分内容中的关键概念和原理。每次课结束,教师都布置任务给学生,要求学生总结本次课程的内容。下次课上首先抽出几位同学对前一次课的内容进行提纲挈领的回顾,由此督促学生课下自主复习,及时回顾,保证知识的连贯性,达到温故而知新的目的。这些互动式教学方法促使学生自主阅读教材,并运用英语语言表达自己对课程内容认知,取得了很好的教学效果。

3•感知式教学:教学中利用各种方式让学生直接感知实际的反应器。我们认为,仅给学生讲授理论知识,往往很难达到预想的效果,而直接感知对化学反应工程教学具有非常重要的作用。由于反应器是化工工艺过程的核心设备,我校有大量的科研力量投入在反应器设计中,已开发的反应器包括催化裂化、催化裂解两段提升管反应器及渣油加氢裂化悬浮床反应器等。此外,各科研组用于科学研究的反应器多种多样,如固定床反应器、流化床反应器、釜式反应器等。在教学过程中,课程组教师创造各种条件,让学生进入实验室参观实际反应装置,不能参观实物的,则以生动的照片、图片来展示,将反应器的特点直观地展示给学生,让学生将抽象的理论与实物建立起联系,显著提高教学的实效。

4•训练式教学:即教学注重学生对所学知识的反复实际训练。目前推进的“卓越工程师培养计划”中,很注重培养学生的工程设计能力,在化学工程与工艺专业随后的课程中有专门培养工程设计能力的化工设计课程,其中不可避免地涉及化学反应器的设计。由此,在课堂教学中,我们除了让学生就每个知识点进行反复训练,还设计题目,让学生就多个知识点甚至整个知识体系进行训练;并设法找到工业实际反应器的数据,例如石油化工过程中涉及的油品催化裂化流化床反应器、乙苯脱氢制苯乙烯固定床反应器、邻二甲苯制苯酐反应器等,让学生身临其境地进行反应器计算或设计的训练。在教学中,针对具体的教学内容,我们分别采用不同的教学方法,激励学生充分发挥主动性,并尽力使课程理论与工程实际相结合,取得了较为满意的教学效果。

二、理论教学与实践教学充分融合

近年来由于校院两级投入的加大,我们的实验和实践教学条件取得了较大的发展。化学反应工程课程组教师,充分抓住各实践教学环节的机会,将本课程中的理论融入实践教学之中。

目前,针对本课程所设置的教学实验有五个,包括:多釜串联反应器停留时间分布测定实验、固定床及流化床的流动特性实验、管式反应器内的烃类裂解反应实验、苯酐合成反应过程实验以及乙苯脱氢制苯乙烯实验,以强化学生对非理想流动、流体流动示踪方法、停留时间分布、实际反应器形式以及转化率、选择性、反应器换热方式等的认识。这些教学实验,为本课程的实践性教学提供了良好的支撑。进行相关实验时,我们进一步强化学生所学的理论知识,重温重要的概念,使学生在实验过程中切实认识真正的反应器,并运用所学理论知识进行反应器的操控和数据的处理。

我校拥有良好的实践和实习教学条件。化学工程与工艺专业的学生均要经历认识实习和生产实习等实践环节。化学反应工程课程组教师充分利用这些实践环节,引导学生把课程的相关理论知识与现场实践相结合。例如在实习中,我们给学生下达任务,了解相关工业反应器的形式,认识其特点,了解其中所发生反应的类型和特点,调研并取得反应器进出物料组成和流量数据,以此进行物料衡算,计算目的产物的收率、选择性等,使学生对反应工程所学内容有一个回顾,体会到本门课程所学知识在实际工作中的作用,激发学习兴趣,实现理论与工程实际的紧密结合。

我校专为化工专业建成了一个仿真计算实验室,安装了常减压、催化裂化、加氢精制等典型的炼油装置仿真软件。在配合实习教学的同时,它们可以进一步深化学生对化工反应器的认识。仿真实验室还安装了化工设计模拟软件,为化工设计实践提供了良好条件。承担化学反应工程课程的教师,也参与化工设计实践的指导,从中进一步强化有关反应器设计理论的应用,使抽象的理论体现于具体的工程设计中,让学生体会到学有所用。很多学生在化工设计总结中感慨地表示:以前学了那么多理论,不知道有什么用,通过化工设计,又将以前的理论知识回顾了一遍,设计出一套实际的装置,收获很大,很有成就感!目前,我国推进的“卓越工程师培养计划”注重提升学生的工程实践能力和创新能力,[5]本课程理论教学与实践教学充分融合的教学方案无疑正好吻合了“卓越工程师培养计划”的总体思路,也是我们进一步努力的方向。

三、教学与科研相结合

科研在高等教育中具有十分重要的地位,要培养创新型人才,建设一支合格的教师队伍,必须把科学研究作为提高教师素质的关键环节。教学工作是教师的天职,而科研对教师学术水平的提高有着积极的促进作用。国内外经验证明,没有高质量的科学研究,就不可能建立一支高水平的师资队伍。没有高水平的师资队伍,同样也不可能有高水平的教学质量和科学研究。科研是提高教师综合素质和教学能力的第一促进力。

我校化学反应工程课程组教师均具有较强的科研背景,在炼油工艺和催化领域取得了大量的研究成果,掌握着该领域的最新进展,所承担的科研任务大多与化学反应工程课程知识有着紧密的联系。例如,催化裂化两段提升管反应器就是利用化学反应工程的知识所开发出的新型反应器。已开发的多产丙烯(TMP)技术的中心环节也与非均相催化反应动力学和反应器设计直接相关。教师在科学研究中进行自我完善与发展,通过科研工作促进自我知识结构的更新、知识体系的充实、对知识前沿的把握和对学科知识的理解,为教学内容和教学方法的改革奠定了“能动性”基础。

有深厚的科研背景,可以保证教师授课中知识传授的准确性与知识重点的掌握,同时教学中教师会自然而然地把科研中获取的生动案例结合进来,实现将科研成果向教学内容的转化。将科研成果融入课堂教学,一方面能有力促使学生掌握较宽的化学反应工程基础知识,学习化学反应工程的研究方法与思路,了解化学反应工程最新进展及发展方向,另一方面也激励学生提高创新思维的能力,加强工程观点、提高分析工程问题和解决工程问题的能力。以下即是科研成果向教学转化的两个实例:

实例1,利用两段提升管催化裂化技术的科研成果,课上给学生讲授两段提升管反应器的设计思路,从反应动力学特性、反应器流动特性等多角度进行案例剖析讲解,使学生在理解理论知识的同时,接触到工业实际反应器设计案例,抓住学生的兴趣点,大大提高教学效果。

实例2,我们利用科研中对反应器流动行为示踪研究的经验,生动形象地将非常抽象、难懂的非理想流动现象和概念介绍给学生,并利用图片、动画给学生演示非理想流动示踪研究的过程,使学生产生浓厚的学习兴趣。

教师们在科研工作中积淀的经典案例和对学科前沿的把握,使学生感同身受地体会到知识的力量,增强了对工程技术科学的崇尚意识,有效地激发了探索和研究的热情。

篇4

 工业规模反应器及其行为特征是化学反应工程所研究的对象,由于其种类多样,因此,对其进行合理的分类是研究的开始。   

 一般在第一层次上是按反应系统的“相态”进行划分的,通常分为均相和多相反应器两大类。大部分的教材也是按照该特征进行内容编排的,如浙江大学陈甘棠所编的《化学反应工程》、北京化工大学郭错等所编的《化学反应工程》等,都是遵循这一模式。而多相反应器又可分为两相和三相反应器,其中两相反应器包括气固相和气液相两类,三相主要是气液固三相反应器。   

 第二层次上的划分标准则有多种,例如可以按“固体存在状态”对两相反应器进行划分,如对气固两相反应器可分为气固相固定床反应器和流化床反应器;可以按“反应性质的不同”分为气固相催化反应器和非催化反应器;也可以按“反应器形状的不同”分为管式、塔式和釜式反应器等,诸如此类,不一而定。又如对气液固三相反应器,可以按固体在床层中的形态分为固体固定型和固体悬浮型,前者有气液并流向下的涓流床反应器,液相向下的逆流涓流床反应器和气液并流向上的填料鼓泡塔反应器;后者则有淤浆床反应器和三相流化床反应器。   

通常第一级按相划分标准在化工业界是有共识的,而次级标准则诸多不一了。图2粗略地对不同反应器根据不同标准进行了划分。

篇5

关键词:化学工程工艺;绿色化工;分离技术;超临界流体

1概述

随着我国社会经济的快速发展,各种化学制品已经充斥在我们周围,成为我们日常生产生活中不可或缺的基本物品。然而,这些物品的原材料生产,都是来自于化学工程与工艺。化学工程与工艺是通过对化学材料的处理,从而实现了化学生产的环保资源的高效优化,生产过程也变得非常完善。尤其是当前,经济的快速发展也随之带来了严重的环境污染问题,化学工程与工艺更是要朝着绿色环保的方向发展,尤其是与化学工程工艺相关而且环境问题息息相关的行业,例如石油化工行业、材料化工行业、生物化工行业等,这些都是利用化学工程与工艺的技术来带动经济发展的行业,对于我国社会的经济发展来说,具有非常重要的现实意义。所以利用高新科技实现的化学工程与工艺,不仅有利于科学的发展和进步,而且对于经济可持续发展来说意义重大。尤其是目前化学工程与工艺正朝着高精化、自动化、数字信息化的方向发展,加强对化学工程工艺的研究是非常有必要的。

2化学工程工艺

化学工程与工艺是涵盖冶炼、药物生产、食品加工、材料化工、印刷业等多行业一门科学,其实现是以化学的基本理论知识为基础的,具有工业特色的技术。化学工程工艺涵盖了原有化学的理论知识,结合了现代最新的环保思想和理念,对于促进社会的发展、人类的进步、经济的可持续化来说意义重大。目前环境保护越来越被人们所看重,也是人们在物质经济条件逐渐优越的前提下追求更高质量生活的体现。而化学工程工艺的相关研究,这实现环保节能、优化工业生产过程、提升社会经济发展的重要途径,它的出现,能够使人们在减能节排的前提下使其经济利益最大化,也是目前更多企业愿意尝试和追求的环保生产途径。科技的发展带动社会的进步,经济的提升势必会对自然环境造成破坏,在绿色环保、减能节排的前提下,化学工程工艺势必为社会可持续发展带来新的契机,这对于社会发展来说,具有非常重要的现实意义。新型的化学工程工艺与传统的化工相比,更加注重环境保护,更加看重生产效率,例如绿色化工技术、最新的分离技术以及超临界流体萃取技术等,都是当前化学工程工艺最新兴的生产技术。

3绿色化工技术

绿色环保、节能减排是当前企业工业生产一直看重和强调的生产方式,化学工程工艺中的绿色化工技术,则是对绿色环保的工业生产的最好的诠释,绿色化学工程又被人成为环境优化化学工程,核心理念就是注重环境保护、降低环境污染、节能减排,从而实现环境污染与企业生产利益最大化之间的最佳平衡,对人类的健康和发展具有非常积极的意义。所以绿色化学工程工艺就是在化学工程过程中原材料选取、催化剂选用以及化学反应过程中都在强调绿色化工的理念,从而从化学工程生产的源头阻止环境污染,促进废物利用。

3.1选用绿色化学原料

绿色化工源头做起就需要对化学工程的原材料入手,通过选择绿色环保的、无害的化学化学物质作为企业生产的原材料,在根本上减少或消除化工生产的污染物的排放,进而将对环境污染源消灭在萌芽之中。当前,在企业生产中原材料的选取非常重要,尤其是在各种高新科技的快速发展下,各种化工原材料、催化剂、溶剂等都已经能够加工成无毒无害或低毒少害的化学材料,所以在针对化学工程原材料选取时,尽量选择使用高新技术生产的无毒无公害的原材料,或者采用天然的植物、农作物或其他很多自然生物作为企业生产的原材料,从而有效地促进化学工程原材料绿色化,从根本上消除自然环境污染源。

3.2选用绿色化学催化剂

在化学工业生产中,很多都需要催化剂来加速整个化学反应的过程,从而节约生产时间成本,提升经济收益。然而,在传统的化学工程生产过程中,很多催化剂虽然加速了化学反应的过程,但是在污染物生产和排放量等方面,都对环境造成了很严重的污染。目前在绿色化工技术中,大都采用天然无公害的催化剂的开发和使用,在化学工程中,尽量选择无污染公害或少污染的催化剂替代传统的污染重的催化剂,从而促进化学反应工程的绿色无公害。目前,部分化学工程工艺研究人员发现一种烷基化固相催化剂,其在促进化学反应的过程中基本上能够做到无污染物排放,同时能够加大废弃物的使用率,这对于企业绿色化工生产来说,将是一个很大的福音。

3.3选择绿色的化学反应

在企业化工成产过程中,会有很多化学反应,而对于这些化学反应的选择,尽量提升化学反应的选择性,从而将化工过程中减少污染排放和能源消耗,使生产物更加纯净化、提取更加便捷。以石油化工生产为例,对于烃类的处理常常选择氧化处理,这个操作会对生产物造成污染和破坏,所以在石油化工生产过程中,要尽量避免此种反应,通过优化化学反应的选择性,选择绿色生产,从而提升整个化学反应的绿色生产过程。

4化工分离技术

在化学工程工艺中,有很多物质都是混合的,对于化工企业的生产来说,是远远不能符合生产所需的,那么在化学工程工艺的物质分离技术,则是将物质进行净化、提纯的重要过程,是使物质从杂乱无章、无规律的变化,通过外在作用力,如压力、重力、温度、电磁场等作用下能够有序的转变的过程,而过程中是需要消耗能量的,而这种过程这是化学工程工艺中的物质分离技术。在化工分离技术中,应用最为广泛的是蒸馏法,这种方法的实现是通过外在的燃料燃烧对物质进行加热,通过混合物中不同物质的气化温度点,来充分掌握加热温度的变化,使得混合物的温度在预期温度点进行持续加热,从而实现对应物质气化分离。在我国,对于蒸馏分离的技术和工程实现,都已经积累了深厚的理论知识和丰富的应用实践经验,为我国的化工也生产做出了不可磨灭的贡献。但是,蒸馏法整体来说速度比较慢,效率相对较低,所以在化学工程分离技术的实现中,目前推出了各种热门的物质分离方法和技术,无论是在时间效率上、还是在生产成本上,都能很好地应用在企业化工生产过程中。

4.1膜分离技术

膜分离技术是当前化学工程工艺领域中,实现物质分离技术中比较流行的分离方法,在环保节能、低污染、高效率等诸多方面都表现出优异的性能。膜分离技术是以各种材质的膜作为基本的分离介质,膜的介质可以采用气体材质、固体材质、液体材质或混合材质,最终构成一个膜两边互不连通的界面,根据其自身的渗透特性,在不同的外在作用力(例如重力、压力、电磁场、渗透压差)下,实现物质分离。按照膜不同材质划分,常见的膜有包括支撑液膜、乳化液膜的液体材质膜以及无机材料膜、聚合物膜的固体材质膜,这些膜的材质、特性不同,最终实现的分离过程也不尽相同,有渗透、电渗析、微滤、液膜分离等,这些分离技术和过程在气体干燥、废水处理等方面广泛应用,正式因为膜分离技术效率高、耗能少、工作条件需求低,也逐渐化学工程工艺中分离技术的主体。

4.2吸附技术

在分离技术发展迅速的今天,新型吸附技术也逐渐进入了物质分离工程中,通过变压吸附、层析、模拟移动长等分离方法,新型的吸附技术也成为了分离技术中的新型技术,在工业制造和化工生产中起到非常重要的作用。

4.3反应分离耦合技术

反应分离耦合技术是提高生产效率、优化化学工程生产过程、降低生产成本中发挥越来越重要的作用。反应分离耦合技术是通过利用物质分离来促进反应或通过物质反应来促进分离的一种化工分离技术,整个技术的应用效率非常高,操作费用也很低。以醋化反应为例,该反应过程就是在精馏塔中进行可逆的醋化反应,利用精馏的反应来分离醋和水,同时逆向反应也能够加强醋化过程,从而在原料成本等多方面节约成本。

5超临界流体萃取技术

超临界流体又称为SCF,是SupercriticalFluid的缩写,一般的气体或液体在温度或者压力的持续变化下,达到某个临界点就会发生气体到液体的变化或者液体向气体的变化,但是,超临界流体是某种流体物质在达到临界压力点或温度点时,如果持续提升外界条件,该流体密度不断增加,但是并没有真正发生液化或气化的现象,此时的物体就成为超临界流体,该流体既具有气体的特性,又具有也提到特质,利用超临界流体来实现物质分离的技术,则被称为SCFE超临界流体萃取技术,该技术目前被广泛应用在食品加工、化学工程和企业生产、生物制药等诸多领域。SCFE的超临界流体萃取技术,是对混合物进行施加温度或压力的条件,从而使其进入超临界状态,进而使萃取物从其中分离出来,实现物质的分离。流体物质在超临界状态下,融合了气体和液体的综合特性,密度上比气体大得多,一般与液体比较接近,但是粘性度方面则与气体接近,比液体小得多,而且超临界流体自身的溶解度非常高、而且很容易流动和扩散,而且在压力或温度的临界点,能随着外加条件的微小变化,密度则发生显著变化,极易实现混合物中萃取物的提取和分离。利用超临界流体萃取技术,一般是使用流体作为萃取物的溶剂,使其进入超临界状态,然后与物料进行接触,使其中的萃取物溶于流体中,进而实现萃取物与物料的分离,而后降低外在施加条件,如降低压力或温度,流体密度发生变化,溶解度降低,萃取物则很容易从流体溶剂中解析出来,从而实现萃取物的分离。利用SCFE的超临界流体萃取技术来实现物料萃取物的分离,在提取速率、萃取物兼容范围等方面都非常优异,而且外在条件是通过温度或者压强的调节来实现对流体密度、溶解度的控制,从而能够有效地实现萃取物的分离,而且提取萃取物的纯度非常高,对于化工生产来说非常重要。其次,流体溶剂的选择一般选择二氧化碳流体,这种低温、无氧环境的操作可以有效地分离热敏或容易氧化的物质,此外,SCFE技术的实现,可以从固体或中液体中快速提取有效地萃取物成分,整个过程无污染、耗能少,而且对于有机物的分离提取和精致都有非常显著的功效。

6总结

化学工程工艺是目前涵盖冶炼、药物生产、食品加工、材料化工、印刷业等多行业的专业学科,其实现的专业技术对于企业的生产来说具有非常重要的现实意义。在化学工程工艺中,常见的技术有绿色化工技术,该技术是从原材料、催化剂以及化学反应的过程中选取绿色无毒无公害的物质和反应选择性来提升化工的低污染率,分离技术则是通过蒸馏分离、膜分离等分流技术来实现的化工材料的分离,超临界流体萃取技术则是采用超临界流体对物料中萃取物的提取,通过改变外在条件来实现萃取物的提取,从而实现物质分离。这些化学工程工艺都在为企业的生产、化工过程等起到非常重要的作用,为促进我国的经济发展奠定了良好的技术基础。

参考文献:

[1]吴建颖.浅析化学工程与工艺[J].中小企业管理与科技(下旬刊),2013,(02).

[2]张杨.浅谈化学工程技术在化学生产中的应用[J].科技创新与应用,2014,(08).

[3]谢若曦,赵阳.化学工程与工艺[J].民营科技,2012,(08).

[4]化学工程2011年(第39卷)第1-12期(总第263-274期)总目次[J].化学工程,2011,(12).

[5]李娴,解新安.超临界流体的理化性质及应用[J].化学世界,2010,(03).

[6]霍鹏,张青,张滨,郭超英.超临界流体萃取技术的应用与发展[J].河北化工,2010,(03).

[7]武昊宇.绿色化工发展方向及技术动态探究[J].产业与科技论坛,2011,(23).

篇6

超临界流体技术一般是控制温度和压力的条件下,或者加入其他物资的情况下改变体系的传质系数、传热系数及化学反应特征的,这能更加高效清洁地进行化学生产,有的在超临界的状态下能节省能耗,所以超临界流体技术也被称为超级绿色化学技术。超临界液体技术(SCF)现在广泛应用到了材料制备中。早在上世纪九十年代该技术就已经开始应用,把二氧化碳制备成超临界的状态,以它为介质来制取特氟龙;还有聚丙烯工艺中也应用了SCF技术,利用丙烷的特点来做稀释剂,该技术也是做PE的升级版。当下,超临界流体技术则更多地应用在了高分子材料,复合材料,不易粉碎的无机物材料,以及提取不太容易溶解在单一超临界液体中的有机物。现在应用的超临界流体技术的方法主要有一下几种:

1、快速膨胀法,该方法主要用于固体颗粒状的物质的制备;

2、压缩抗溶剂发,主要用于制备微孔、微球类的物质,所以在药物分子及聚合物共沉上应用较多,也较成熟;

3、抗溶剂法,通常该方法会应用在制备爆炸性物质和不溶于单一超临界流体的有机物上等。除了以上在制备材料方面的突出贡献,超临界流体技术还在分析化学中大展拳脚。它与色谱技术相结合,能在色谱研究中得到比气象色谱更高效,比液相色谱更精准的超临界流体色谱。更由于它的高效和低成本使得超临界流体技术在石油化工、环境保护还有医药化学等多个领域得到广泛使用。

2绿色化学工程技术的应用

绿色化学指用化学的技术和方法,再结合其他学科的知识来减少或者消除化学对于人类的危害、社会的危害以及环境的危害。从源头的原材料开始,到生产过程中的试剂和介质还有催化剂,到最后的产物及副产物都要求绿色、环保、无毒害,还有就是“原子经济性”的“零排放”。像在绿色无毒原料控制方面,石油化工原料就可以改变成生物原料的。制作尼龙可以不用含苯的石油化工原料,改成生物原料,生物原料的淀粉及纤维素等在酶催化反映下也能形成己二酸,这样一样可以制作尼龙,而且对人体和环境都危害极小。再比如在反应过程中对介质、溶剂等的控制,也要求无毒无害,在有机反应中水就是很好的溶剂,不仅对环境无害还能节省到有机反应中的官能团的保护还有去保护等环节,所以也省工艺省时间了。还有反应中用的绿色催化剂,绿色催化剂能更加正对性,更加高效地参与化学反应,并且得到的副产物少。在有机合成反应中,绿色催化剂的应用显得尤为重要。像不对称合成反应中,催化剂不仅为化学农药和精细化工提供反应需要的中间体,有的还能为反应提供绿色的合成技术。比如酶催化反应、氢酯化反应、还有不对称酮反应等。

3化学工程技术中的传热研究

化学反应中传热的研究是化学工程的重要内容,因为它严重影响着一个反应的能耗,反应的进程等。在微细尺度传热研究中,由于尺度微细,原有的传热假设及会发生变化,其流动还有传入的规律也会发生变化。目前在纳米、微米、集成电子设备还有微型热管领域中该传热研究交深入,取得了较不错的成果。而我们在改进传热工艺和设备上也做足了研究,为了提高传热效率,我们可以改进设备的性能,使其持续对外传热的能力提高,改变里面的传热材料和工艺的设计来实现传热的效率。然而我们现在投入很多精力的滴状冷凝技术的研究还没能取得很好的成果。由于我们不能在维持物质在滴状的时候冷凝,同时冷凝表面寿命延长,所以目前这个难题还很难突破。还有就是我们在计算沸腾时的传热存在很多弊端,复杂的沸腾状态不适用目前所有的传热计算方式,就研究沸腾传热的计算方法也是一大块难题的,所以就滴状传热技术的研究也将会是我们传热研究领域的一个重要课题,如果该研究获得进展必将改变现在很多的化学生产工艺形式,将会带领化学生产进入一个新的时代。

4结语

篇7

殷金玲 景晓燕 王君 哈尔滨工程大学材料科学与化学工程学院

基金项目:哈尔滨工程大学基础课程教学改革研究计划建设项目002100020632。

摘要:针对面向非化学化工专业学生开设的普通化学教学中存在的问题,通过重点利用学生所学专业与普通化学的结合点,配合

一定的其他的课堂教学方式来激发学生学习普通化学的积极性。

关键词:普通化学;专业;交叉性

中图分类号:G642.0 文献标志码:A 文章编号

一、普通化学教学中存在的最大问题的分析

目前许多大学里的普通化学基本上都是面向非化学化工专

业的学生开设的,大部分学生认为化学与自己将来的专业和就业

没有什么关系,在某种程度上致使很多学生是在被动的学习普通

化学,主要就是为了考试能够通过或者取得高分为自己的奖学金

的获得做个准备而已,而这种被动就造成了学生的学习积极性大

大降低。那么如何提高非化学化工专业学生学习普通化学的学习

兴趣就成了许多普通化学教师面临的最大问题。

二、针对学生专业与普通化学的交叉性方面采取的措施

1.了解学生所学专业

每位普通化学教师在接到教学任务后都需要首先整体了解

一下授课对象是那个系的?学哪个专业的?这样才能有的放矢,

为下一步工作做好准备。

2.深入调查收集整理学生所学专业的特点和培养目标及往年

就业去向

在了解了授课对象的所在院系和所学专业后就需要针对其

专业等信息开始进行下一步的调查工作,以我校学生所学专业为

例,比如船舶与海洋工程专业,其专业培养目标是培养船舶与海

洋工程结构物研发、设计、建造、检验、管理、教育等高层次专

门人才。该专业毕业生主要就业去向是到与船舶和海洋工程有关

的公司及国家各部委机关,以及沿海、沿江各船舶设计院、研究

所和造船骨干企业工作。再比如:核工程与核技术专业的专业培

养目标是培养能在相关领域从事核工程与核技术研究、设计、生

产、运行和管理的专门人才。就业去向主要是一些国内的核电站

和核工业的研究院。还比如:环境专业的专业培养目标是培养能

从事废水、废气、固体废弃物等污染物的防治技术研究、设计、

应用和开发工作的高级工程技术人才。本专业毕业生就业面较

广,对于我校毕业生相对集中的就业单位有各大船厂,沿海各大

型企业的水处理公司,建筑设计院等。

3.针对收集的信息寻找与普通化学授课内容相关的交叉点,

并灵活应用于课堂教学中

针对船舶与海洋工程专业的学生我们在讲电化学基础这一

章节的内容时首先就提出一个问题:大家的专业都与船舶有关,

而我们知道船体相当一部分与海水接触,海水对船体的钢铁具有

较强的腐蚀性。那么这种腐蚀在化学上属于哪种腐蚀呢?如何在

实际中采用什么样的方法来防止或降低这种腐蚀呢?这个问题

直接与他们的专业相关了,学生自然兴趣就提上来了。然后在讲

金属的腐蚀时,让学生们知道这种腐蚀是电化学腐蚀,而针对这

种腐蚀常采用的方法有:阴极保护法(又包括牺牲阳极保护法和

外加电流阴极保护法),阳极保护法,缓蚀剂法,金属表面覆盖

层等方法。有时大家去船厂会发现在船下面挂着一个铝块或者锌

块之类的东西,这是应用了哪种方法呢?还有时会看到许多工人

在船体表面进行涂装,这又是应用了哪种方法?在这些学生感兴

趣的问题的引导下让学生由被动学习变为主动学习。

针对核工程与核技术专业的学生在第一堂绪论课中就可以

给他们举一个和他们专业密切相关也是他们这个专业非常在意

的一件事:切尔诺贝利核事故。他们可能在选择这个专业时已有

耳闻这个核泄漏事故,但是对于这起事故的真正起因未必知道。

而这起事故的真正原因不是核爆炸,而是一种化学反应酿成了重

大的损失。然后给学生介绍这次事故的前因后果:在进行4 号反

应堆电能功率安全测试的过程中,操作人员有意切断了通向核心

区域的冷却水流,当然这个操作是测试的一部分,而且操作人员

在反应堆中留下的控制棒数目不够,蒸汽压很低又难以提供冷却

剂。这一系列的操作致使整个反应堆功率剧增,产生巨大的热量,

烧塌了燃料芯堆,而释放出的灼热的放射性核燃料颗粒与用作冷

却剂的水接触发生爆炸。这个过程中反应堆中用来使中子减速的

石墨起火燃烧,流到着火的石墨上的水又与石墨发生化学反应产

生氢气,氢气和空气中的氧气发生化学反应而爆炸。这个化学反

应的爆炸却掀翻了覆盖在反应堆上的钢板。可见对于核工程与核

技术人员掌握化学知识是必须的。

针对环境专业的学生而言,同样在绪论课中就可以让他们知

道化学与他们的专业是密不可分的,比如为了将普通化学主要内

容串接起来,可以给他们举个环境问题的例子:汽车因大部分使

用汽油内燃机,会产生一氧化碳和一氧化氮等有害物质污染环

境。如果我们能够让NO 和CO 在排放到大气前就反应生成N2 和

CO2,就可以大大降低对环境的污染。那么:①这个反应能够发

生吗?(即化学反应方向问题)②如果该反应能发生,那么会有

多少的NO 和CO 转化为N2 和CO2 呢?(即化学反应限度问题)

③同时我们知道对于每一个反应化学反应发生时都会伴随着吸

收和放出热量的现象,那么该反应过程中能量是如何变化的呢?

(即化学反应能量变化问题)④这个反应若能发生,这个反应是

进行的快呢还是慢呢?(即化学反应速率问题)⑤这个反应的反

应机理如何?而对于机理的分析比较复杂,首先我们需要了解物

质的微观结构的问题。(即物质的微观结构问题)。这样既可以

将普通化学的整体内容安排与实际问题的解决联系起来,更让学

生了解要解决这样的一个环境问题必须要应用化学的知识。同时

针对环境专业的学生授课时更应该增加一些绿色化学知识的介

绍。

三、其他课堂教学措施的配合

除了抓住学生所学专业与普通化学的结合点外,还要注意其

他的一些课堂教学方式,如:将化学与学生日常生活中遇到的一

些具体事例联系起来,即用普通化学学过的知识来解释一些实例

和现象;在课堂上引入一些著名化学家的人物介绍和相关一些理

论的发展史,像故事一样介绍给学生,既吸引了学生的注意力,

又加深了对基本理论知识的理解;课堂上适当设有部分课堂演示

实验和演示实验录像的环节,让学生从实验中总结出化学的基本

理论和规律,同时也让学生深刻了解化学这门学科的特点;注意

利用问题的引入来启发学生的思维空间,并且加强训练学生的归

纳总结能力,进一步强化教学效果等。

参考文献:

[1]段连运译.化学与社会(原著第五版)[M].北京:化学工业

出版社,2008:285-288.

[2]李梅,景晓燕,韩伟,朱春玲,王君.普通化学教学中绿色

化学教育的渗透[J].教育教学论坛,2013,28:2-3.

篇8

关键词:化学工程工艺 绿色化工技术 应用

前言

随着我国工业科技的进步,人们对化工材料的要求越来越高,例如节能性、环保性等方面的要求不断提高,近年来,我的能源及环境因为工业的发展带来了严峻的挑战,特别是近几年,我国的环境污染问题及能源消耗问成为备受关注的领域,我国化工研究人员也在重点研究关于不可再生能源的保护问题、生活垃圾的处理问题及工业污染物的合理排放问题。众所周知,在化工工程工艺中,很多有害、有毒的物质会被产生,如果这些物质处理不当,便会排放到大自然中,久而久之会对生产平衡起到严重的影响,绿色化工技术是提高化学工程工艺的先进技术,化工材料对生态环境的污染问题可以有效解决,提高化学工业的能源利用效率。本文将重点对绿色化工技术在化学工程工艺中的应用展开深入研究。

一、绿色化学技术的发展

在传统化学生产过程中,很多有害、有毒的物质会被产生,严重的滞后性使得化学工程工艺长期处于被动的生产状态下,因此,这种传统的化学工程工艺无法得到资源优化的目的,对于污染物的处理工程效果较差,污染物处理效率低下,同时提高了对化学污染物处理的成本。而绿色化学技术的出现,可以有效解决传统化学工程工艺中对污染物处理的问题,可以通过先进的技术,对污染物进行脱硫、除尘等方面的处理,具体实施方法如下:

1.采用绿色化学原料

在化学工程生产过程中,其流程及工艺直接由化学生产原料决定。在传统化学工程中,大多数采取的生产原料是不可再生的能源,选择这种化学材料增加了污染物质的排放量,同时增加了我国对不可再生能源的消耗量,因此,化学工程工艺中,选择绿色的化学原料是重点研发的领域,例如使用苞米杆、芦苇等农副产品废弃物,便是典型的绿色化学原料,这些物质无污染,直接投入化学生产中,可以直接转化成醇、 酮、 酸类的化学品,不会产生任何有毒或有害其物质,只会产生氢气等物质。

2.提高化学反应的选择性

化学原料通过化学工程工艺,产生相应的化学反应,产生相应的化学品,因此,在化学工程中物质反应的重要组成部分便是化学反应,在提高化学工程的生产效率及生产质量时,利用合理、有效的化学反应途径意义重大。反应环境、原料、时间、特点等因素都会影响化学反应。在化学工程中,氧化反应是最常用的反应形式之一,在整个反应过程中会产生大量热,很多化学原料会因为热催化产生变质现象,这也是直接导致化学品生产质量低下的主要原因。而新型反应形式―烃类氧化反应可以增加生产物的同分异构反应时间,同时提高催化物反应催化能力。

二、绿色化工技术在化学工业中的应用

1.清洁生产技术

辐射热加工技术、临界流体技术、绿色催化技术等无毒、无害、无污染的绿色化工技术统称为清洁生产技术。该项技术可以广泛应用于冶金、印染、垃圾处理等各个行业。此外还有很多先进的脱硝脱硫技术、煤气化技术及利用风能太阳能灯自然发电技术也都利用清洁生产技术。例如,在海水淡化技术的应用中,有效利用了我国海水资源,将海水中的盐与水的成分分离,在处理过程中不会对环境状态产生任何不利影响,还能有效解决我国淡水资源匮乏的现状。此外,海水淡化处理工艺所产生的氢氧化镁等物质的处理工艺成本低廉,工艺简单,并且 不会产生二次污染,因此此项技术未来发展的前景非常广泛。

2.生物技术

生物技术主要应用于化学仿生学及生物化工两个方面,其中技术范畴主要包括细胞、基因、微生物等。作为一种高效、转移性强的生物体内催化剂――生物酶,可以广泛参与到各个生物化工的合成过程中。另外,膜化学技术也是化学仿生学中被广泛应用的生物技术。通过生物技术可以使再生资源合成化学品,这是绿色化工技术经常沿用的方式。动植物中提取的有机化合物原料或石油、煤炭等作为原料都是绿色化工技术的原料。例如,在绿色化学工程工艺中,制备丙烯酰胺,可以利用自然界中的酶替代丙烯腈催化合成丙烯酰胺后,这样可以将能耗大大降低,并且没有污染环境的物质产生。与化学催化剂中的工业酶相比,自然界中的酶做催化剂更加环保,无污染,其反应条件相对较为温和,产物的性质也优良。

结束语

综上所述,在传统的化学工程工艺为人类创造了丰富的物质基础和能源,但是其生产过程中产生的残留物给环境污染产生了众多问题。绿色化工技术的出现对我国化学工程工艺产生了积极的影响,大大减少了化学产品生产加工过程中产生的有毒、有害物质,对我国整个化工产业及环保事业意义重大,能够真正实现绿色环保、节能减排的目的,是当今化学工业发展中的重要环节。

参考文献

[1]井博勋,莒菲.浅议绿色化工技术在化学工程工艺中的应用[J].天津化工,2015,03:10- 11.

[2]张忠平,薛建跃,王新运,程乐华.地方院校应用化学专业绿色化学人才培养模式探索[J].巢湖学院学报,2011,03:142-145+164.

[3]纪红兵,佘远斌.绿色化学化工基本问题的发展与研究[J].化工进展,2007,05:605-614.

篇9

摘要:

对用做钝头体高超声速飞行器热防护的碳/酚醛复合材料在典型服役环境下的烧蚀机制进行了研究,建立了烧蚀过程的数学模型。利用有限元方法实现数学模型的求解,预报了冷壁热流4002kWm、焓值51MJkg的气动热环境下碳/酚醛材料的烧蚀行为。对于20mm厚度的碳/酚醛材料,受热过程中碳化层深度持续增加,100s时刻表面温度达到1405K,背壁温度为497K,孔隙热解气体压力达18.1atm。本研究为具有长时间大面积热防护需求的高超声速飞行器的热护设计提供了有力支持。

关键词:

碳/酚醛;热防护;多物理场;烧蚀;有限元

碳/酚醛复合材料作为一种轻质强韧化防热材料,具有防热效率高、防隔热一体、抗剪切能力强、烧蚀后退量小等特点,主要用于钝头体热防护[1]。由于占飞行器较大比重,其冗余设计对于整个飞行器的质量控制有关键作用[2]。准确的掌握碳/酚醛复合材料烧蚀特性能够解决过度冗余或防热设计可靠性不足的问题[3,4]。热防护材料在烧蚀过程中通过自身温升、表面材料相变、化学反应等吸收能量以达到防隔热的效果。Beacher,S.J.等[5]建立了普遍的热化学烧蚀模型。J.B.Henderson等[6]研究了聚酯基防热材料服役环境下的基体热解与热变形过程,并采用一维模型计算材料烧蚀过程中的温度、热解气体压强等参数的动态变化过程。Hogan等[7]利用控制容积法解算了轴对称模型的能量传递方程,并利用非结构化动网格模型获得了材料烧蚀过程中的表面后退率。

陈海龙等[8]基于体积烧蚀条件下的三维多物理场耦合控制方程预报了高硅氧/酚醛复合材料在酚醛树脂热解反应过程中的温度场、位移场、孔隙压力以及树脂残留率等热力学响应。李玮洁等[9,10]研究了发生表面后退的碳化烧蚀体的非线性热解层模型。由于现代设计和分析工具的飞速发展,如ProEngineer等工程软件允许可建立复杂的几何模型,NASTRAN和PATRAN等分析工具使复杂结构体的热分析更容易实现[11,12]。但是,目前尚无能进行高精度烧蚀热响应分析的工程软件。有一些可用于烧蚀分析的计算代码如CMA[13]和FIAT[14]等,但他们都是基于一维有限差分法,并不兼容现代设计工具。本文研究了中低热流密度下碳/酚醛材料的防热机制,建立了其烧蚀模型,并借助于有限元软件预报了其烧蚀行为。

1碳/酚醛复合材料的防热机制

碳/酚醛主要用于钝头体的大面积热防护,其典型服役环境为:以对流换热为主的中低热流环境(0.1~1.5MW/m2)、中等焓值(5~15MJ/kg)。在此服役环境下,假设增强相在高温下不发生化学反应,即固体材料表面不发生后退。则碳/酚醛防热材料的能量耗散机制包括:(1)材料表面热辐射;(2)固体相的温升吸热;(3)孔隙内热解气体的温升和膨胀吸热;(4)基体热解反应吸热;(5)材料表面高温热解气体引射;(6)质量引射引起“热阻塞”效应。碳/酚醛烧蚀材料的烧蚀过程是极为复杂的,是一个固体传热、传质和化学反应等多物理场同时变化而且相互耦合影响的过程。各场之间的耦合关系具体如下:固体热传导决定的固体温度影响树脂材料的高温化学反应速率,反之,热解反应产生热效应以及伴随的酚醛树脂的热物理性质变化影响固体热传导过程。固体温度分布的变化影响孔隙内热解气体的温度压力等参数变化,反之,热解气体的在固体孔隙内的对流换热以及材料表面的引射作用影响固体内部分布以及表面热载荷的阻塞效应。热解气体的温度压力对于反应速率有直接影响,反之酚醛树脂高温化学反应产生的热解气体是质量传递过程的质量源。

2烧蚀过程的数学模型

分别从能量和质量传递的角度对烧蚀模型进行分析。研究材料的表面能量平衡关系、热解气体传质过程、热化学反应速率、能量传递过程。全面建立描述烧蚀过程的数学模型。

2.1表面能量平衡根据表面能量平衡关系,建立材料的表面能量平衡方程。

2.2热解气体传质过程材料烧蚀过程中,基体高温反应生成了热解气体,热解气体在固体相的孔隙中扩散,这里从质量守恒原理出发,推导气体相的扩散控制方程。

2.3热化学反应速率树脂基体在高温下发生热解反应,假设基体由多种组分组成,而任一组分的热解反应速率可由Arrhenius动力学反应方程表示,若第k种组分的反应级数为。

2.4能量传递过程与非烧蚀材料不同,烧蚀材料内部的能量传输通过两种方式进行—传导传热和传质传热。同时,由于热解反应过程中伴随着化学能的转化,反应发生前后物系焓值不守恒。考虑化学反应的焓变效应,微元体的能量平衡方程。

3碳/酚醛复合材料的热物理性质

通过实验手段和调研资料可以获得原始材料和完全碳化材料的密度、孔隙率、渗透率、热导率、热容等参数随温度变化的热物性参数[15]。烧蚀材料固体相的热物理性能是随温度、碳化程度不同而实时变化的,而我们难以测量这些参数的实时变化特性,因此需要采用合理的热物理性能变化模型。

4算例

本文借助于COMSOLMultiphysics软件,利用有限元法对描述烧蚀过程的控制方程进行求解。预报厚度为20mm的碳/酚醛材料在模拟热环境下的烧蚀过程,热环境参数与模型的初始条件和边界条件如表1所示。图1~图3分别给出了碳/酚醛材料不同时刻的温度分布、热解气体压力分布和热解程度分布云图。由图1可知,碳/酚醛材料表面温度随着加热时间持续升高,但表面温升速率降低,100s时刻表面温度为1405K。背壁温度在加热前期缓慢升高,而后温升速率逐步加快,100s时刻背壁温度达到497K。根据图2,材料的基体相发生热解反应生成大量的热解气体,虽然热解气体通过表面不断逸出,但由于热解反应的持续进行和材料内部的温度的升高,材料孔隙中的热解气体压力仍然持续增大。100s时刻热解气体的最大压力达到18.1atm。由图3可知,靠近受热面的碳/酚醛材料温度较高,很快发生完全热解形成碳化层(热解程度=0),背壁附近的材料温度较低,几乎未发生热解反应,为原始材料层(热解程度=1)。碳/酚醛材料受热过程中,碳化层深度持续增加,原始材料层厚度持续减小。

5结论

篇10

在材料科学与工程专业的本科教学工作中,本科学生在高年级就开始学习材料科学与工程专业的基础课程和专业课程。其中在材料科学与工程专业课程教学中,在讲述材料的制备工艺方法中讲述过原位反应自生法制备复合材料。原位反应自生法是制备金属基复合材料,金属陶瓷复合材料,以及金属间化合物/陶瓷基复合材料的主要方法。原位反应自生法是在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。这种方法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。原位反应自生法制备复合材料由于具有可以达到净近尺寸成形的优势,所以能够广泛应用于工程领域中。在材料科学与工程专业的本科课程教学中,在材料加工工程和材料制备方法中都讲述过原位反应合成技术。此外还可以将原位反应自生法制备复合材料作为一项实验教学内容安排学生进行实验,使学生认识和了解原位反应自生法制备复合材料的工艺过程。所以原位反应自生法制备复合材料在材料科学与工程专业教学实践中得到广泛的应用。本文首先讲述原位反应自生法制备复合材料的原理和制备工艺过程,并讲述原位反应自生法制备复合材料在材料科学与工程专业教学实践中的研究和讨论。并对原位反应自生法制备复合材料的未来发展趋势进行分析和预测。

二、原位反应自生法制备复合材料的原理和制备工艺过程

为了克服传统方法制备的复合材料存在增强体颗粒尺寸粗大,热力学不稳定以及界面结合强度低等缺点,出现了原位合成技术,即在一定条件下通过化学反应在基体内原位生成一种或几种增强相从而达到强化的目的。原位自生法是通过原料粉末中的某些化学反应生成所需要的反应产物并通过热压烧结工艺制备出复合材料试样。原位反应自生法可得到增强体颗粒尺寸细小,热力学性能稳定,界面结合强度高的复合材料,是一种很有前途的颗粒增强复合材料制造工艺。目前报道的原位合成技术主要有原位反应热压烧结技术,原位复合技术,定向氧化技术,熔体浸渍技术,反应结合技术及自蔓延高温合成技术等。定向氧化合成技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。原位自生法是通过反应物之间的反应生成所需要的反应产物并通过热压烧结工艺实现致密化。原位合成法是利用化学反应在原位生成补强组元-晶须或长径比较大的晶粒来补强基体材料的制备工艺。原位合成法主要具有如下优点:简化工艺,降低材料成本,实现特殊显微结构设计和获得特殊材料性能,具有很好的热力学稳定性。金属间化合物/陶瓷基复合材料的制备方法主要有原位复合技术和定向氧化技术以及原位反应热压烧结工艺。可以采用原位反应热压烧结工艺制备金属间化合物/陶瓷基复合材料。原位复合技术是由于金属间化合物反应的形成热相对较低,因而采用自蔓延燃烧时系统不易达到较高的绝热温度,故一般采用原位复合技术制备和合成复合材料。原位复合技术是利用放热反应在金属或金属间化合物基体中原位分散金属间化合物或陶瓷颗粒或晶须的原位复合技术。传统的方法是将粉末压坯在恒定速率下加热到可使反应自发的产生并在整个混合物中处处发生反应。定向氧化技术是定向金属氧化工艺可用于制备金属基复合材料。原位反应热压烧结工艺是将原位反应和热压烧结工艺相结合制备致密的复合材料。

三、原位反应自生法制备复合材料在材料科学与工程专业实验教学中的研究和应用

原位反应自生法主要用于制备金属陶瓷,金属间化合物,金属间化合物/陶瓷复合材料等。在材料科学与工程专业的教学课程中,其中材料加工工程和材料制备与合成方法讲述过原位反应自生法。原位反应自生法同粉末冶金技术和液相烧结技术一样都是材料制备技术。原位反应自生法同样是热加工工艺,原位反应自生法涉及到反应物高温化学反应制备产物的过程。在材料科学与工程专业课程的课堂教学中,在有些专业课程中原位反应自生法只是作为了解,对于原位反应自生法制备复合材料的具体内容和制备工艺步骤的研究和应用了解很少。所以就需要在材料科学与工程专业的实践教学课程中增加一些关于原位反应自生法制备复合材料的实验课程。通过原位反应自生法制备复合材料的实践教学活动可以使学生认识和了解原位反应自生法制备复合材料的原理,制备工艺过程以及对经过原位反应自生工艺后得到的金属基复合材料烧结制品的物相组成,显微结构和性能进行研究,使学生通过对复合材料的制备与研究过程可以加深学生对材料科学与工程专业课程学习的认识和了解。对于本科学生的教学实践课程,可以在本科学生的本科专业课程设计和本科毕业设计过程中安排采用原位反应自生工艺制备金属基复合材料和金属陶瓷复合材料的教学内容。例如采用原位反应自生工艺可以制备金属陶瓷复合材料,先将金属陶瓷粉末通过压力成型工艺制成坯体,并通过原位反应自生工艺和高温烧结工艺制备金属陶瓷复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。采用原位反应合成工艺可以制备金属间化合物/陶瓷基复合材料,通常先将金属间化合物粉末和陶瓷粉末通过压力成型过程在一定压力下压制成具有一定形状和致密度的预制件,通过原位反应自生法和高温烧结工艺形成金属间化合物/陶瓷基复合材料。高温烧结工艺可采用常压烧结工艺,热压烧结工艺和放电等离子烧结工艺以及热等静压烧结工艺。有时将原位反应自生法和热压烧结工艺相结合制备致密的复合材料烧结块材。通过实验教学过程使学生认识和了解到原位反应自生法制备金属陶瓷复合材料的制备工艺过程,提高学生对专业课程学习的认识和了解。使学生通过实验教学认识和了解了原位反应自生工艺制备复合材料的制备工艺原理,使用方法和制备过程,以及对得到产物的物相组成和显微结构进行分析和测试。原位自生法可以制备金属基复合材料,金属陶瓷复合材料等。采用原位反应自生法可以制备颗粒增强的金属基或陶瓷基复合材料。

原位反应自生工艺制备复合材料涉及到反应物在高温下发生化学反应生成反应产物的过程,原位反应合成技术操作过程比较简单,对设备要求较低,只需要高温烧结炉,可以进行现场操作,因此可以作为本科学生的实验课程教学内容,可作为材料科学与工程专业课程的辅助教学实验,也可以作为本科专业课程设计和本科毕业设计教学内容。使学生通过实践教学来加深对材料科学与工程专业课程的认识和掌握。使学生认识到金属基复合材料的制备过程以及金属陶瓷复合材料的制备过程等,并使得学生对原位反应自生法得到的烧结制品进行分析和测试,使学生对材料的分析和检测水平有较大的提高。对于拓展学生的知识面有很大的帮助。为本科学生以后的本科专业课程设计和本科毕业设计打下坚实的实验基础。

四、原位反应自生法制备复合材料的未来发展趋势和应用

原位反应自生法制备复合材料在材料科学与工程领域有着广泛的研究和应用。原位反应自生技术由于制备工艺简单,成本较低,对设备要求较低,只需要高温烧结炉,所以被广泛的应用到金属基复合材料,金属陶瓷复合材料,金属间化合物/陶瓷基复合材料等的合成与制备中。利用原位反应自生法可以开发新型的金属基复合材料和金属陶瓷复合材料以及金属间化合物/陶瓷基复合材料。采用原位反应自生技术可以开发出很多种类型的金属基复合材料和金属陶瓷复合材料。所研究和开发的材料种类也逐渐增多,应用范围也越来越广泛。原位反应自生技术在材料科学与工程专业教学与实践中也得到广泛的推广和应用,原位合成技术已经成为材料科学与工程专业实践教学课程进行的实验内容。所以本文作者认为应该在材料科学与工程专业的教学实践中增加一些采用原位反应自生技术制备复合材料的实验课程。