化学工程与工艺的概念范文
时间:2023-08-15 17:35:19
导语:如何才能写好一篇化学工程与工艺的概念,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:工学结合一体化课程;五年制高职;学习方式;策略
中图分类号:G712 文献标志码:A 文章编号:1674-9324(2014)48-0130-03
当前,我国正处于经济社会发展的关键阶段,工业化、信息化、城镇化、市场化、国际化的进程不断加快,对高素质劳动者和技能型人才提出了新的要求。五年制高职作为培养新型技能人才的重要渠道,必须坚持“以服务为宗旨、以就业为导向”的目标,创新人才培养模式,注重内涵发展,以为社会培养生产、管理、服务第一线的用得上、留得住的应用型人才为出发点和落脚点,不断适应用人单位对技能人才的要求。探索“工学结合一体化”的技能人才培养模式,建立以职业活动为导向、以校企合作为基础、以综合职业能力培养为核心,理论教学与技能操作融会贯通的工学结合一体化课程体系,是提高技能人才培养质量,加快技能人才规模化培养,探索中国特色职业教育改革与发展的必由之路。
一、工学结合一体化课程及其内涵
工学结合一体化课程,是指按照经济社会发展需要和技能人才培养规律,根据国家职业标准,以综合职业能力为培养目标,通过典型工作任务分析、构建课程体系,并以具体工作任务为学习载体,按照工作过程和学习者自主学习要求设计和安排教学活动的课程。它明确了技能人才的培养目标,即培养其综合职业能力,即在真实工作情境中整体化地解决综合性专业问题的能力和相应的技术思维方式,包括专业能力、方法能力和社会能力。其课程体系源于从企业真实工作过程的代表性工作任务中提炼出的典型工作任务,教学的内容则是典型工作任务转化过来的学习任务,实施教学以学生为中心。工学结合一体化课程体现理论教学和实践教学的融通合一,专业学习和工作实践学做合一,能力培养和工作岗位对接合一的特征。其直接来源是企业的典型工作任务,这就决定了它必须以校企合作为基础,按照企业实际工作过程实施教学。也就是说,学习就是工作,通过工作实现学习。
二、五年制高职学生学习方式现状分析
学习方式,也称学习风格,是学习者持续一贯的带有个性特征的方式,是学习策略和学习倾向的总和。它指的是学生在完成学习任务过程中的基本的行为和认知的取向,反映了学生倾向于以什么样的行为和认知方式去完成学习任务,它直接影响着学生的学习结果。
1.传统的“三中心”教学模式使学生形成了单一、被动的学习方式。受我国“重学历、轻能力”、“重知识、轻技能”的社会文化价值取向的影响,长期以来,五年制高职教育的人才培养模式往往体现“类基础教育”、“类高等教育”的特征。在体现以“课堂、教师、课本”三中心为主的传统教学模式下,教学是教师对学生的“单向”培养,教师负责教,学生负责学。很少有学生自主学习的空间和时间,学生很少有根据自己的理解发表看法与意见的机会,即便是有师生互动,那也都是由教师精心策划和安排的,学生也只能按部就班,学生的想象力和创造力无形中受到了教师的控制。教学关系成为:我讲你听、我问你答、我写你抄、我给你收。教支配、控制学,学无条件地服从教,这形成了教师对学生的权威性和学生对教师的依赖性,学生的独立性和个性得不到尊重和发展,致使学生形成了单一、被动的学习方式。
2.传统的学科本位观念遏制了学生自主学习能力的培养。受传统学科教育的影响,五年制高职教育过分注重知识体系的完整性,课程体系和教学内容过分强调理论的系统性,缺少与社会实际、生产实际、学生生活相联系的生动活泼的内容。教师习惯于“粉笔+黑板”的授课方式,学生习惯于听理论、背理论、考理论的学习方式。这种学科本位观念导致教学过程重灌输轻引导、重接受轻探索、重理论轻实践,使学生的创造思维和实践能力不能得到有效的锻炼。长此以往,这必然养成学生依赖老师讲解的心理,学生惰性加大,不善于思考,不爱动脑筋。在这种只注重“教”,不考虑“学”的情况下,学生难于自主学习,也无力自主学习。
3.传统的“师道尊严”使学生失去了合作、探究学习的机会。一句“一日为师终身为父”的古训,巧妙地将师生关系血缘化、政治化、等级化。在“师道尊严”的幌子下,教师可以随意对学生(甚至包括家长)发号施令、指手画脚,学生却不能有一点与老师要求不相符的言行,他们的聪明才智得不到展现,个性得不到张扬。课堂教学以教师为中心,学生以老师讲授的内容为示范,不断在课中、课后重复演练、模仿,他们对知识、技能的理解完全按照课本和教师的思路进行,不会也不敢对相关知识产生不同看法,提出不同意见,完全变成了接受知识的容器、唯命是从的学习“仆人”,没有自主、合作、探究学习的机会和权利。工学结合一体化课程开发的核心,是从工作世界中寻找一系列具有职业的典型意义的综合性工作任务,打破传统的学科体系和教学模式,根据职业教育培养目标的要求来重新整合教学资源,体现能力本位的特点,强调学生的自主学习、合作学习、探究学习。使学生的主体意识、能动性和创造性不断得到发展,是当前深入推进教学改革的核心任务。
三、五年制高职学生学习方式转变的策略
转变学习方式,就是要改变不利于学生发展的学习行为,以培养创新精神和实践能力为主要目的,协调教学活动的整体结构,把学习变成人的主体性、能动性、独立性不断生成、张扬、发展、提升的过程,使学生的学习活动能够更有效促进其发展。
1.加强专业入学教育,提高学生学习主动性。五年制高职生源中,很多都是在初中阶段成绩相对较差、考不上高中的学生,多数人入学动机不明确,专业选择比较盲目。有的是服从家长意愿上学的,有的是因为同学在同一所学校上学而报考的,也有一些是因为听说某个专业毕业后能找到好工作而就读的,更有一部分学生是因为年龄太小只好上学混时间。他们对自己专业的学习情况不了解,对专业课程的目标与作用不清楚,因此学习积极性不高,主动性不强。专业入学教育是使学生明确专业与课程学习目标,提高学习积极性和主动性的有效途径。首先,我们要充分发挥专业教师的作用,以专业人才培养方案为蓝本,加强对新生的专业教育。我们要巩固学生的专业思想,帮助他们了解自己的专业背景、专业特色、课程设置、就业方向等,让他们充分认识所学专业的特点和前景,稳定其专业思想,使其树立学习目标,激发学习兴趣。其次,我们要着重介绍高职阶段工学结合一体化课程的学习方式和方法,教育新生明确学习主体的角色转变,学会利用图书馆和网络等各种资源自我解惑,把握学习的主动权,提醒学生合理有效地安排学习时间,养成良好的学习习惯。
2.更新教学理念,促进学生学习方式转变。工学结合一体化课程改革的核心是培养学生的综合职业能力,强调以训练和提高学生的技能为基点,以实现主要能力目标为主线,以市场对人才的需求为导向。这一新的教学理念促使教师必须更新教学观念,转变自身角色,由知识的传授者变为学生学习的组织者、引导者和促进者,树立起新的课程观、教学观和教学目标观。课程不再只是特定知识的载体,而是教师与学生共同完成项目任务的过程;教学也不再是教学生学,而是师生交往、积极互动、共同发展的过程,是教师教与学生学的统一,其中教师只起教学的主导作用,学生才是学习的主体。新的教学目标观也不再是单一的知识与技能,更要使学生在通过咨询、计划、决策、实施、控制、评估等步骤完成学习领域的同时,获得相应的专业能力、方法能力和社会能力,促进其综合职业能力的提升。在这样的教学理念下,学生的学习方式势必发生转变,使学生懂得学习的过程不是被动地接受课本上的现成结论,而是一个学生亲自参与、师生互动、生生互动的实践与创新的过程。
3.创设学习情境,培养学生自主学习能力。工学结合一体化课程,以培养学生综合职业能力为目标,需要学生通过小组学习或自我学习的形式,运用各种设备和材料,在教师帮助下完成实际的具有完整工作过程的学习任务,从而通过显性学习任务的实施实现隐性关键能力的培养。因此,我们为学生创建类似于企业工作环境的学习情境,以典型工作任务为载体,让学生在做中学,掌握工作岗位需要的各项技能和相关专业知识,对转变学生学习方式、培养其自主学习能力至关重要。学生在尽量真实的职业情境中学习“如何工作”,在以项目为载体的综合化情境中完成完整的工作过程,势必能提高其应用知识的意识,激发学习的兴趣和创新思维,更有利于其自主学习能力的培养。
4.转变教学方式,强化学生合作、探究学习意识。工学结合一体化课程的实施强调以学生为主体,教师为主导的学习与工作过程,强调学生不断输出学业以验证学习效果。传统的灌输式教学方式显然不能适应新课程实施的要求,也不利于学生学习方式的转变。因此,教师应转变教学方式,推行行动导向教学,应用现代信息技术,多渠道系统优化教学过程,增强教学的实践性、针对性和实效性。教师通过向学生传授行动领域的知识,指导、引领学生按照工作过程系统化原则完成学习任务。教师要把学生置于开放的、动态的、多元化的环境中,从重教师“教”向重学生“学”转变,调动学生学习积极性和主动性。在教学流程设计上,教师由重结果向重过程转变,将关注的重点放在提供给学生更多地获取知识的方法和渠道上,让学生明白怎样学,引导学生进行自我评估,激发学生积极参与讨论,充分发挥学生的主体作用,强调学生之间的合作和交流,使他们在合作学习、自主探究中获得一种新的学习体验,从而进一步强化学生的合作、探究意识。
当今,转变学生的学习方式已成为职业院校教育教学改革的必然要求,也是一种学习理念的根本性转变。工学结合一体化课程,以学生为主体的行动导向教学过程,正是师生解放思想、更新观念、转变学习方式的过程。这种教学模式不仅大大提高了学生的学习兴趣和学习过程的参与度,更使其从以往的被动学习转变为主动学习;不仅强化了师生间的交流,活跃了课堂气氛,更使学生的创新、创造思维模式得到了提高;不仅重视知识本身的获取,更注重获取知识的方法和学生自身综合职业能力的提升。这一以校企合作为基础、以综合职业能力培养为核心,理论教学与技能操作融会贯通的课程体系必将对学生学习方式的转变产生积极影响。
参考文献:
[1]姜大源.职业教育学基本问题的思考[J].职业技术教育,2006,(1).
[2]戴士弘.职业教育课程教学改革[M].北京:清华大学出版社,2007.
[3]陈永芳.职业技术教育专业教学论[M].北京:清华大学出版社,2007.
[4]赵志群.职业教育工学结合一体化课程开发指南[M].北京:清华大学出版社,2009.
[5]吴韶华,周桔.开放教育学生自主学习现状与策略研究[J].继续教育研究,2012,(2)
篇2
【关键词】:化学工程;系统;和谐;辩证法
自然界中的和谐系统比比皆是,大至宇宙,小到原子;地球生态系统是和谐的,动植物群落是和谐的,人类社会体系是和谐的,健康的人体更是一个绝妙的和谐体。所有这些和谐系统遵循着同样的辩证综合的规律,具体可以归纳出三条:1.统一律;2.层次律;3.进化律;所有和谐系统具有同样的性质:1.开放性;2.自组织性;3.非线性;4.无限发展性[1]。当爱因斯坦把大半生致力于统一场论时,其哲学上的需要相对物理学上而言或许要来得大,面对物理学的系统和谐,理论规则的分立是不能令他觉得满意的。而化学工程的发展是不是因循同样的哲学历程呢?
在化学工程作为学科开始被重视之前,化学工业已具有了相当的规模,各种具体的工程与工艺都被独立开来,在认识上是被分为各门特殊的知识,因此,当国外高等院校在十九世纪末开始设置"化学工程学"时,开设的课程大多是学习当时化学工业的各种工艺学,"化学工程"的概念在当时还是相当模糊的,在理论上充其量是化学与机械的一种混合(amalgam)。然而这种理论混合的模式在德国人看来却是很正统的,即使在今天,他们也避免专论"化学工程",而是称之为"过程工程"(ProcessEngineering),这一名称实际上要比"化学工程"的范畴更广,甚至更为准确,凡是涉及一定流程与工艺的领域都是适用的。但我们习惯上还是沿用"化学工程"的名称。
二十世纪开始,化学工业迅猛发展,在社会经济中占的比重越来越大,客观上需要化学工程学科的发展和支持。随着生产力的发展,人们对事物运动规律性的认识也愈来愈深化,愈来愈有概括性。伴随着其他领域科学技术的快速进步,人们逐渐认识到化学工业中各门看似不相干的工程和工艺中存在着共同的物理特性。1901年,美G.E.的Davis《化学工程手册》的发表,初步提出了"化工物理过程"的原理。1900年始,以合成氨、纯碱、燃料等为代表的近代化工厂出现,如1913年,德哈勃-博施法高压合成氨技术的产业化,星火燎原的,化学工业呈现出巨大的发展前景。到了二十年代,美MIT的一些学者提出:不管化工生产的工艺如何千差万别,它们在众多的典型设备中进行着原理相同的物理过程。1920年,美MIT成立了第一个严格意义上的化工系,时W.K.Lewis任系主任。1922年美国化工学会认同了新的见解,引出了"单元操作"(UnitOperation)的概念,这一概念在苏联时期和我国则广泛称为"化工原理"。
1900年始的"分离工程"研究使"单元操作"的概念日趋成熟。被称为单元操作的过程主要有流体流动、传热、干燥、吸收、蒸发、萃取、结晶和过滤等,以这些单元操作作为研究和学习的主要内容,是化学工程学科在二十世纪前半期发展的核心,其理论迅速成为发展化学工业的重要基石。这种把千变万化、千差万别的过程和工艺概括成"单元操作"是生产力发展到一定水平的反映,是化学工程学从"个性"到"共性"的第一个哲学性概括,是在一个系统整体性把握的高度上建立了一门技术科学,体现了系统科学发展的和谐统一规律。
随着"单元操作"概念的确定,另一方面,化学工程学科中重要支柱之一的"反应工程"亦逐渐浮出水面。从最初的德Winkler流化床煤气化炉的应用到德Bergim-Pier三相液化床煤液化工艺的开发,又到1931年丁纳橡胶和氯丁橡胶的投产,化学工业上发展的高峰持续不绝,1940年美国FCC炼油开发成功,成为石油化工的起点。直到1957年,欧洲第一届反应工程会议,明确提出"反应工程"的概念,成为化学工程学科的重要组成部分,是化学工程学的进一步和谐统一。"反应工程"的建立,乃至今日仍备受困扰的"过程放大效应"问题,及从"逐级放大"到"数模放大"的研究都带动了"化工过程系统工程"的发展,并共同体现了系统科学发展的和谐层次律。
就在"反应工程"发展的同时,"单元操作"得到了更加深刻的认识,人们发现各单元操作之间存在着更为普遍的原理,"过滤只是流体传动的一个特例;蒸发不过是传热的一种形式;吸收和萃取都包含着质量的传递;干燥与蒸馏则是传热加传质的操作……"[2]于是单元操作可以看成是传热、传质及流体动量传递的特殊情况或特定的组合。这种认识的深化过程并没有停止,人们进一步又发现了动量传递、热量传递和质量传递之间的类似性。于是从二十世纪50年代开始,人们综合了以往的成果,开始用统一的观点来研究三种传递过程。1960年,美威斯康辛大学(Univ.Wiscosin)的R.B.Bird教授出版了《TransportPhenomena》一书,系统地采用统一的方法来处理三种传递现象,从此化学工程学科的核心过渡到了"三传一反"的系统性概念。"三传"的研究是系统科学和谐进化律的又一体现,使化学工程学达到了一个新的整体性高度,这种高度的和谐统一是对客观世界本质性的认识,并在学科上反映出了系统科学的基本原理和性质,其影响力是普遍性的,是跨学科的,不仅使"传递原理"成为化学工程学的重要基础,同时在生物工程、机械、航天和土木建筑等工程学科上也具有重要意义,并日益成为工程专业共有的一门技术基础课,只是侧重点有所差异而已。
至此化学工程学科自身经历了一系列的演化和发展,并在短短的一个世纪中达到了一个前所未有的高度,涵括了众多的生产和应用领域,如医药、化肥、能源、材料、航天、冶金、日用化学品等,每年为社会提供数以亿吨计的千百万种产品,是人们衣、食、住、行须臾不可离开的物质基础,为社会繁荣作出了巨大贡献。然而事物总是一分为二的,从人类发展最为激动人心的口号"征服自然"到今天庞大的工业化进程,地球自然生态系统遭遇了前所未有的严峻局面,这之中,化学工业是造成大规模环境污染及恶性重复污染的主要过程之一,化学工程学科需要肩负起新的使命。1990年,"生态化工"(Eco-ChemicalEngineering)的概念提出来了,相应在化工生产和过程工艺中提出了"清洁化工"和"绿色化工"的概念,因时应势,化学工程学开始了系统科学的自组织过程,这也是和谐系统对立统一发展的需要。在系统科学看来,自组织是和谐系统的基本性质之一,只有自组织系统能通过外部和自身内部的不断协调、整合,在适应环境的同时保持自己的特性并产生新的功能。从自发到自觉地,化学工程学吸收了自组织的理论,不断在广度和深度上充实、完善和发展。随着新世纪的到来,世界正发生着全球性的变化,经济、社会、环境和技术等领域都面临着新范畴新理念的变更和冲击[3]。化学工程学科需要因应时展而改变传统的限制,不断有新的概念提出来,如化学工程应是伺机而待的专业(aprofessioninwaiting);化学工程师必须"besteepedintechnology",能够创新、开发、变换、调控和适应取代;化学工程学科要从"ProcessEngineering"达到"ProductEngineering"再到"FormulationEngineering"。进一步的综合认为,化学工程学关注着同时发生在非常广泛的时空跨度内的现象,必须具备多尺度、多目标的方法来达到过程的总体优化。涵括了五个方面[4,5]:
①Nanoscale(纳观尺度):研究量子化学、分子过程与分子模拟等。
②Microscale(微观尺度):研究微粒、气泡、液滴、控制界面胶束和微流力学规律等。
③Mesoscale(介观尺度):研究换热设备、反应设备、塔器以及传统的"单元操作"和"三传一反"等。
④Macroscale(宏观尺度):研究生产装置和生产过程等。
⑤Megascale(兆观尺度):研究环境过程和大气生态过程等。
于是化学工程学的核心转变到了"多尺度、多目标择优"的概念,化学工程学科又到达一个新的和谐统一的高度,进入了更高层次的系统工程领域。
新的发展的深度促使化学工程学科作出了一定尺度的"分化",然而这还远未结束,人们对世界的认识还在不断探索不断深入,一个更深刻更普遍也更一般的问题已经触到了化学工程学科的神经,触到了化学工程学的认识本质,并促使化学工程学需要有新的"融合"。这一问题就是"非线性及其包涵的混沌原理",相对于"线性"是人类认识客观世界的基本工具,"非线性"则是客观世界的本质特征,是"线性"反映的目的,是从科学角度看待世界的一种和谐统一;而在对"混沌发展"的研究表明,"混沌运动的普遍存在,揭示了自然界中实际系统发展演化的新行为,混沌态的自相似性使这种时间演化表现为一种空间结构,而且以其不同空间尺度上的相似性,揭示了系统复杂运动的统一性。这种统一性是一个观察"整体"的问题,只有在长时间范围(因为混沌运动是一种长时间行为)和更高层次复杂性中才能显现出来。"[6,7]这一问题涵盖了自然科学和人文社会科学的众多领域,具有重大的科学价值和深刻的哲学方法论意义。马克思曾经预言:"自然科学往后将会把关于人类的科学总括在自己下面,正如关于人类的科学把自然科学总括在自己下面一样:它们将成为一个科学。"从这一角度上,"非线性"问题是这种过程一体化的契合点以及整体认识论上的共性[8]。当站在这种整体性的高度上,化学工程学科获得了全新的视野和更强大的分析解决问题的能力,并最终具有了学科融合的基础。
在整个化学工程学科的孕育、诞生和发展过程中,始终交织着学科的"分化"与"融合",除了上述尺度(scale)上的分化以外还有着所谓的石油化工、精细化工、高分子化工等专业上的分化;另一方面,作为近代工程技术,它又是自然科学(化学、物理等)和技术科学(机械、材料等)的融合。正如物理学家普朗克(Planck)所指出的:"科学是内在的整体,它被分解为单独的部分不是取决于事物的本身,而是取决于人类认识能力的局限性,实际上存在着从物理到化学,通过生物学和人类学到社会学的连续的链条,这是任何一处都不能被打断的链条。"事实上,当化学工程学科的核心发展到"非线性混沌系统"时,实现科学的融合已是其客观系统性的需要,它需要强有力的非线性解算能力和综合分析能力。基于人工智能和神经生物学的人工神经网络(ArtificialNeuralNetworks)技术为这种系统性的融合提供了新的思路和途径。人工神经网络特有的信息处理能力在愈来愈多的领域中展现出广阔的应用前景,它具有如下特点[9,10]:
①学习:神经网络可以根据外界环境修改自身行为,这使它比其他任何方法接受自身感兴趣的外界信息更敏感。
②概括:经过学习训练后,神经网络的响应在某种程度上能够对外界信息的少量丢失或自身组织的局部缺损不再很敏感,反映了神经网络的健壮性(鲁棒性),即工程上说的"容错"能力。
③抽取:神经网络具有抽取外界输入信息特征的特殊功能,在某种意义上可以说它能"创造"出未见的事物。
④模拟:神经网络由众多的神经元组成,以并行的方式处理信息,大大加快了运行速度,可以逼近任意复杂的非线性系统。
当然,神经网络并非十全十美,其自身的发展就曾经历过相当曲折的过程,但是,人工神经网络(ANNs)特性的融合将是化学工程学科发展到非线性核心系统的自组织适应和需要。例如采用神经网络设计的控制系统,适应性、稳定性和智能性均较好,能处理复杂工艺过程的控制问题,也使得化学工程师不但也是机械工程师,还首先是系统工程师,并能从最一般的非线性原理出发,解决实际过程的创新、应用、开发、生产等问题。
生产力的不断发展,科学技术的持续进步,人类认识自然和改造自然的不断深化,化学工程学科必将不断"分化"和"融合",体现出和谐系统的无限发展性质。
参考文献
[1]李立本.系统的和谐与和谐观[J].自然辩证法研究,1998,14(5):39.
[2]韩兆熊.传递过程原理[M].浙江:浙江大学出版社,1988,11:3.
[3]季子林,陈士俊,王树恩.科学技术论与方法论[M].天津科技翻译出版公司,1991,9:115.
[4]金涌,汪展文,王金福,等.化学工程迈入21世纪[J].化工进展,2000,(1):5-10.
[5]黄仲涛,李雪辉,王乐夫.21世纪化工发展趋势[J].化工进展,2001,(4):1-4.
[6]张生心,梁仲清.从量子混沌再看物理学的统一性[J].自然辩证法研究,1996,12(10):8.
[7]苗东升.系统科学精要[M].中国人民大学出版社,1998,5:20.
[8]成思危.试论科学的融合[J].自然辩证法研究,1998,14(1):2.
篇3
【关键词】华峰班CDIO工程教育
20世纪的工程教育课程主要是提高学生的动手实践,使学生掌握相关的专业知识和解决工程实际问题的能力。然而,随着世界经济全球化以及科学知识的发展,工程教育课程的教育偏向了“厚基础、宽专业”的工程科学的培养模式,从而削弱了对学生解决工程实际问题的能力培养。这种培养方式导致了学生缺乏对现实工程情况应有的认知程度。为了解决这个难题,2000年由麻省理工学院Crawley等人通过4年的探索创立了CDIO工程教育理念。CDIO作为一种新的工程教育理念,主张以产品研发的CDIO全过程,即构思(ConcEive)、设计(Design)、实施(Implement)和运作(Operate)为载体,以工程项目生命周期全过程为载体培养学生的工程能力、学生的职业道德、学术知识和运用知识解决实际问题的能力,以及具备终生学习和团队交流能力。
化学工程与技术作为化学工业的主要学科领域,担负着促进化学工业及相关行业发展与进步的重要使命,因此培养出具有解决实际化工过程问题能力和创新能力的人才是非常重要的。本文以温州大学化学工程与工艺专业的学生作为教学改革培养对象,将CDIO工程教育理念与化学工程与工艺的专业教育有机地结合,探索适合于以服务浙江及周边地区经济为导向的化学工程与工艺专业教学模式的改革与实践。
一工科人才教育培养现状
我国传统的教学模式是以教师为中心、以课堂讲授为主,以理论考试成绩来评价学生的模式。当前,我国工程教育是通识教育模式和苏联教育模式的结合体。解放前,我国的先进高等工科教育主要是来自西方一些教会式的大学教育。建国后,由于化学工业发展的需要,我国效仿苏联搞起了专业教育。这种专业教育培养模式为我国的现代化建设作出了较大的贡献。其缺点是过于强调教材和教学大纲的统一,影响了教育工作者的思维活跃性,也阻碍了对工科学生创新能力的培养。因此,教育家们对苏联教育模式进行了回顾和反思,制定了通识教育和专业教育相结合的工科通识教育模式。然而,随着我国产业的进一步升级以及高校的持续扩招,导致了大量的工科毕业生找不到适合自己的工作,这可能是因为通识教育过于强调基础科学理论,而弱化了专业内容和工程实践,导致了工科毕业生只了解一些表面的理论,缺乏工程应具备的实践创新能力。
在办学机制上,一方面,高校过于强调科研业绩考核,许多具备丰富工程经验的老师很少参与到实际的教学过程中,而参与教学的教师又与企业的联系不紧密。负责教学的教师缺乏产业经验,工程教学过程又缺乏与企业的有效沟通,造成了工程教育和社会需求的严重脱节。另一方面,虽然在教学上安排了生产见习、毕业实习等环节,但是不少学校在实践教学环节上是比较薄弱的,这是因为见习、实习的时间一般比较短,相应的考核制度也不健全。
综上所述,我国工科教育从教学模式、办学机制等众多方面都存在着与产业发展脱节的问题,严重影响了人才培养的质量。尤其是理论脱离实际、实践环节薄弱、产学脱节的问题直接导致了学生找不到适合自己的工作岗位以及企业有岗位找不到合适的人才。由此可见,我国的工科人才培养模式已经不能满足产业升级的需求。为了更好地培养适合产业升级所需的人才,我们从培养模式上进行了改革探索。
二化学工程与工艺专业CDIO工程教育改革探索
CDIO工程教育模式改革旨在培养学生系统工程技术能力,尤其是项目的构思、设整理计、开发和实施能力,以及较强的自学、组织沟通和协调能力。CDIO模式以工程项目全生命周期的要求来组织教、学、做,学生需要掌握各门课程知识之间的联系,并用于解决综合问题。因此,课程体系的建设要突出课程之间的关联性,这就必须打破教师单打独斗的传统教学方法,而围绕CDIO工程项目的实施进行教学计划和课程关联工作。
1.化工核心课程群的组织与教师队伍建设
核心课程群由化工热力学、传递过程原理、化学反应工程、分离工程、化学工艺学、化工设计6门课程组成,构成了化学工程与工艺核心专业课的主体。化工设计以其他五门课程为基础,对提高学生分析问题、解决问题的综合工程能力起到非常重要的作用。化工原理是讲述单元操作的基本原理,是学好其他专业课程的基础;化工热力学则建立在分离工程的基础之上,阐述工业条件下各种流体热力学性质的计算;化学反应工程以传递过程为基础,传递现象和化学反应工程利用数学的方法,从微观角度阐述化学反应过程、设备设计的共性科学问题;化工工艺是关于化学品生产方法的技术科学,它以自然科学和工程科学规律为基础,使化学反应达到工业化应用水平。由此可见,核心课程群的各门专业课是相辅相成的。
在课程群建设中,涉及专业课教学的老师主要通过进修、企业实践、参加会议三种方式提高业务水平,对化工专业工程教育模式做到整体的认识,同时要求参与指导学生的化工设计。利用校企合作的机会,与企业方面的人才进行专业知识和其他方面的交流与沟通。其具体的组织与实施过程如下:
第一,教学方法改革的探索。首先,按照CDIO的教育理念,要逐步形成教师引导和以学生为主体的思想,使教师从教育者转变为引导者,教师不再是简单地卖知识,而是引导学生学习知识,把主要任务放到教会学生学习方法上来。在教学方面的改革要得到全校上下的支持才可能顺利进行。温州大学为课程体系建设和师资建设提供了很好的平台,在化工核心课程群教改的过程中提供了强有力的物质基础和政策鼓励。在这种良好的环境下,教师也愿意投入更多的时间去听课评课,吸纳好的教学手段和方法。由于化工班都属于小班上课(30人左右),对部分课程如化工专业英语、精细化工工艺学实施角色互换教学模式,让学生参与到化工教学的过程中。这些课程的效果反映较好,对化工原理等课程中的部分章节,我们也将逐步展开开放式的教学方法。
为了达到各门课程的知识体系能够很好地衔接,通过教研室教师集体备课,相互切磋,讨论每门课程讲授的重点,个别章节内容的舍弃和补充,做到教学的知识体系完整、重点难点突出、学时合理分配,真正做到精选、精讲教学内容。摒弃了过去教学活动中的单打独斗,改为教学团队授课,使各门课程有机地衔接起来。通过相互听课并课后集体讨论,指出教师课堂教学中存在的问题与不足,相互交流教学经验,讨论改进的方法与策略,使教师的整体教学水平迅速得到提升。
第二,教师工程素质的培养。不少高校在引进人才方面主要考虑的是教师科研水平,其次关注人才的企业实践经验。鉴于科研压力,假期教师也不能到企业去参与实践或者工作。此外,许多教师只对与自己科研相关的专业课非常熟悉,对其他的专业课则非常生疏。因此,利用现有的教学资源,培养教学团队的建设是很重要的一环。温州大学化学工程与工艺教研所以化工设计为主线,基于地方化工企事业单位为依托,派遣年轻教师每年到相关的化工企业实践两个月,逐步培养教师的专业水平。近几年,利用学习、调研以及下派科技特派员的方式,到杭州化工研究院、衢州巨化、瑞安华峰等不同类型的企业参观学习,不断地提高老师的业务水平。同时,为了让教师能够很好地参与到企业生产实践中,温州大学对担任科技特派员的教师提出教学科研任务减半、考核优先等政策鼓励。仅2010年,我们派年轻老师带队到衢州巨化学习15天,杭州化工研究院学习3天,华峰学习7天,温州本地化工企业实践1个月左右,有效地提高了教师的工程素质。教师工程素质的增强也使学生收益颇丰,在2010年省化工设计大赛和全国“三井杯”化工设计大赛中多次获奖。
2.学生工程能力和团队合作的培养
作为地方院校,温州大学化学工程与工艺专业的办学宗旨是以培养创新应用型人才为主,服务地方经济和社会的发展。经过对近两年该专业的毕业生调查的情况来看,目前该专业存在以下问题:(1)毕业生虽然掌握较多的书本知识,但实践能力不强,导致他们从学校到公司需要较长的“岗位过渡时间”;(2)毕业生普遍缺乏对现代企业工作流程和文化的了解,缺乏团队工作经验、沟通能力和创新能力;(3)工程职业道德、敬业精神等人文素质薄弱,责任感不强。具体体现在:工作不踏实、心浮气躁、做工程不细心、不愿承担责任,客观上他们的实践能力与企业要求存在较大差距,而主观上又不能沉下心来虚心向前辈学习。
从以上的调查结果来看,以目前的培养方案和评价标准来指导学生的专业教育经不起企业用人单位的考验。为了更好地培养适应地方经济社会发展的人才,实现对学生创新思维、创新方法和创新能力的培养,我们与温州地区最大的化工企业华峰集团实行校企联合培养本科生,实施“华峰特色班”战略。目前,“华峰班”的学生采用“3+1”模式培养方案(即学生前三年在学校集中学习理论知识并完成实践教学,最后一年到企业,接受企业的培训,并在企业盯班盯岗接受生产实践活动)。同时在工程专家的指导下,根据企业的需要对培养方案进行部分修改,增设华峰提出的部分课程,使得学生在校期间所学的基本知识和专业理论更贴近于华峰实际的应用。在这种战略方针下,学生在企业的环境中真正做到知识和能力之间的无缝连接,缩短了“岗位过渡时间”,增加了学生的工程实践能力,有效地推进了CDIO教学改革。在2010届的化工专业毕业生中,华峰集团招聘了7名华峰班学生。提升了学生的工程能力、团队合作精神以及专业素养。
3.逐步建立适合CDIO工程理念的考核制度
正确、公平、合理且科学有效的考核制度对本专业的健康发展起着至关重要的作用,它应当是对教学效果做出真实和客观的评价,同时有利于提高学生学习的积极性和主动性。现行的课程考核方法主要是通过期中和期末考试成绩来评定,它能在一定程度上反映学生掌握知识的程度以及教师上课的教学效果,但不能很好地促进学生学习的主动性。部分学生比较反感现行的考核制度,这是因为现行的考核方法存在比较单一、部分学生在学习上投机取巧也能获得高分而影响其他学生学习的积极性、不能全面反应学生的综合应用能力等问题。
CDIO教学模式以能力培养为目标,其主要培养的是学生的理论知识、职业技能、人际交流以及产品研发的CDIO全过程。采用CDIO教学模式,评价方法则应侧重能力的考核,能力本位的教学观贯穿课程设置和教学实践的全过程。我们进行教改,其目的是提高学生的工程实际能力,因此我们的考核将使用过程能力评测替代以往单一的成绩评定。
我们现阶段的具体做法是:(1)选题:在学生进入大三学习开始,从企业选出一些与本专业相关的课题以及近两年化工设计大赛的课题,让学生自动组成4~5人的小团队;(2)专业学习:上专业课的老师或工程师把握好主要的授课内容,然后将大部分时间留给学生,让他们针对自己的课题与本课程相关的知识点进行思考、提整理问、讨论;(3)阶段性测试:上完某些知识点后,老师或者企业工程师根据学生所做的课题和所学的专业知识进行评价,其中主要包括面试、答辩、自我评价、团队合作能力等方面;(4)中期成绩总结:这次总结是比较重要的,一般在大三上学期结束后,包括阶段性测试的成绩、平时的表现、专家化工设计大赛作品的评价、企业对学生课题的反馈等进行中期总结,由学校老师和企业专家对学生现阶段的学习进行方法论指导,提出下学期的目标;(5)最后专业课成绩评定:最后专业课成绩进行A、B、C、D四个等级进行划分,其中阶段性测试占40%、中期成绩总结10%、企业专家评价10%、课题完成情况10%、专业综合能力20%、化工设计大赛10%。目前,整个评价体系尚在完善中。
篇4
关键词:石油化工工艺;教学改革;实践教学
中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2013)37-0040-02
一、引言
《石油化工工艺学》是继基础课和专业基础课之后,化学工程与工艺专业主干专业课程之一。其主要任务是从石油化工生产工艺角度出发,运用化工过程的基本原理,阐明石油化工工艺的基本概念和基本理论,介绍典型工艺的生产方法与工艺原理、典型流程与关键设备、工艺条件与节能降耗分析。与化工专业其他课程相比,该课程具有明显的特殊性:综合性强,知识点多;课程内容广泛,新工艺多;应用性强,理论与实际紧密结合。所以刚刚完成基础课和专业基础课学习、缺乏工程概念和实践经验的大学生,要面对以原油蒸馏、催化裂解、催化重整等工业化装置为研究对象的非理想的、动态的、复杂多样的生产实际问题,以及大量的新概念、新工艺等,会感到无所适从,甚至厌烦、畏惧。目前,《石油化工工艺学》仍以课堂教学为主。虽有少学时的实践教学,但企业从确保生产稳定、安全等方面考虑,不允许实习学生动手操作。另外,传统的“一块黑板,一支粉笔”的教学方法根本不能让学生对复杂的实际工艺过程真正理解、掌握,更不要说现场实际控制操作了。所以该课程教学效果较差,急需改革。针对该课程的特点及教学现状,为了确保教学质量,提高教学效果,我们进行了教学改革探索。
二、强化课堂教学
《石油化工工艺学》以课堂教学为主。为了提高教学质量,培养学生兴趣和学习的积极性、主动性,更好地实现理论与实践的有机结合,首先应以教学手段的改革强化课堂教学。一方面引入了多媒体教学手段,借助多媒体的声光交互、动静结合的特点给学生全新的视觉感受,极大地提高学生的学习兴趣;以图片、声像资料和动画方式展示一些设备和生产工艺流程,解释一些抽象的原理,展现一些复杂工艺流程中单元操作的实现过程等,直观、形象,能帮助学生深入理解、开阔视野、增加兴趣,使其在有限的时间内容易接受,实现了高效且良好的教学效果[1]。另一方面应借助学校开通的网络教学平台,丰富课堂教学内容,在教学过程中根据需要及时地向学生介绍最新工艺、与课程相关的国内外研究动态、企业生产现状等,并对社会行业发展和人材结构需求等信息进行传递。除此之外,网络教学平台还可以实现师生的互动,使老师及时了解学生的困惑和对课程的掌握情况,以便课堂教学中有的放矢。这些教学手段的实施都大大地提高了教学质量和教学效果。其次以教学方法的改革强化课堂教学。传统的“满堂灌”教学方法,已无法满足要求,需要采用多种教学方法并用。譬如启发引导式[2]、讨论式、情境教学式[3]、工程案例式[4,5]等。该方法既能增加师生之间的教学互动,又能激发学生的好奇心、学习兴趣和求知、探索精神;既培养学生将基础理论应用到专业课中的学习方法,又提高学生对实际问题的综合分析能力和解决能力。这些教学方法的改革活跃了课堂氛围,实现了师生的共同参与,改善了教学效果,提高了教学质量。
三、加强实践教学
石油加工过程错综复杂。虽然课堂教学中运用多种教学方法,既注重了知识的交叉和融合,又注重了知识领域的拓宽和工程案例的结合,但是学生没有实践经验,缺乏综合分析的能力和将理论知识应用到实际工程问题的意识,所以必须加强实践教学环节。认识实习、专业综合实验、顶岗实习等多种实践类教学手段,不仅仅是理论教学的补充和完善,更是学生实践能力培养与训练的重要教学环节。首先使学生通过认识实习对石油化工工艺主要工艺的生产有一定的概念和认识,然后通过课堂教学,在具备“必须、够用”理论知识的基础上,通过专业综合实验、顶岗实习等实践环节,循序渐进的分层实训,使学生逐步将石油化工工艺关键理论与生产实际融为一体,这不仅为操作技能的训练和形成提供了强有力的支撑,而且建立了工程意识、理论与实践相结合的意识,具备了在实践中学习的能力、综合应用知识分析和解决实际问题的能力以及人际交往与团队协作精神[6]。
四、培养工程思维能力
尽管先修课程如《化工原理》等已引入“工程”概念,且在教学中从教学方法、手段、实践等多个环节也引导学生建立工程意识,但还需要学生进一步在实践中自己主动的、习惯性的去强化工程意识,培养工程思维能力。譬如,学生自编工艺[7],让学生自选课题,用分析与综合的方法根据工程实际生产编制工艺并组织讨论;请实习基地的外聘企业专家定期进入学校,走上讲台,开设应用技术讲座、工程案例分析;学生自制剪辑并配有录音的工厂装置图片、工艺图片,以及一些现场教学录像;老师和学生走进企业,现场教学;深入车间,顶岗实习等,这些都可以在实践中培养并强化工程意识,使学生逐渐地学会从工程观念的角度考虑每一个生产环节,配置合理的流程,实现生产的最优化。
五、改革教学模块
根据专业、课程特点和教学目标,整个教学过程由原来的“满堂灌”和专业实验两个模块改为五个模块:认识实习模块、理论教学模块、专业综合实验模块、现场教学模块和顶岗实习模块。认识实习模块使学生近距离接触生产流程、设备等,建立感官认识和概念,并产生好奇、兴趣和探索的欲望;理论教学模块是指学生学习理论知识,并在老师的引导下应用理论知识去分析工程中的实际问题,结合企业的装置图片、讲解和现场教学录像等建立工程观念、分析并解决实际问题;专业综合实验模块是指学生可以自由选题,根据认识实习和理论教学所掌握的知识,通过分析和综合考虑自编工艺,在指导教师的指导下独立完成。这不仅使学生获得了学有所用的成就感,而且培养了学生综合思维能力、动手能力和分析解决实际问题的能力;现场教学模块既使学生巩固了理论知识,又系统化的深入认识了工艺流程、设备等,还强化了学生的工程观念及综合分析能力;顶岗实习模块则是针对生产实际中的某个工段或车间进行更深入和细致的学习与研究,包括流程、设备、操作条件的调试、简单故障的排除等,最终实现理论和实践的统一,并使学生能应用工程观念、理论知识去综合分析和解决实际生产问题,具备一定的动手操作技能和排除故障的能力。
通过这些模块的训练和学习,毕业后的学生不仅具有扎实的专业理论知识,且具有一定的现场操作技能和水准,缩短了工作后的“再教育”过程,基本可以实现“零距离”上岗。
六、结语
总之,改革后的《石油化工工艺学》课程,在五大教学模块中通过分层教学、强化课堂教学、加强实践教学训练、培养工程思维能力,不仅确保了教学质量,取得了良好的教学效果,而且还有效地提高了学生综合运用理论知识分析、解决实际问题的能力,基本实现“零距离”上岗。
参考文献:
[1]温得英.多媒体课件教学的利与弊[J].信息与教学探索,2008,(9):164-165.
[2]王虹,李翠清,靳海波,等.基于工程素质教育的石油加工工艺学课程改革与实践[J].化工高等教育,2010,27(4):47-49.
[3]田伟军.情境教学法在煤化工工艺课程中的应用[J].考试周刊,2009,(4):179-180.
[4]罗学海,王晓梅.工程案例教学法在工科课堂中的应用探讨[J].湖北成人教育学院学报,2007,13(5):98-99.
[5]贾绍义,夏清,吴松海,等.工程案例教学法在化工原理课程教学中的应用[J].化工高等教育,2010,(3):78-81,96.
[6]王要令,赵振新,马步伟.《煤化工工艺学》课程教学改革探索[J].科技信息,2010,(22):2.
[7]王健祥.《有机化工工艺学》课程教学初探[J].泰州职业技术学校学报,2002,2(3):54-56.
篇5
关键词:化学反应工程;教学改革;教材;实施方案
《化学反应工程》课程是化工类及相关专业的核心课程之一,属于本专业重要的专业基础课和必修课,在化工类学生的培养过程中起着举足轻重的作用。化学反应工程是一门研究与化学反应工程相关问题的一门科学技术,是从上世纪30年代初萌生到50年代末形成的一门由过程控制、传递工程、物理化学、化工热力学、化工工艺学、催化剂等相关学科互相交叉互相渗透而演变成的一门边缘学科[1]。通过近几年的教学经验和调查研究发现,学生普遍认为化学反应工程是大学课程中最难学的基础课程之一,学习过程中发现理论计算公式复杂,反应器种类繁多,课程学习结束后感到一头雾水,抓不住重点。因此,面对这样一门课程,如何进行教学,让学生理解起来更加形象生动,从更本上改变化学反应工程的教学现状是我们目前的重要任务。本文结合不同种类高等学校选用教材的特点和差异,并根据我校化工专业的特色,提出了《化学反应工程》课程教学的侧重点,从多方面对本课程的教学提出了改革实施方案。
1《化学反应工程》教学在化工专业中的作用
化学反应工程的主要任务是研究化工生产过程中反应器内的反应规律和传递现象,使化学反应实现工业化生产的一门技术科学,是提高化工生产技术所必需的科学技术理论。化学反应工程在化学化工领域中起着举足轻重的作用,目前各种化学品的生产和应用无不借助于化学反应工程相关的理论知识。在20世纪40年代,一个化学反应过程的技术开发到真正的工业生产大概需要十年以上的时间,而现在只需要三到五年。此外,随着计算机技术的快速发展,中试试验的规模不断缩小,试验的次数也不断减少,大大加快了化工厂建设的步伐,降低了投资建设的成本[2]。因此,作为一门理论教学课程,将化学反应工程这门课程作为化工专业方向的重点课程进行建设,对于高等学校教学改革的促进、本科教学质量的提高、优秀化工专业人才的培养具有十分重要的意义。济南大学作为一所省部共建的大学,化学工程与工艺专业一直是本学校的特色学科,学校对化工类学生的培养目标一直是培养应用型高技术的人才,每年为我国的精细化工和石油化工行业输送大约240名高水平人才,对精细化工和石油化工行业的发展起到重要的作用。为此在化学反应工程教学过程中,我们紧密结合我校的特点和化工实际生产的需要,着重提升学生的反应工程知识储备,培养学生分析解决实际工程问题的能力,并在教学过程中不断地进行教学改革和实践,把课程、教材的理论研究和教学方法相结合,不断提升《化学反应工程》的教学效果。
2不同类型高校选用教材的特点和差异
直到20世纪70年代,化学反应工程的相关研究成果才开始被大量地介绍到国内,其中华东理工大学的陈敏恒教授,天津大学的李绍芬教授,浙江大学的陈甘棠教授,四川大学的王建华教授等是国内最早从事反应工程教学的学者。到了80年代以后,国内从事化学反应工程学科教学研究的队伍迅速壮大,并且化学反应工程的研究逐渐渗透到各种化工领域,与世界研究水平之间的差距也不断缩小,不同版本的教科书和各种各样的专著也相继出版。反应工程已经成为我国化工类专业学生的一门非常重要的专业课程。目前国内已有120所大学和科研单位培养化工类相关专业的人才,例如清华大学、天津大学、华东理工大学、北京化工大学、中国石油大学、南京工业大学、浙江大学、大连理工大学、四川大学、华南理工大学和济南大学等。目前化学反应工程学科正在蓬勃发展,由于国内高校地区和专业特色的不同,不同高校在化学反应工程教材选择上也存在差异,各有各的特点。作者就不同高校所使用的《化学反应工程》教材进行了汇总和分析。首先介绍一下陈甘棠教授主编的《化学反应工程》(第三版),这本教材是国内许多化工类高校选用的主要教材之一,随着我国在化学反应工程这一重要学科的教育方面日渐普及,该部教材自1981年第一版问世以来,已经出版到了第三版,受到广大化工类专业师生的好评[3]。该部教材的特点是着重基础,本书共分为十章,分别介绍了均相反应过程,包括均相反应动力学基础、均相反应器、非理想流动:非均相反应过程,包括气—固相催化反应过程、非催化两流体相反应过程、固定床反应器、流化床反应器;聚合反应过程,包括聚合过程的化学与动力学基础;生化反应过程,包括生化动力学基础、生化反应器。该部教材注重反应工程研究方法的介绍,在不同的章节内容中论述了反应工程学的发展方向,有助于读者进一步深入研究。朱炳辰老师主编的《化学反应工程》也受到国内很多工科类高校化工专业老师和学生的青睐。本部教材的第一版是由化学工业出版社于1993年出版,截至目前本部教材已经出版到第四版,其中第三版累计发行量高达32000册。《化学反应工程》第四版主要吸收了一些关于现代化学反应工程发展方向方面的知识,本部教材的主线是围绕化学反应与动量、质量、热量传递交互作用的共性归纳综合的宏观反应过程,以及如何解决反应装置的工程分析和设计。该书对近年来出现的化学反应新概念、新理论和新方法做了大量阐述。另外,对于国内一些偏工科的化工类高等院校,选用的教材大多数以郭锴老师主编的《化学反应工程》为主,本部教材的主要内容包括:均相单一反应动力学和理想反应器、复合反应和反应器选型、非理想流动反应器、气固相催化反应本征动力学、气固相催化反应宏观动力学、气固相催化反应固定床反应器、气固相催化反应流化床反应器、气液相反应过程与反应器、反应器的热稳定性和参数灵敏性。本部教材的特点是主要突出了该门课程的重点和难点,删除了一些与教学大纲联系不是十分密切相关的内容,并着重讲解解决化学工程问题的基本方法。除此之外,罗康碧老师主编的《化学反应工程》教材结合了理科和工科的综合优势,吸收了国内外相关教材的许多内容和好的经验,增添了一些反应工程研究方面的最新成果。另外,本部教材在贯彻“少而精”的原则上更注意删繁就简,将重点放在化工专业领域内共性的基本问题上,并且同时体现了其教学性。本部教材先重点阐述基本概念和基本原理,然后结合实际生产,详细论述各种常用反应器的设计方法,并列出详细的例题和课后习题,用于帮助学生利用所学到的反应工程原理去分析和解决实际应用问题。近年来,梁斌等老师主编的《化学反应工程》第二版也受到国内许多化工类高校老师和学生的欢迎。在本部教材中,主要内容是以《化学反应工程》、《反应器理论分析》及国内外相关优秀教材为基础,致力于培养学生的分析问题能力和提高学生的工程实际知识储备,减少了教材内容在模型分析上的过程描述,加强学生在建立模型方面的训练。另外,本部教材还增加了工业应用背景的实例分析和课后习题,在分析解答这些习题的过程中让学生充分掌握反应工程的基本原理和相关知识,使教学内容尽量与科学研究和工程实践同步。
3我校化工专业的特点和教学侧重点
济南大学的化学工程与工艺专业属于理论性和应用性兼顾的一门特色化工学科,本专业始建于1992年,前身为山东建材学院精细化工专业,1993年招生,是济南大学重点学科的重要组成部分,2007年被学校授予校级特色专业,2012年成为山东省品牌(特色)专业,现为山东省氟化学化工材料重点实验室依托专业之一。其中化学反应工程这门课是本专业重要的专业基础课和必修课,另外,化学反应工程课程的理论教学是本专业本科教学的重要组成部分,起着理论指导和基础知识培养的作用。另外,从学校每年安排的工程实习学时就可以看出,学校对学生的动手能力和实践能力提出了更高的要求。例如学校每年组织化学工程与工艺专业大三学生去山东金城医药化工有限公司进行生产实习,主要参观和学习2-甲氧羰基甲氧亚胺基-4-氯-3-氧代丁酸生产车间的反应器设计和工艺装置流程图。通过调研每年的学生生产实习效果发现:学生在学习完实际工业生产装置后,对课本上的基本概念和原理理解的更加透彻。根据我校化工专业的特点,在《化学反应工程》的课程教学上,我们选择的教材是郭锴老师主编的《化学反应工程》第二版。在课堂教学过程中我们的教学目标为:通过对反应工程理论的学习,能够运用化学反应工程的理论方法建立数学模型,优化设计反应器、或者改善化学反应场所、改进现有的化工生产工艺;进一步提高学生的理论联系实际的能力,培养学生判断和解决问题的能力,使学生学会研究的方法,为进入研究生学习打下良好的基础;掌握由化学动力学特性建立动力学方程、建立数学模型、优化和设计反应器及改进化工工艺的理论;运用化学反应工程的知识,能够进行基本化工反应装置反应器的设计。
4拟采用或已经实施的教学方法
化学反应工程具有跨接多种学科的特点,结合本校化学工程与工艺专业的特色和优势,笔者从以下方面进行了教学方法的改进。(1)结合我校特点济南大学在医药中间体工业化生产、氟化学材料合成、精细化学品制备和环境催化方向具有鲜明的特色和优势,已经发展成为以新产品开发、新工艺设计、新技术应用为特色的精细化工和化工领域高级人才培养、科学研究和新技术开发的重要基地之一,并多次获得国家科技进步奖和发明奖。因此,在本科教学过程中,要结合我校化工专业的特色,着重讲解气固相催化反应和气液相反应过程,并要求学生能够运用化学反应工程的知识进行基本化工反应装置或反应器的设计,进一步提高学生的理论联系实际的能力,培养学生判断和解决问题的能力,为社会培养优秀的化学化工(医药中间体、氟化学材料和精细化学品)相关人才。(2)阐述方法和教学方式的改进目前全国高等学校的教学方式还是以灌输式教学为主,老师主动讲,学生盲目听,导致课堂利用率低,学生学习效率不高。随着计算机技术的不断发展,多媒体技术在高校已经普遍使用,虽然这样可以改善课堂教学方式,丰富课堂教学内容,提高学生的学习兴趣,但是多媒体技术的使用导致每节课的授课内容大大增加,学生并不能高效率的吸收每节课中所有的知识点,导致在学期末时学生对这门课的了解程度并不高[4]。例如,我在第一次讲授《化学反应工程》这门课程时,由于讲课经验和技巧都很欠缺,所以在整个课堂教学过程中完全按照多媒体上的内容进行阅读,这样生硬的填鸭式的教学模式,导致整个课堂教学效果很差。因此这样的灌输式教学模式会导致学生盲目听从,其自主性和能动性大大缺失,所以在以后的教学过程中,我们要“授之以渔”,而非“授之以鱼”,这需要我们在教学方式上加以引导[5]。笔者认为改变这种填鸭式的教学模式,主要的突破口就是让学生参与到课堂教学过程中,充分调动学生的积极性并培养学生对本门课的学习兴趣。针对这一措施,笔者在教学过程中进行了一些探索和改进,取得了很好的效果。具体探索过程如下:在阐述一些基本概念和原理的时候,可以在课前让学生充分的查阅资料,然后在课堂上让学生进行讲解,在这过程中并进行充分讨论,最后老师做总结,并纠正学生的错误观点。这种“查阅资料-主题讨论-问题反馈”的教学模式,能够让学生参与到课堂教学过程中,让学生做课堂真正的主人,提高学生的主观能动性,改变填鸭式教学的不足。(3)注重理论和实际的结合在高校的课堂教学过程中,教科书是一种不可或缺的教学工具,但也不能作为唯一的使用工具,教科书在本科教学过程中只能作为一种辅助的工具。这样就要求老师在教学过程中要灵活应用教材,既不能完全拘泥于教材,也不能完全脱离教材,在讲清楚基本原理和基本概念的基础上,注重理论和实际相结合。在每一章的讲述过程中,把每一个知识点都与实际工业应用相互关联,并阐明其主要的热量传递、动量传递、质量传递及化学反应在实际过程中是如何应用的,以加深学生对每一个知识点的理解。另外,还要注意结合科研成果,对学科前沿知识进行讲解,让学生了解目前化学反应工程的研究动向,例如在讲解气固相催化反应本征动力学时,可以引入最新发表的经典文献,通过对文献的讲解,加深学生对气固相反应本征动力学的理解,知道如何来研究一个催化剂的本征反应活性。通过这种理论与实际相结合的方法,可以大大提高学生在课堂上的学习效率。在对《化学反应工程》课程教学方法不断改进后,获得了良好的课堂效果,这不仅对教师的教学能力是一种转变和提高,对化工类学生思维和能力的培养也具有重要的意义。
参考文献
[1]金涌,程易,颜彬行.化学反应工程的前世、今生和未来[J].化工学报,2013,64(1):34-43.
[2]王安杰,周裕之,赵蓓.化学反应工程[M].北京:化学工业出版社,2005:1.
[3]陈甘棠.化学反应工程[M].北京:化学工业出版社,2011:1-3.
[4]吴元欣,朱圣东,吴迎.以多尺度理念构建新的化学反应工程体系[J].武汉工程大学学报,2011,33(1):2-3.
篇6
[关键词]化工工艺;安全设计;危险控制;
中图分类号:TQ086 文献标识码:A 文章编号:1009-914X(2015)18-0035-01
化工行业是我国的基础支撑产业,是国民经济的重要组成部分,但是化工生产是危险性行业,在实际的生产过程中存在着较多的安全隐患因素,从而影响了化工生产的安全性,因此加强化工工艺安全设计中危险的识别和控制工作至关重要。
1.化工工艺安全设计的相关内容阐述
化工工艺安全设计是指根据化学物质的特性来设计工艺流程,同时优化化工设备、管道工艺及仪表自动化等。通常而言,化工工艺设计要以产品的需求为原则,以满足产品生产为出发点,这就需要设计人员在安全设计中要充分了解产品的特点和性能,尤其是加强对危险物品的管理和控制,对于容易引发安全事故的原材料和产品进行安全检验,避免在产品工艺安全设计中存在安全隐患。通过调查显示化工工艺安全设计危险控制中主要存在着以下的问题:①审核资料不过关,化工工艺安全设计需要充分的数据支撑,同时要保证数据的准确性,这样才能保证工艺安全设计的优化,消除隐藏的安全隐患。②对于化工产品的了解不足,化工产品具有危险性,同时其种类较多,包含了有机物、无机物等物质,因此要充分了解产品的物性,并根据产品性质来设计生产设备的设计和工艺的优化。
2.化工工艺安全设计中危险探究
由于化工生产属于大工程的范畴,因此其工艺安全设计中需要考虑的危险因素较多,这也给工艺设计中危险因素的识别和评估造成困难,下面详细阐述在安全设计中常出现的危险因素:
2.1 工艺安全设计的周期不足
化工工艺的设计是一项精密性的工作,要强化每一个细节的工艺设计和衔接工作,并针对工艺设计中可能存在的安全隐患进行及时地跟踪观察。因此,化工工艺在设计前要进行充分地实验验证,以获取足够的实验数据。但是有些工艺设计人员为了尽快实现工业化生产,尽早的获取高额的利润,在没有充足实验数据的基础上,就开展工艺设计工作,工艺安全设计的周期严重不足,也导致了工艺设计数据包中存在着大量的安全漏洞。
2.2 化工行业的特殊性
化工行业的特殊性决定了其生产危险的存在,由于大化工产业都需要高温高压的反应环境,同时其使用的原材料和产品中都含有易燃、易爆、腐蚀性、氧化性等物质,这些物质对于人体的健康造成了极大的威胁,因此化工工艺设计要把安全生产放在首要位置。但是由于化工生产牵涉的领域较广,存在的安全因素较多,其整体性的安全指数较低。
2.3 设计规范的执行情况
化工行业是基础经济行业,同时也是对于技术性和科学性要求较高的行业,国家针对化工安全设计出台了较为全面的政策法规和标准规范等,其内容涵盖了防火、防爆等方面,有效提高了设计工作的安全性和科学性,但是在实际的化工设计中,由于相关标准规范的执行不当,且化工工艺设计工作缺乏有效的监管,造成部分安全指数较低的项目投入生产,埋下了安全隐患。
3 化工工艺安全设计中危险因素的控制防范对策
3.1 工艺物料方面
危险品的辨别能力是设计人员的常识性能力,因此工艺设计人员应当对于生产项目中物料性质有着充足的了解,掌握了解材料的危险属性和危害程度,最重要设计好危险品泄漏的应急方案,加强对于危险品的控制力度。例如在阳离子树脂的工艺设计中,其生产材料要使用浓度较高的浓硫酸,浓硫酸是强氧化性物质,一旦接触到人体皮肤,就会造成大面积的皮肤伤害,因此,工艺设计人员在生产设计中,要掌握浓硫酸烫伤的预防,并优化设计管路,避免出现危险物质的泄漏。
3.2 工艺路线方面
不同工艺路线对化学反应物质的用量不同,同时也会对反应的激烈程度、放热程度影响较大,因此,要优化化工工艺设计,通过优化工艺流程来减少危险物质的使用量,同时来控制反应的反应速率,维持可操作的反应环境。此外要尽量减少中间储罐的使用,减少危险源数量,同时也可以实现反应环保性优化,降低反应对环境的破坏性。再者在某工厂车间的工艺管路的安装中(如图1),合理的安排了氨气通气管路、精馏塔、洗涤塔等设备,提高了化工线路的运行合理性,减少了污染物的排放,同时避免氨气泄漏造成环境污染和人员伤亡。
图1 某工厂车间的管线安装设计图
3.3 化学反应方面
化学反应是发生危险的根源,由于化学反应较为剧烈,会造成压力和温度在短时间内急剧上升,一旦对反应过程控制不当,极易引发安全事故。因此,工艺设计人员应当从化学反应入手,选择合适的反应设备和承压管路,重点研究化学反应的速率影响,控制反应速率,降低其安全隐患。在工艺设计时,可以先进行前期的试验工作,尽量的减少进料量,观察其反应状况以及对于设备的影响,然后再进行后续的放大。同时可以采用相应的保护措施来降低反应的剧烈程度,通过热量交换来降低反应釜内的温度和压力,也可以采用阻聚剂等物质来抑制反应速率。
3.4 管道方面
管道是化工工艺安全设计的危险环节之一,由于化工产品的特殊性,其对运输管路的要求较高,除了要求管路具备良好的强度,同时也要求管路具备很强的抗腐蚀性和防爆破性,减少有害物质的渗漏。管路设计应当综合考虑选材、布置、振动和应力分析的影响,优化管路操作条件。另外,要结合实际的化工工艺来选择管路和阀门的材质,并结合运输物料的特性选择管路之间的衔接方式。例如对于气体物料的运输,要选择封闭性较好的管路型材,同时要具备较强的抗爆性能,防止在高压下造成管路的破裂。
4.总结
总而言之,在化工工艺设计中,存在着较多的安全隐患,因此,化工单位在工艺设计时,应当充分研究工艺流程,加强对于使用的危险物品控制和管理,提高工艺设计的安全性,保证化工生产的安全性。以上是本人的粗浅之见,由于本人的知识水平及文字组织能力有限,文中如有不当之处还望相关专业人士批评指正。
参考文献
[1] 金阿铭.化工工艺安全设计中的危险因素及解决对策[J].黑龙江科学,2015,6
(1).
[2] 孙凌云,段绍书.浅析化工工艺安全设计中危险识别和控制[J].科技视界,2014(27).
[3] 李芝荣.化工工艺设计中的危险因素控制研究[J].化工管理,2013(06).
[4] 何雨甘.初探化工工艺设计中安全问题[J].中国石油与化工标准,2013(22).
篇7
关键词:化工工艺流程;萃取剂;原则;方法
化工工艺流程主要是通过化学反应将原材料转变为产品的过程,包括原料处理(净化、乳化、混合)、化学反应(氧化、还原、聚合)及产品精制(去除杂质及废弃混合物)三个步骤,且每一个步骤都有固定的流程和要求,涉及到催化剂、萃取剂、原料选择等诸多内容。萃取分离法在化工工艺流程中占重要地位,而萃取剂的正确选择是保证萃取工艺安全运行且经济合理的关键所在。本文共分为两个部分,第一部分分析了化工工艺流程萃取剂选择基本原则;第二部分重点探讨了正确选择萃取剂的有效方法,旨在给相关人员提供一定的借鉴作用。
1 化工工艺流程萃取剂选择基本原则
萃取作为一种经典的分离手段,利用萃取剂把化合物从一种溶液中有效转移到另一种溶液中,在这个过程中要选择合适的萃取剂。根据多年来的化工生产经验,总结出化工工艺流程萃取剂选择要遵循物理性质及化学性稳定、毒性小、选择性良好等原则,具体来说主要表现如下。
第一,物理性质及化学性稳定原则。化工工艺流程生产过程中涉及到很多化学反应,如氧化反应、还原反应等。为此需选择物理及化学性质稳定的萃取剂,减少对化工工程生产流程的影响,保证萃取质量。
第二,毒性小原则。随着化学化工工艺的不断发展和进步,对化工生产质量提出更高的要求:优质、高效、经济安全、毒性小。为此一方面要完善各项生产工艺,减少毒性。另一方面选择毒性小的萃取剂,减少化工生产整体毒性,实行安全操作。
第三,选择性良好原则。化工工艺流程萃取剂选择性要良好,这样可以有效扩大分离系数,且分离系数越大,萃取剂越合理。
第四,经济实惠原则。现代社会提倡节能环保,化工工艺流程生产也不例外。在保证萃取剂质量的基础上尽量选择经济实惠的萃取剂,节约成本,尽可能地以最少的成本投入获取最大的经济效益。
2 正确选择萃取剂的有效方法
2.1 正规溶液理论选择萃取剂
正规溶液理论作为萃取剂选择的一种常见手段,具有形式简单、操作方便等优点,但其不足之处在于使用范围有限。具体来说,正规溶液理论可以根据纯物质的性质直接判断混合物的性质,在中低极性混合溶液中应用较多,可作为非极性分子(分子力为色散例)判断的重要手段。但不适用于极性分子,主要是因为极性分子间力相对较复杂,可见该理论对萃取剂的选择有一定的局限。为此很多学者建议在极性溶剂中采取内聚能形式,利用无限稀释活度系数计算极性分析相关数值,在某些极性分子检测中获得成功,适当扩展了该理论的适用范围,但仍然有使用限制。
2.2 unifac模型选择方法
化工工艺流程萃取剂主要由有机物组成,虽然有机物类型多样且混杂,但在某种程度上它们是由几十种基团组成,于是很多研究者着手研究从几十种基团中判断混合物的性质,从而选择萃取剂,这就是所谓的unifac模型选择法。
unifac模型选择法有两种基本概念:①基团溶液。基团溶液主要是在基团贡献模型基础上发展而来的。②局部组成。局部组成概念是在拟化学理论的基础上发展而来的,最初使用该概念的是uniquac 法。随着时代的发展,unifac模型开始被提出并不断完善,如gmehling 的修正模型、hooper 的修正模型、kikic 的修正模型等。其中以第一种修整模型最为重要,具有参数齐全、适用范围相对较大等优点。随后gmehling等人对该修正模型不断改进和创新,最终得到简化公式,根据该供述可以快速有效地获得无限稀释活度系数,在萃取剂选择上有着较大的灵活性且精确度高,可作为化工工艺流程萃取剂选择的重要手段。
2.3 nrtl 模型法
nrtl 模型是由prausnitz提出的,他意识到液体混合物中局部组成且混合过程不是随机的,因此他增添了非随机参数,提出基于液相分层的nrtl 模型法。随后相关学者(如意大利学者vetere)对该模型法进行了一系列深入研究和拓展,使得nrtl 模型法除了在含
水体系中应用外,还可以在其他体系中运用,且预测精度较高。
2.4 选择反萃取能力强的萃取剂
利用萃取剂进行化工萃取工艺时,若萃取过程中环境受到影响,那么萃取物质也容易发生变化(从有机物质转变为水),这就要求萃取剂具有较强的反萃取能力。为此需根据化工生产工艺及实际条件选择合适的萃取剂,且保证该萃取剂具有化学性稳定、毒性小、物理性质良好、经济实惠等功能。
2.5 化工工艺流程萃取剂选择注意事项
第一,控制萃取剂的含量。对混合物进行萃取时,应严格控制萃取物的容量,即萃取期间,其单位容量能够对强保留分离物进行保留,该方式才能充分体现单位萃取剂的萃取能力。除此之外,萃取剂还具有保存有效成分的特点,即萃取期间,可以分离原材料中的杂质和有效成分。目前,市场上的萃取剂种类非常多,例如:醇、醛类中性萃取剂、羧酸类酸性萃取剂、螯合萃取剂、季铵盐类胺类萃取剂等。由于萃取剂的过程存在差异,其萃取效果也各不相同。因此,进行实际萃取期间,根据萃取需要选择合适的萃取剂,如利用萃取技术处理工业废水时,可选择环乙醇类、苯等萃取剂。本文笔者主要采用多种萃取剂处理酸化废水,发现环乙醇类的萃取效果明显高于其他种类的萃取剂。因此,笔者认为,当废水的ph≥7时,可采用乙醇类萃取剂处理。
第二,低互溶性。基于对材料的萃取功能,应保证萃取剂的密度与材料的密度存在差异,即两种物质相溶性较差。萃取剂具有油溶点低的特点,而水溶相对较好。取萃取剂对材料(水)进行萃取时,可以促使材料分层,有效避免乳化现象。因此,工业人员应基于材料的密度,选择与其密度差较大的萃取剂进行工业萃取,能够充分保证萃取质量。
第三,保证萃取剂化学性质稳定。萃取剂化学性质主要包括熔点、沸点、相对密度及腐蚀性等,保证上述这些化学性质符合要求,如熔点及沸点要低、相对密度要小、腐蚀性低等。举例来说,煤化工污水中主要有害物质为酚,需通过合适的萃取剂把酚含量有效降低。目前煤化工萃取剂主要有重苯、二异丙基醚、粗苯等。其中重苯、粗苯等物质易挥发,易造成二次污染;二异丙基醚相对上述物质具有乳化性弱、挥发性弱等特点,因此煤化工污水处理可选取二异丙基醚。
3 结束语
萃取在化工工艺流程中占有重要地位,且萃取分离工艺的正常运行及经济合理性与萃取剂的选择有着直接的联系。为此要根据化工工艺流程生产实际情况选择化学性及物理性稳定、毒性小、选择性高、经济实惠、反萃取能力强的萃取剂。同时严格按照萃取工艺标准或要求操作,安全高效地分离化学物质,充分发挥萃取剂及萃取分离法在化工工艺流程生产中的作用。
参考文献
[1]田伟.如何选择化工工艺流程中的萃取剂[j].黑龙江科技信息,2011(12):10.
[2]张威.浅谈关于化工工艺流程中萃取剂的选择[j].化学工程与装备,2011(06):86-87.
篇8
关键词:化工工艺设计;实践环节;教学改革
为适应国家战略发展需要,2013年教育部、中国工程院联合出台了《卓越工程师教育培养计划通用标准》,为高等院校培育工程技术人才提出了新的标杆,也提供了新的契机。在众多工科专业中,化工专业涵盖过程工业的各个部门,对高质量各类型的工程技术人才需求十分迫切。化工工艺设计课便是培养化工专业优秀工程技术人才的一门不可多得的课程,在高等工程教育的深化改革中越发展现出其在本科教学课程体系中无可替代的作用和地位。
1化工工艺设计课简介
化工工艺设计课(以下简称“工艺设计课”)目前在国内大多数设立化学工程与工艺专业的院校都有开设,一般安排在本科四年级,是在学生学完专业基础课之后,综合运用专业基础课、制图以及经济、安全等方面的专业知识解决问题的一次训练,更能够迫使学生从做题的情境切换到工程实际的情境,因而能加快学生的思维向工程思维转变,能切实提高学生处理工程实际问题的能力。因此,与本专业的理论课相比,工艺设计课在优秀工程技术人才的培养方面具有独特的优势。然而,由于多种原因,工艺设计课还存在着不少问题,这门课的优势还远未被充分发掘,应有的教学效果还远未达到。
2工艺设计课存在的问题及原因剖析
纵观国内开展工艺设计课的高等院校,目前该课程教学过程中发现的主要问题可归纳为以下五点。
2.1设计要求和难度一降再降
工艺设计课教学效果难以达到预期,很大程度上源于设计要求和难度的一降再降。一方面,信息时代生活节奏越来越快,压力越来越大,很多本科生为了提高自己的竞争力,不得不分心考研、考证、实习、联系出国、进实验室、参加学生工作和社会实践,难以专注于专业课程学习本身。因此,学生们能真正投入到工艺设计课中的时间越来越少。例如,每年都有大量学生参加考研,考研之后紧接着就是毕业设计,使得学生很难充分重视工艺设计这门课。另一方面,化工设计工作量巨大,真正的设计从来都是团队共同作业才能完成。但在实际教学中,为防止学生抄袭而催生的“一人一题”的强制要求,也使得教师很难提出由多人共同完成一个设计任务的设想,因而也不得不降低对个人的要求和难度。
2.2设计题目缺乏精心设计
设计题目的合适与否对教学效果影响甚大,但从目前情况看,不少设计题目缺乏精心设计,衍生出如下几类问题。(1)与《化工原理》、《反应工程》等经典先修课程脱节严重。近年来,有一部分带设计课的指导教师认为,设计应该做真题,不应该做所谓的“假题”,甚至于设计题目就是指导教师团队正在做的工程项目。这就使得设计题目中所涉及的核心反应和分离单元经常不是经典的反应器和单元操作(如吸收、精馏),有时会大量涉及气体吸附、膜分离、结晶、离子交换等非传统的化工的单元操作,有时甚至还因为新技术保护的原因无法获得设计所必需的数据。此外,即便有些题目来源于经典的传统化工工艺,但如完全忠实于实际项目,没有必要的简化处理,也必会造成工艺系统过于庞大、题目过于复杂,使学生感到一下子难以承受,不利于短学时性质的工艺设计教学。(2)“一人一题”设计的考虑不够周全。“一人一题”的初衷是限制学生抄袭。然而,很多设计题目,设计变量很少,甚至只有生产强度一个变量,使得学生的设计题目之间没有本质区别,无法杜绝学生抄袭。只要有个别学生做出来,其他学生只需简单地线性变换,仍可效仿,无需经过足够的个人思考。(3)未充分体现“整体设计”,仅是单元操作的简单组合。工艺设计课的工艺计算过程,应充分体现过程、工艺的整体设计。然而,目前的许多设计题目,其设计条件没有涉及单元之间的耦合,使得学生无需深刻认识过程和全流程,便可迅速进入到各个单元操作的计算阶段,其教学效果约等于化工原理课程设计,缺失了对学生大局观的培养。
2.3缺乏高效的“过程管理”
目前很多院校完全采用“结果管理”的教学模式,存在很大问题。所谓完全采用“结果管理”,即设计开始阶段做一次较为充分的宣讲,对设计过程不甚关心,完全以最终的报告和图纸定成绩。有些教师迫于科研压力,不愿在设计课上投入时间精力实施过程管理,甚至以“设计课以学生为主、学生自己完成”为理由,过度精简了设计过程中的师生互动环节。当然,也有很多教师非常重视过程管理,投入了大量的精力,但效率不高,其重要原因就是容许学生自由发挥的地方过多,学生的设计计算结果五花八门,教师很难对学生的阶段性进展做出高效反馈,甚至会打击青年教师的信心。诚然,设计没有标准答案,充分开放的设计题目更有利于启发学生,但这更多是针对设计大赛或是毕业设计。对于学时有限的工艺设计课教学,笔者不敢苟同。
2.4指导教师与真实设计资料的接触非常有限
近年来入职的青年教师,受到目前高等院校大环境影响,学术型的居多,大多没有经历过多少设计实践,自身工程设计底子薄。即使是有一定经验的教师,也有很多没接触过真正的、有代表性的设计资料。笔者所在的教研室只是收藏了一些早期的纸质版的图纸供学生学习,能反映当今化工厂、化工车间设计成果的图纸(特别是CAD电子版的图纸)还非常有限。学生们从未见过规范的设计文件和图纸,他们上交的报告和图纸都与行业规范相差甚远。
2.5先修课程缺乏对工艺设计课的铺垫
工艺设计课是一门综合运用所学专业知识的实践性课程,应该让学生能够在学习过程中将所学知识充分用到解决实际问题中去,这样会激发学生内心中的成就感,更加明白终身学习的重要性。然而,从目前看,学生学过的先修专业课程,对工艺设计课的铺垫不够,常常与设计题目脱节严重,这会使得“大学上的课没用”的思潮抬头,学生听课的积极性大减。例如,《化工工艺学》和《化工设计》这两门课是工艺设计课的直接先修课,但这些课程间的沟通合作还远远不够,从而不能将工艺设计题目中涉及的工艺流程在这些先修课上有所伏笔,提高了学生们面对工艺设计题目时要迈过的门槛。又如,认识实习、生产实习等实习环节,也是理论与实际联系的重要桥梁,但也很少跟工艺设计课之间建立紧密的关联[5]。我们常常不能将工艺设计题目中涉及的过程、车间和设备在实习阶段就让学生有所了解,这就使得工艺设计只能停留在课堂教学而没有实习支撑。
3改进工艺设计课的若干措施
笔者结合自己的教学实践以及在学生阶段的一些设计经历,尝试总结了一些可能对解决上述问题有所改善的措施,分五点陈述如下。
3.1精心安排设计时间
(1)尽早动员,尽早布置题目。《化工工艺设计》的全员动员应在四年级上学期开学即进行,最好能和另一门设计类实践课《化工原理课程设计》的全员动员合并进行。这样做好处有二:①学生通过一次集合就知晓大四的设计开课整体情况,便于其合理安排时间;②这样安排可以使得在《化工原理课程设计》结束后顺理成章地布置《化工工艺设计》的题目,给学生更多的准备时间应对难度更大的《化工工艺设计》。
(2)尽量避开考研冲刺期。可考虑将官方的开课时间定在春季学期,实际教学则可以跨年度。具体地说,是从考研结束之后那一周算起,完整进行4~5个自然周。笔者所在教研室一直推行这个方针,最大限度地减少了考研对工艺设计课的影响。
(3)给学生较为充足的报告撰写时间。在教学环节结束后,推迟1~2周(甚至整个寒假)收缴报告和图纸,给学生充足的报告撰写时间。如果寒假之前时间不够,则顺延到年后,但无论是否顺延,都统一在春季学期的第一周做完并上交报告,以减少对《毕业设计》环节的干扰。
3.2精心制定设计题目
(1)设计题目应更强调过程和整体。应通过设计条件的合理设定,使得任何一个单元操作都不可能独立求解,籍此强化过程物料衡算和过程设计的概念,使学生认识到过程设计不是单元操作设计的简单加和,有利于培养学生的大局观和主人翁意识。
(2)拉开“一人一题”设计条件的差异。通过设置不同的设计条件参数,对设计题目分组,使组与组之间在一开始便存在较大差别。这样即便无法完全杜绝抄袭,但也增加了抄袭的难度,迫使试图“偷懒”的学生不得不思考别人的结果哪些可以借鉴,哪些不能简单照搬,在这样的“询问他人+自我思考”中也潜移默化地达到了教学的目的,“少数人栽树、多数人乘凉”的状态得到有效的遏制。
(3)设计的前期计算应有相对确定的参考答案。设计的物料衡算、热量衡算和设备工艺尺寸计算部分,应有相对确定的参考答案,作为指导教师进行过程控制的重要依据。原因有四:①由答案反推过程,有利于及时纠正低级错误,有利于引导学生主动思考;②结合结果控制的管理,当有严格时间限制时,往往比纯过程控制效果更好;③能提高当面交流的效率,有利于提高学生的学习体验,也有助于提升青年教师信心,使其快速成长;④设计的开放性体现在多个方面,诸如PID设计就能充分训练学生的发散思维,没必要从工艺计算就开始发散。
(4)避免重复训练。设计题目最好应包括反应器设计。如果没有反应器,指导教师还应充分注意所带班级《化工原理课程设计》的题目,使得核心单元操作与《化工原理课程设计》有所区别。
3.3完善成绩评定方式
最终成绩应是设计步骤(设计过程)、答辩(测验)、说明书撰写、图纸绘制等环节的成绩总和。其中,设计步骤(设计过程)环节是过程监控性质的,应规定学生在每个节点必须完成的任务,且对其完成情况作出快速、准确的评估;答辩(测验)环节也是过程监控性质的,是教师了解学生投入情况的另一个重要窗口,是对抄袭行为的必要威慑。
3.4加强设计类课程的中青年教师培养
(1)提高准入门槛。首先,从事化工设计实践环节教学的教师,必须有化学工程与工艺的专业背景,最好是参加过设计大赛或本科毕业设计题目为设计型题目。其次,青年教师接手设计课也必须有听课、助课等自我修炼的过程,特别是没有时间较长、强度较大的实践经历的青年教师。
(2)鼓励设计课相关的教师“走出去”访问学习。鼓励工艺设计课相关的教师,包括从事《化工设计》理论课教学的老师,多去化工专业排名前列的院校走访,听听那些口碑较好的老师的《化工设计》理论课,了解其授课内容,学习其先进的课堂组织方式和授课方式。笔者本科阶段上过天津大学王静康院士负责的《化工设计》课,深刻体会到:把《化工设计》理论课上好,是调动学生兴趣的第一步;否则,学生就会本能地对设计实践课产生抵触情绪,很难谈得上有兴趣。
(3)下大力气收集、整理真实的设计案例。学院和教研室应设法为一部分指导教师创造去设计院实训的机会,积累一些真实的设计案例,至少是获得一些标准规范的PID、平立面布置、设备、配管设计等图纸,加以分类,做好资源共享管理。
3.5加强不同专业课教师之间的沟通、协作
在此笔者有两个特别建议:
①特别建议带设计的指导教师参加实习。比如,在生产实习过程中,要求学生认真体会工艺设计相关的工艺和单元操作,了解厂区总图布置、设备布置、管线走向、监控室设计等,学习工程实际中的反应器和多组分分离系统。
②特别建议《化工工艺设计》的指导教师也从事《化工原理课程设计》的教学,甚至是带同一个班。同一位老师带班,更有利于讲清楚这两门设计课的相通点和不同之处,使得工艺设计课能够尽量多涉及过程和整体,避免在单元操作的局部中纠缠不清。笔者已通过这种模式连续带班了2届学生,效果良好。
4结语
工艺设计课是化工专业设计类实践环节的典型代表,综合性和应用性都很强。在高等工程教育深化改革方面,工艺设计课是大有可为的,应引起相关专业、相关院校和相关部门的高度重视。一方面,必须从学校、学院和教研室层面重视起来,为支持设计课的发展、构筑合理的专业培养体系精心谋划、大胆创新;另一方面,这门课以及化工设计相关的指导教师应当意识到自己身上的责任和使命,下大力气提高组织教学的水平和业务水平。如此经过全方位多角度的改进,工艺设计课的教学质量才会不断提高,才会在培养高层次工程技术人才方面发挥更大的作用。
参考文献
[1]冉茂飞,张嫦,刘东,等.基于卓越工程师计划的“化工设计”课程教改初探讨[J].广东化工,2015,42(14):228-229.
[2]赵云鹏,周敏.化工设计课程教学改革与实践[J].广州化工,2014,42(8):193-194.
[3]梁克中,黄美英,赖庆柯,等.大学生化工设计竞赛对化工设计课程教学改革的促进作用[J].职业时空,2014,10(8):76-77.
[4]张刚,涂军令,傅小波,等.化工设计课程教学中的问题与改革尝试[J].广州化工,2016,44(6):181-182.
[5]陈效宁,张艳辉.关于生产实习与化工设计类课程相结合的探讨[J].广州化工,2015,43(23):255-256.
篇9
项目教学法是通过完成一些具体项目而实施的教学活动,是一种以项目为主线、学生为主体、教师为主导的教学模式[2],旨在充分发掘学生的创造力,培养学生的团队合作意识,提高学生解决实际问题的综合能力。在书籍艺术设计这门课程中,可以将教学内容分为七大模块:中外书籍形态的形成、书籍设计基础、书籍的整体设计、书籍的外观设计、书籍的内部设计、概念书籍的设计、书籍印刷与装订。其中,书籍的整体设计、外观设计、内部设计、概念书籍的设计均可设置成项目式教学,而其他几部分则以理论教学为主。下文中将以书籍的整体设计为例,介绍项目教学法的实施步骤。
(1)项目教学法实施前的理论准备
教师需要制作精美的多媒体课件,将书籍整体性设计思想、形式与内容的整体关系、封面封底书脊的整体关系、书籍装帧与印刷工艺的整体关系等重要知识点,图文并茂地传授给学生。
(2)下达项目任务,指导学生分组
教师结合实践,拟定一些具有一定难度的综合性项目,可以在书籍整体性设计这个大的范围下,按照书籍类别、读者对象等划分成一些具体类型,并对项目的目标作出明确规定。这些具体项目要尽量涵盖该章节的重要知识点。在指导学生分组时,根据我校专业划分和通选课的选课特点,可以将艺术设计、造纸、印刷、计算机等不同专业的学生混编在一起,这样可以取长补短,充分发挥每个学生的专业特长,调动学生的参与热情和创作激情。
(3)指导学生制定项目实施规划
教师指导各个项目小组,利用各类学习资源,制定具体的项目实施规划,鼓励学生开展讨论交流、实践调查和开拓创新。教师可以告知学生需要准备哪些知识、查阅哪些手册、调研哪些地点,来完成项目实施规划,同时指导各个小组明确小组成员的职责和任务。比如,小组中造纸专业的学生负责书籍整体材料的准备、印刷专业的学生负责书籍印刷装订方式的制定、艺术设计专业的学生负责书籍整体版面布局的构思、计算机专业的学生负责书籍整体形态的计算机绘制,这样安排有助于学生小组协作和团队精神的培养。
(4)指导各个项目的完成
各小组成员各司其职,按照项目规划,完成项目设计。在此过程中,各个小组进行书籍整体材料选择和创意构思,做出草稿后及时与教师交流,明确项目设计的改进方向,不断修正设计方案,完善设计成果。(5)项目成果交流与评价各项目小组将最终成果以PPT形式进行阐述,并进行学生互评和教师点评。教师可以选出具有代表性的项目成果,指出优缺点,做出项目总结。这样在分析与评价中,学生的学习热情就会高涨起来。经过多个轮次的教学实践,这种项目教学法已经赢得了学生的普遍认可。教师和学生共同参与到项目的开发、设计和完善,变被动学习为主动获取,变“听课-记录-总结”的模式为“听课-项目规划-参与-评价”的新模式,激发了学生的学习动力。
2互动教学法
在传统教学中,课堂以教师为中心,学生闷头苦学者有之,心不在焉者有之,容易造成死气沉沉的课堂氛围。而互动式教学则是以启发式为主[3],通过师生互问互答,让学生主动参与到课堂教学中,改变了教师讲、学生听的被动方式。在课堂教学中主要采用以下方式引导:
(1)问题式互动
比如讲到书籍封面设计时,可以先提出一些问题:好的书籍封面应该具备哪几个要素?书籍封面和招贴海报的版面构成有什么不同?引发学生对书籍封面设计的思考,然后在点评学生的回答后,进行理论讲授。
(2)案例式互动
比如讲到概念书籍设计时,在分析一个木质材料椭圆体结构的概念书籍作品后,可以让学生思考一下,换一种材料、换一种结构,能否设计出类似的作品,引导学生开拓思维,调动课堂氛围。
(3)讨论式互动
在讲述书籍整体设计时,可以让部分学生寻找各自喜欢的书籍,以小组形式讨论这些书籍的整体设计构思,材料、色彩、构图、印刷等特点,然后进行教师总结,加深学生对书籍的整体设计理解。
3实践教学法
书籍设计艺术的教学活动中,学生普遍对版面设计软件感兴趣,热衷于电子书籍作品的创作[4],而缺乏对材料、印刷、装订的实践探索,这样势必会造成理论脱离实践,学生设计的作品只能停留在纸面上,而很难经得起实践的检验。针对这种情况,本门课程主要采取以下措施来提高学生的实践能力。
(1)开放的实验室
我校的实验室在中午、周末等时间都处于开放状态,所以在课堂教学时,就鼓励学生到造纸实验室去体验特种纸材料、去印前实验室体验印刷制版分色等工艺、去印刷实验室体验上光覆膜装订等工艺,并且鼓励学生提交实验成品,以作业形式分享实验心得,以此作为学生平时分的一部分,计入考核。
(2)专业的实习基地
我校与大连理工大学出版社、大连金华光彩色印刷有限公司等企业均有一定的合作关系。学生平时可以去出版社印刷厂实习、打短工,亲身体验书籍设计到成品的整个过程,通过和资深编辑、印刷工艺师的直接交流,可以学到很多课堂上学不到的知识和技巧。
(3)开设校外专家讲座
篇10
【摘要】 氢化可的松是哺乳动物主要的肾上腺皮质激素类药物和重要的甾体药物合成的中间体。本文简要综述了其全化学合成、半合成法及全生物合成方法、路径的国内、外现状及相关进展情况,并对其发展方向进行了评述和展望。
【关键词】 氢化可的松; 甾体药物; 化学合成; 半合成法; 生物合成
ABSTRACT Hydrocortisone is the major glucocorticoid and an important intermediate in steroid drug synthesis. The main synthetic approaches and progresses including total chemical synthesis, semi-synthesis and whole-cell bioconversion for hydrocortisone manufacture in domestic and other countries were briefly reviewed. Prospective and evaluation of hydrocortisone synthesis were also discussed.
KEY WORDS Hydrocortisone; Steroid agents; Chemical synthesis; Semi-synthesis; biosynthesis
氢化可的松(hydrocortisone,HC)的化学名称为11β,17α,21-三羟基孕甾-4-烯-3,20-二酮,属肾上腺皮质激素类药,是激素类药物中产量最大的品种,其结构式如图1所示。目前中国、英、美、日、法等国及欧洲药典均有收载。5体HC是哺乳动物肾上腺皮质分泌的主要糖皮质激素,其药理作用是通过弥散作用于靶细胞,与其受体相结合,形成类固醇-受体复合物,激活的类固醇-受体复合物作为基因转录的激活因子,以二聚体的形式与DNA上的特异性顺序链结合,调控基因转录, 增加mRNA的生成, 并以此为模板合成相应的
图1
氢化可的松结构示意图蛋白,这些蛋白在靶标细胞内实现类固醇激素的生理和药理效应;HC能影响糖代谢,具有抗炎、抗病毒、抗休克和抗过敏等作用。主要用于肾上腺皮质功能减退症的替代治疗及先天性肾上腺皮质功能增生症的治疗,也可用于类风湿性关节炎、风湿性发热、痛风、支气管哮喘、过敏性疾病,并可用于严重感染和抗休克治疗等[1~4]。HC也是制备其他几种重要甾体药物的原料药。1948年,美国风湿病专家Hench在风湿病关节炎的治疗中发现可的松在体内转化HC才具有疗效。因发现可的松和HC的药理作用,Hench、Reichstein和Kendal一起获得了1950年的诺贝尔奖,并从此掀起了开发皮质激素的。Wendler等用化学法合成了HC,但由于步骤多、收率低,导致药品价格昂贵而难以工业化。此后,人们开始把目光转向生物转化方法。Fieser首先采用微生物转化方法使HC工业化生产成为可能[5]。为提高转化率和收率,国内外研究人员做出了不懈努力,并取得较大进展。
1 化学合成法制HC
Woodward报道的HC全化学合成法近40步合成步骤[6],以4-甲氧基-2-甲基苯醌作起始原料,经20步合成了第一个全合成的非芳香类固醇dl-Δ9(11),16-双脱氢-20-去甲孕酮,后转化成甲基dl-3-酮-Δ4,9(11),16-三烯胆酸,甾体骨架中A、C和D环具有对应的活性位,三重不饱和醚可全加氢和氧化成甲基三酮别胆烷,然后用三价的铬酸对11位氧化,经一系列转化得HC。但向C11-氧代氢化茚满的C-17位引入HC侧链是很困难的。烯基溴化镁可在C-11β位具有高的立体选择性[7]。报道的18步合成可的松[8],该方法由环己烯衍生物开始经11步反应合成17-异丙烯基茚满酮,再据Stork方法经7步反应合成可的松,Oliveto将HC醋酸酯转化成它的3,20-二肟,二腙和缩二氨基脲,再通过钾硼氢,硝酸作用脱去缩氨基脲得HC[9]。Minagawa等[10]向2,3-二氢茚中间体同时引进11-氧代基团和可的松侧链,可使合成步骤大大缩短,但化学合成法步骤多,总收率低。
2 半合成法制HC
2.1 HC半合成法简介
因全化学法合成HC价格昂贵,目前生产几乎都采用含甾体母核的生物质作原料的半合成法。甾体药物半合成法的起始原料都是甾醇的衍生物,如从薯芋科植物穿地龙、黄姜、黄独等植物根茎萃取的薯芋皂素;从丝竺属植物剑麻萃取的剑麻皂素等。比较薯芋皂素(图2)与HC(图1)的化学结构可知,必须去掉薯芋皂素中的E、F环。薯芋皂素经开环裂解去掉E、F环后,即能获得理想的HC关键中间体——双烯醇酮醋酸酯。在此过程中,除将C3羟基转化为酮基,C5、C6双键位移至C4、C5位外,还需要引入三个特定的羟基。这些羟基的转化和引入,有的较易进行,如C3的羟基经氧化可直接得到酮基,与此同时还伴有5双键的转位。C21位上有活性氢原子,可通过卤代之后,再转化为羟基;利用双键的存在,可经过氧化反应转化为C17羟基,并且由于X环的立体效应使C17羟基恰好为α-构型。在HC半合成路线中,关键一步是C-11β羟基的引入。由于在C-11位周围没有活性功能基团的影响,常规化学法很难氧化非活泼碳氢键,而生物催化法却能对它立体选择性氧化。有效的菌种是黑根霉和犁头霉。前者可专一性的在C-11位引入α-羟基,引入构型恰恰相反,故还需将其氧化为酮得醋酸可的松,再用钾硼氢对其进行不对称还原,得C-11位β-羟基物,即HC;犁头霉却能在化合物S的C-11位上直接引入β-羟基,后者就缩短了合成HC的工艺路线[11]。图2
薯芋皂素结构示意图
这两种合成方法都是以薯芋皂素为起始原料,经双烯醇酮酸酯环氧化后,再经Oppenauer氧化得环氧黄体酮。区别是在由环氧黄体酮出发后的不同合成路径。梨头霉法是由环氧黄体酮先上溴开环、氢解除溴上碘置换得醋酸化合物,再经梨头霉氧化直接引入C11位上β-OH得HC。黑根霉法是先在C11位上引入-OH后,经用铬酐铬酸氧化C11位α-OH为酮基,再上溴开环,用Raney镍氢消除溴,上碘置换得醋酸可的松,而后以缩氨脲保护C11、C20位上的酮基,用钾硼氢还原C11位上酮基使成为β-OH,脱去C11、C20位上的保护基和水解C21位上的乙酰基后得到HC。
梨头霉能在去氧氢化可的松(R5)C11位直接引入β-OH,缩短了合成HC的工艺路线。目前国内生产HC的菌种主要是蓝色犁头霉,但由于蓝色犁头霉氧化专一性低,HC的收率受到限制。国外大都是用新月弯孢霉进行工业化生产,国内对用新月弯孢霉进行生物转化生产HC也有相关研究,但工业化生产较少。一般说来,新月弯孢霉对底物去氧氢化可的松醋酸酯(RSA)具有较低的脱乙酰活性,而犁头霉AS3.65却对RSA呈现较高的脱乙酰活性。
生物转化法大大简化了HC的合成路径,成本也大幅度降低。为提高转化率和收率,研究人员做出了重大努力,取得了较大进展。
半合成方法中其它不同中间原料的主要合成途径见图3[10,12~17]。上述五种合成方法中以D方法最为简洁,但新月弯孢霉的转化率不高。如果以乙酸化合物为底物经新月弯孢霉转化,虽可在C11-β位引入-OH得到HC,但同时会产生14α-OH副产物。如果改用17α-乙酸化合物为底物,其立体阻碍效应可抑制14α-OH副产物的产生,HC产率可提高到70%左右。德国Schering公司将将乙酸化合物乙酰化得3β,17α,21-三乙酸酯化合物,经黄杆菌转化得17α-乙酸化合物,再经新月弯孢霉转化得11β-OH化合物S-17α-乙酸酯,将其溶解于甲醇,加NaOH使17α-乙酸酯水解即得HC,产率70%[18],过程如图4所示。
2.2 提高HC半合成收率及转化率的途径
国内利用微生物进行生物转化生产甾体药物,可将微生物胞内酶引入反应体系,利用微生物全细胞对底物进行生物转化。而在实际生产中,甾体化合物在水溶液中溶解度很低,一般溶解度范围在10-5~10-6mol/L,而微生物体内的11β-羟化酶位于水相中,又是一种胞内酶,底物需要透过细胞膜进入细胞才能进行转化反应,甾体底物与生物酶的接触十分困难。而利用“变压生物转化技术”[19],根据微生物本身特性,通过在生物反应的一定阶段施加温和压力,以破坏底物RSA晶体结构,显著改善其在水相中的溶解性,增加生产菌株的细胞膜通透性,可促进底物与胞内酶的结合,使蓝色犁头霉HC转化率提高15%。
杨顺楷等[20]采用超声法制备底物去氧氢化可的松(RS)-β-环糊精包合物,可提高甾体生物转化的底物投料浓度50%。若采用连续两批次生物转化生产HC,也可提高底物浓度和HC的转化率。以新月弯孢霉的Ⅱ级培养18h的活菌丝为C11β位羟化催化剂[21],结合液相提取及菌丝淘析处理的方法,该工艺底物转化率可维持在65%以上,HC的收率可达60%。此外可分离回收未转化的高价值的甾体底物RS。
蓝色犁头霉的二级发酵培养工艺,分离出菌丝物在液相悬浮介质中对RS底物进行C11β-羟基化,在底物浓度相同的情况下,与直接发酵氧化(一步转化法)比较,氧化(C11β-羟基化)速度提高1~2倍,缩短了发酵周期;RS的投料浓度也比直接发酵氧化提高了1.2~1.3倍,间接提高了转化率[20,22]。
对于微生物转化合成HC的方法,为了提高产率和转化率,国内、外都进行了不懈的努力。发展药物合成中一步分离的发酵工艺可使整个工艺简化。从RS开始合成去氢HC,需要连续两步微生物转化反应。若对每步反应的产物进行提取、分离,势必造成人力、物力和时间的浪费。若:①采用两种微生物分别培养后转化,Mazumder[23]成功地采用两种不同的固定化微生物,连续转化RS得到了去氢HC;②两种微生物分别培养后混合转化,Shull用培养好的草分枝杆菌(Mycobaccerium phlei)菌液稀释新月弯孢霉混合,经一步转化使RS变成去氢HC;③两种微生物混合培养与转化也能使整个工艺简化[24]。另外药物合成需要与反应器设计、分离纯化、过程强化等化学工程技术更加紧密地合作才能取得更大的效果。
2.3 减少副产物产生的方法
减少副产物的生成也是提高HC转化率的重要方面。HC黑根霉和犁头霉半合成工艺中最大的副产物是表氢化可的松,即C11α-羟基化合物。它是没有生理活性的副产物。对合成甾体糖皮质激素来说,由于11β-OH是抗炎药物必须的基团,最重要的微生物转化是羟化反应。Hayano将C-11-α和C-12-α位的氢用3H所取代的孕甾-3,20-二酮作为底物,用黑根霉进行羟化来进行研究,说明甾体的酶促羟化反应是羟基位置上的氢被直接取代,即羟基取代的立体构型是由氢原子原来所占的空间位置决定的。11-β-羟化其上羟基的立置是竖直的,由于10,13角甲基的存在,11-β-竖键羟基的立体阻碍比11-α-横键羟基位阻为大,造成11-β-羟化比11-α-羟化收率低,且副产物较多。表氢可的松可转化为可的松或其它甾体,如氟氢可的松等加以利用,以减少原料的浪费。
王敏等[25]通过采用细胞通透剂二甲基亚砜和丙二醇来提高HC转化的立体选择性,其中二甲基亚砜能使β/α值提高5%,丙二醇能使β/α值提高9%。他们在开展犁头霉对RSA的羟基化研究中,选择洗涤菌丝悬浮在柠檬酸缓冲液中有利于C11β-羟基化,指出无论是犁头霉或新月弯孢霉在C11β-羟基化反应中,洗涤菌丝可提高羟化酶的专一性,减少异构体副产物的形成[26]。
波兰学者Sedlaczek等在新月弯孢霉对RS的C11β-羟基化过程消除副产物方面取得了引人注目的进展[27]。通过理性了解真菌的系统生物学知识,借助传统的诱变选育技术,对新月弯孢霉菌丝细胞的原生质体(有完整核型)用化学诱变剂NTG处理,分离选育出对甾体RS的C11β-羟基化稳定型的突变株,可显著降低副产物量的65%,获得产率较亲株高28.5%。
Modilnisky等在开展蓝色犁头霉(TieghemeUa orchidis)对RSA生物转化生产HC的实验研究中,将培养基中的葡萄糖用蔗糖或淀粉替代,结果并没有造成C11α-和C11β-羟化甾体产物数量比例的改变,但却呈现了利用蔗糖作碳源的试验组转化速度较淀粉组快1.5倍,较利用葡萄糖组快2倍的试验结果。放大试验中,在不超过10~14h转化期间内,生成产物HC的数量比例达到55%~60%。值得指出的是该RSA的底物质量浓度较低(0.5g/L),实际应用价值有限[28]。
若以RS-17α,21-二醋酸酯为底物代替常规的去氧氢化可的松醋酸酯(RSA),实验转化结果中副产物14α-羟基-RS的生成量明显减少[29]。这是因为在甾体分子C14-位附近的α面当引入较大的取代基,如17α醋酸酯,可造成14α-位的立体障碍,抑制14α-羟基化活性,提高11β-羟基化物的收率。荷兰Gist公司采用化合物RS-17α-醋酸酯为底物,获得了高收率的HC及HC17α-醋酸酯的混合物,后者易水解为HC。
3 全生物合成HC
动物体内能合成三类重要的类固醇:糖皮质激素(如HC)、盐皮质激素和性激素。在动物肾上腺皮质内,由线粒体侧链分裂胆固醇,使之转化成孕烯醇酮,在内质网(sER)和线粒体中脱氢成黄体酮,再经过细胞色素P450酶的17α羟化、皮质脱氧、11β羟化三步酶促反应,最终在线粒体中转化为HC;也可用植物Δ7还原酶修饰麦角固醇主体利用简单碳源转化成孕烯醇酮(图5)[30]。
Dumas等报道,酵母本身并不合成胆固醇,也不从外界吸收固醇类。它需要以简单的含碳化合物,如乙醇和葡萄糖为原料,通过7还原酶合成类似于胆固醇的物质,麦角固醇,然后模仿肾上腺合成HC[31]。这需要在酵母体内重新组建人体合成HC的整个途径,也就是将合成途径中所需的全部基因引入酵母体内,而酵母体内存在的对合成目标产物不利的基因也将被
图5
HC生物合成(A)在肾上腺皮质中,(B)在重
组酵母体系中。黑框表示在线粒体中反应,灰框表示在内质网细胞质表面反应①细胞色素P450侧链分裂酶;②P450 17α羟化酶;③3β-羟基脱氢异构酶;④P450 21-羟化酶;⑤P450 11β-羟化酶;⑥Δ7还原酶除去[32]。
酵母合成HC是在一种高专一化的酶,即细胞色素P450单(加)氧酶催化下进行的。细胞色素P450系列酶是一个亚铁血红素蛋白大家族,主要应用在药物代谢和类固醇、油脂、维生素及天然产品的合成中。他们在不活泼C-H键中插入氧原子方面有显著作用,但他们的应用受限于底物的敏感性、低活性、不稳定性及需要辅因子。人们通过不同的途径,如变异、化学修饰、条件工程及固定化希望有效攻破这些难题[33]。
2003年,法国、德国学者和企业界合作[31],首次全生物合成了HC。该重组人源化酵母工程设计制备13个工程基因并表达在单个酵母体中,其中9个基因由外源机体哺乳动物及植物提供。构建成功的这一酵母工程菌,它能表达1个植物酶基因,引入8个相关哺乳蛋白酶,需优化两个线粒体系统,敲除4个产生副反应基因,使得原本仅产生麦角甾醇的酵母菌能利用简单碳源乙醇,糖等制得HC。这项研究成功解决了①CYP11A1底物的自生产;②线粒体P450及相关载体的靶目标;③人工生物合成的新陈代谢平衡;④将中间产物转化为代谢终产物的副反应的识别和防止;⑤对酵母有毒害作用的中间产物识别等难题。识别出两个主要的副反应是:由ATF2的基因产物催化的孕烯醇酮的酯化和由GCY1和YPR1基因产物共同催化的17α-羟基孕酮的20-酮的减少。可通过使这两种酵母基因失活减少副反应的产生。研究结果可使HC占所有类固醇产物的70%,理想情况下副产物仅有11-脱氧皮质醇和皮质酮。该方法简洁,有望成为HC生产的新途径。
4 结语
综上所述,目前甾体微生物转化中受到人们关注的领域有[23,30~33]:①将微生物基因工程的概念应用于甾体微生物转化,发展整体生物催化;②发展酶催化,通过修饰和固定化以提高选择性、稳定性、利于它们的协同催化及循环利用;③提高水不溶性底物的溶解度或提高酶和细胞在有机相中的生物活性及稳定性;④发展酶的在线再生和循环催化、有用物连续回收,更好地利用作为工业废料的甾醇化合物以生产有用的甾体化合物中间体;⑤修饰培养基、产物连续采出以提高收率和产量。人们希望在控制微生物转化方面能进一步发展,以进一步降低成本。
我国是甾体激素药物的生产大国,其中HC又是产量很大的品种。但是HC的微生物转化收率与国外先进水平存在一定差距,故在对发酵工艺条件改进的同时,需要进一步加强对HC基因工程和代谢组学的研究、开发全生物合成新工艺,加速新菌种引进及菌种改良,以提高其选择性、耐受性和转化率;另一方面药物合成需要与反应器设计、分离纯化、过程强化等化学工程技术更加紧密合作,尽快建立起多药源、快速量产的柔性制药工程体系,使我国早日成为具有循环经济特点的甾体药物生产强国。
参考文献
[1] Neeck G. Fifty years of experience with cortisone therapy in the study and treatment of rheumatoid arthritis [J]. Ann N Y Acad Sci,2002,966:28~38.
[2] Sakuma E, Soji T, Herbert D C. Effects of HC on the formation of gap junctions and the abnormal growth of cilia within the rat anterior pituitary gland [J]. Anatomical Record,2001,262(2):169~175.
[3] Florio S, Ciarcia R, Crispino L, et al. HC has a protective effect on cyclosporine A-induced cardiotoxicity [J]. J Cell Phys,2003,195(1):21~26.
[4] Gloor B, UHL W, Tcholakov O. HC treatment of early SIRS in acute experimental pancreatitis [J]. Dig Dis Sci,2001,46(10):2154~2161.
[5] Fieser L F, Fieser M. α-spinasterol [J]. J Am Chem Soc,1949,71(6):2226~2230.
[6] Woodward R B, Sondhermer F, Taule D, et al. The total synthesis of steroids [J]. J Am Chem Soc,1952,74 (17):4223~4251.
[7] Lecomte V, Stéphan E, Vaissermann J. Are the 11-oxo- steroids really so hindered towards organometallic compounds [J]. Steroids,2004,69(1):17~21.
[8] Horiguchi Y, Nakamura E, Kuwajima I. Total synthesis of (±)-cortisone [J]. J Org Chem,1986,51(22):4323.
[9] Oliveto E P, Richard Russer, Veber L. The preparation of HC from cortisone acetate [J]. J Am Chem Soc,1956,78:1736.
[10] Minagawa K, Furuta T, KasuyaY. Total synthesis of cortisol: application to selective deuteriation at C-I and c-19 [J]. J Am Chem Soc Perkin Trans I,1988:587~591.
[11] Weaver E A, Kenney E, Wall M E. Effect of concentration on themicrobiological hydroxylation of progesterone [J]. Appl Microbiol,1960,8(6):345~348.
[12] 段长强,王兰芬. 药物生产工艺及中间体手册[M]. 北京:化学工业出版社,2002:405~408.
[13] Shuvalova S D, Gabinskaya K N. Microbiological transformation of cortexolone into HC [J]. Chem Inform,2003,34(21):27~33.
[14] Shilov Y H, Lanin D V, Shirshev S V. Effect of HC on the functions of the circulating pool of phagocytizing cells under the conditions of β-adrenergic blockade [J]. Doklady Biochem Biophys,2001,379(1~6):284~286.
[15] Singh O N. Improved process for manufacturing compositions containing ciprofloxacin and HC [P]. WO0207704,2002-01-31.
[16] Calvin H. Aqueous solvent for corticosteroids [P]. US2002013305,2002-1.
[17] Wang J, Chen C, Li B. Production of HC from cortexolone-21-acetate by immobilized Absidia orchidis in cosolvent-containing media-side-chain degradation of cholesterol by Mycobacterium sp. [J]. Enzyme Microb Technol,1998,22(5):368~373.
[18] 张丽青,褚志义. 甾体微生物转化,甾体化学进展[M]. 北京:科学出版社,2002:346~360.
[19] 刘伯宁,乔长晟,贾士儒. 变压生物转化技术在氨基酸等发酵过程中的应用[J]. 发酵科技通讯,2006,35(2):35~36.
[20] 易奎星,杨亚力,杨顺楷,等. β-环糊精包合技术在微生物转化生产HC中的应用[J]. 中国医药工业杂志,2006,37(5):311~314.
[21] 易奎星,杨亚力,杨顺楷,等. 静息细胞连续两批次生物催化生产HC[J]. 生物加工过程,2005,3(4):40~44.
[22] 冯汉昌,于连生. 从化合物“S”合成HC双相发酵法实验[J]. 微生物学报,1976,16(2):177~178.
[23] 叶丽,史济平. 甾体微生物转化在制药工业中的应用[J]. 工业微生物,2001,31(4):40~47.
[24] 法幼华. 甾体药物合成中一步分离的各种发酵工艺[J]. 微生物通报,1994,21(1):51~53.
[25] 袁东超,王敏. 提高HC发酵过程中的微生物转化效率的初探[J]. 药物生物技术,2004,11(6):399~400.
[26] 王敏,王春霞,路福平,等. 甾体C11β-羟基生物转化新工艺的研究[J]. 天津轻工业学院学报,2000,31(2):1~5.
[27] Wilmanska D, Milczarek K, Sedlaczek L, et a1. Elimination of by-products in C11β-hydroxylation of substance S using curvularia lunata clones regenerated from NTG-treated protoplasts [J]. Appl Microbiol Biotechnol,1992,37(5):626~630.
[28] Angelova B A, Sukhodolskaya G V, Koshcheenko K A. Microbilogical C11α-hydroxylation of steroid compounds by the fungi Cunninghamella and curvularia [J]. Mikrobio,1985,54(5):704~710.
[29] 杜连祥,王敏,王赓, 等. 转化RSA为HC的新月弯胞霉筛选[J]. 微生物学通报,2001,28(1):44~48.
[30] Dumas B, Corinne B, Karine S, et al. HC made in yeast: Metibolic engineering turns a unicelluar into a drug-synthesizing actory [J]. Biotechnol J,2006,1(3):299~307.
[31] Szczebara F M, Cathy C, Villeret C, et al. Total biosynthesis of HC from a simple carbon source in yeast [J]. Nat Biotech,2003,21(2):143~149.