能源化学工程专业导论范文
时间:2023-08-15 17:32:11
导语:如何才能写好一篇能源化学工程专业导论,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和教学方法进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。
1明确教学内容与课程主线
结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,J.M.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。
2改变单一课堂教学模式,培养学生自主学习能力
化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。首先,教师在课前预习阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。
3课堂教学与工程实践密切结合,培养学生初步的工程观点
化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。
4考核方式方法研究
传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、平时作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。
5结束语
在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。
参考文献
[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等教育,2008,3:19-21.
[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.
[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.
[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.
[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.
[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.
篇2
近年来以“翻转课堂”为代表的在线课堂教学模式逐步进入高校,通过分析高校化学类课程在线课堂的发展历程,总结了其具有教学时空扩大、解答针对性强、演示实验安全性三大优势,但是也存在学生学习自觉性较差、高校师生互动薄弱、知识点过度简化、动手实践无法替代这些不足,建议通过授课教师学科交叉背景、丰富的案例教学、合理的考试考核、强化课程考核测量与评价等环节逐步完善高校化学类在线课堂的教学。
关键词:
高校;化学;在线课堂;教学模式
1高校化学类在线课堂发展历程
2004年,萨尔曼•可汗用计算机远程指导他表妹学习数学,后来他开始录制十几分钟的教学视频放到网络上,供其他人下载学习。2007年,在前期的积累下,萨尔曼•可汗创立了可汗学院,兴起了“翻转课堂”为代表的在线课堂教学模式[1]。近10年来,在线课堂不仅在国外发展迅速,在我国也是逐渐被广大师生接受。2000年以前,受制于电脑硬件软件价格高昂,国内大多数高校非计算机类的专业的教学过程只有较少的使用电脑。进入21世纪的前5年,PPT这种教学手段广泛进入了国内高校的课堂,但是大学生个人电脑的持有率还较低。2005年以后,个人电脑基本在大学生中普及,虽然这一时期电脑软硬件价格下降了,但是网络通信的费用还是比较高,同时网速较慢也制约了利用网络进行教学,这一阶段,虽然国内很多高校制作了精美的精品课程网站,但是这些网站基本没有互动,且较少更新。2010年之后,智能手机迅速发展,同时网络资费大幅度下降,为国内高校在线课堂的全面发展提供了基础[2]。近几年来,国内高校大量的在线课堂纷纷呈现出来,但是基本偏向文科类和通识教育,理工科在线课堂不多,其中的化学类在线课程就更加少了。截止2017年3月15日,在国内几大主要在线课堂平台上搜索题目中带有“化学”的课程,其结果如下:(1)在超星公司尔雅通识课有复旦大学的化学与人类、浙江大学的化学与人类文明2门;(2)“智慧树”在线学习网有兰州大学的化学工程基础、中国海洋大学的食品化学、天津中医药大学的生物化学3门。第三,清华大学“学堂在线”课程有9门,分别为清华大学的有机化学、四川大学的化学反应工程、清华大学的材料化学导论、哈尔滨工业大学的水分析化学、北京大学的化学与社会、台湾新竹交通大学的微观化学世界、哈佛大学的生物化学原理、麻省理工学院的固体化学导论、美国戴维森学院的药物化学。第四、网易公开课在线学习课程较多,有大连理工大学的改变世界的化学、南开大学的化学类专业导论、化学与社会、中国科学技术大学的化学与日常生活中的安全、中国石油大学的身边的物理化学世界、济南大学的化学与人类健康、天津大学的化学漫谈、安徽大学的化学与科学素养、湖南大学的化学与能源、南京理工大学的神奇的化学元素、河北工业大学的绿色化学技术、河南大学的走近化学,加利福尼亚大学欧文分校的普通化学、有机化学、化学生物导论、热力学和化学动力学,麻省理工学院的魔术背后的化学、固态化学导论、化学原理、耶鲁大学的新生有机化学、可汗学院的基础化学、有机化学。可以看出国内大学的课程仍是以科普通识教育为主,虽然也有少数高校为专业性比较强,但相对于国外高校较弱。
2高校化学类在线课堂教学模式的优势
有统计分析表明,可汗学院制作的一些课程比美国常青藤高校制作的一些免费课程还受欢迎,因为在国外许多高校的在线课程,依旧主要是只录制教师上课的过程,某种层面来讲,依旧是满堂灌的一种形式,而可汗学院则强调了学习的过程。大量的研究表明,学生无法在接近一个小时的课堂里高度保持注意力集中,而可汗学院的每个在线课堂视频则比较简短,在十几分钟内完成,可以保证学生高度的注意力[3]。同时把教学的时空界限打破,不在拘囿于过去的学校,而可以学生在课下观看视频进行提前自学,然后将某些不理解的内容带到课堂上由授课教师答疑解惑,从而完成一个知识点的学习。除了以上这些共性的优点之外,高校化学类在线课堂还有自身的优势,就是化学演示实验,对于专业学习化学的大学生而言还是必须了解的,但是由于某些危险性存在以及课时的限制,无法在学校实验室课堂上展示,这时利用在线课堂的安全性就体现出来了。
3高校化学类在线课堂教学模式的不足
但是由于在线课堂在高校中推广的时间短,还是存在一系列的问题。首先,高校学生的学习积极性相对较为薄弱,尤其是缺乏高考等一些大型考试的指挥棒,学生课下提前自学的热情和态度相对不高,甚至在一些网购平台例如淘宝出现了代看在线课堂视频的服务,尤其是一些通识教育课程居多。这主要是由于在线课堂时空分离的带来的一个不足,无法实现学生学习过程的实施监控。产生这样的一个很大因素与学生的学习态度迷失,缺乏对专业、对课程的应有热情。其次,高校教师与学生之间的熟悉程度有限。由于高校课程设置的特点,学生不再像中小学那样有固定的教室可以长时间的在一个教室里,而教师在在教室的时间同样较短。再加上学生人数往往较多,甚至有一百人以上的大班教学,教师与学生之间缺乏一定的默契和了解,这对于开展在线课堂中的课堂答疑环节存在一定的不利。第三,在线课堂教学模式可能存在过度简化的缺陷,因为在线课堂时间较短,有些本来需要用数学公式做严谨证明的内容,往往用特定的例子去解释说明,从而不具有广泛的应用性[4]。以高校化学类课程为例,尤其是理论性较强的物理化学,还是需要数学公式的推导,在过去已有的PPT模式之下,已经存在学生反映进度较快,没有用黑板板书效果好,而现有的在线课堂这样的过渡简化进一步加深了。最后,在线课堂模式不可替代实验动手操作,化学类课程虽然有些演示实验可以采用在线课堂的模式,但是还是有很多的实验技能需要学生通过在实验室中亲手操作才能掌握。这些实践技能用教学视频是无法替代。
4高校化学类在线课堂教学模式的发展对策
首先,不同专业的化学类课程授课教师应具有交叉化的学科背景。高校非化学化工专业学生在化学类课程学习的热情不高涨很大一部分原因是由于往往这些课程由纯化学背景的教师任课[5]。化学专业科班出身的教师虽然能保证化学教学上的深度,但是无法保证化学教学的广度,教师需要完善自身的学习,才能更好的通过简短的在线课堂上对学生进行引导。第二,在线教学设计需要更多的引入案例教学,例如环境专业,可以以大气污染引入化学反应动力学的学习,如果只是简单罗列物理化学的基本公式,会造成学生本专业上缺乏认同感,进而影响学习兴趣。只有深入研究教学过程,并通过准确的案例指出哪些化学知识点在哪些环境保护与治理的实践中如何应用,才能使学生在学习兴趣上强化。第三,完善考试考核形式,不能只注重在线考核,也要注意线下的考核。但是同时要注意考试考核的难度与广度,不能所有的专业一刀切,采用一个难度,还是应该充分考虑不同专业的特点,根据这个专业的课时以及后续相关课程的要求,进行设计考试考核,实现课前在线课堂预习、教室答疑解惑、课后作业巩固等环节的全方位考核。第四,强化高校化学类课程的考核测量与评价。在高校虽然一般考试有试卷分析与考核评价,但是形式过于简单,往往是简单的划定一下成绩的比例,再对比较突出的问题进行主观性的文字描述,缺乏大量的数据分析。这一方面是由于高校化学类课程的考核相对于中学较少,中学一般一个学年有多次考核,能达到月考甚至是周考,而在高校一门化学课程往往只有在一个学年考核一到两次,这样的考核,无法使任课教师掌握学生学习的动态,这时候,对学生成绩的测量与评价更加显得重要,一方面可以给本学期授课学生成绩进行合理分析,还可以进一步指导下一学期或者学年的教学工作。
5结论
以“翻转课堂”为代表的在线课堂教学模式在高校化学教学中还是比较新颖的,在今后的推广中,需要进一步强化其优点,克服其不足,使之能够较好的为高校化学教学提供有力的支持。
参考文献
[1]牟新利.公共选修课“疾病、药物与健康”翻转课堂的实证研究[J].大学教育,2015(7):147-148.
[2]瞿旭晟.大规模开放在线课程对国内高校课堂教学的影响与对策[J].长春教育学院学报,2014(2):105-106.
[3]张小坡,魏娜,靳德军,等.基于微课的翻转课堂法探索天然药物化学教学[J].广州化工,2016,44(12):191-193.
[4]袁素真,衡衍.翻转课堂教学模式的优缺点分析[J].长江丛刊,2016(21):235-235.
篇3
关键词先进陶瓷,结构陶瓷,研究进展
1前言
20世纪60年代以来,新技术革命的浪潮席卷全球,计算机、微电子、通信、激光、新能源、航天、海洋和生物工程等新兴技术的出现和发展,对材料提出了很高的要求,能够满足这些要求的先进陶瓷材料应运而生,并在这些技术革命中发挥着重要的作用[1~4],同时也极大地促进了陶瓷科学的发展和应用,使陶瓷材料又一次焕发出了青春, 在尖端科学领域得到广泛的应用, 如航天、航空、汽车、体育、建筑、医疗等领域[4,5]。
先进陶瓷是有别于传统陶瓷而言的,不同国家和不同专业领域对先进陶瓷有不同叫法。先进陶瓷也称高技术陶瓷、精细陶瓷、新型陶瓷、近代陶瓷、高性能陶瓷、特种陶瓷、工程陶瓷等[1]。先进陶瓷是在传统陶瓷的基础上发展起来的,但远远超出了传统陶瓷的范畴,是陶瓷发展史上一次革命性的变化。通常认为,先进陶瓷是指采用高度精选的原料,具有能精确控制的化学组成,按照便于进行的结构设计及便于控制的制备方法进行制造、加工的,具有优异特性的陶瓷。
先进陶瓷按用途可分为结构陶瓷和功能陶瓷两大类。结构陶瓷是指用于各种结构部件,以发挥其机械、热、化学相生物等功能的高性能陶瓷。功能陶瓷是指那些可利用电、磁、声、光、热、弹等性质或其耦合效应以实现某种使用功能的先进陶瓷。先进结构陶瓷材料由于具有一系列优异的性能,在节约能源、节约贵重金属资源、促进环保、提高生产效率、延长机器设备寿命、保证高新技术和尖端技术的实现方面都发挥了积极的作用。本文着重介绍近年来结构陶瓷的研究进展及发展趋势。
2先进结构陶瓷及其应用
先进结构陶瓷若按使用领域进行分类可分为:(1)机械陶瓷;(2)热机陶瓷;(3)生物陶瓷;(4)核陶瓷及其它。若按化学成分分类可分为:(1)氧化物陶瓷(Al2O3、ZrO2、MgO、CaO、BeO、TiO2、ThO2、UO2);(2)氮化物陶瓷(Si3N4、赛龙陶瓷、AlN、BN、TiN);(3)碳化物陶瓷(SiC、B4C、ZrC、TiC、WC、TaC、NbC、Cr3C2);(4)硼化物陶瓷(ZrB、TiB2、HfB2、LaB2等);(5)其它结构陶瓷(莫来石陶瓷、MoSi陶瓷、硫化物陶瓷以及复合陶瓷等)[1]。
由于先进结构陶瓷具有耐高温、高强度、高硬度、高耐磨、耐腐蚀和抗氧化等一系列优异性能[4],可以承受金属材料和高分子材料难以胜任的严酷工作环境,已成为许多新兴科学技术得以实现的关键,在能源、航空航天、机械、交通、冶金、化工、电子和生物医学等方面有着广泛的应用前景。
2.1 耐高温、高强度、耐磨损陶瓷
2.1.1 氮化物陶瓷[6~8]
氮化物陶瓷是近20多年来迅速发展起来的新型工程结构陶瓷。氮化硅陶瓷和一般硅酸盐陶瓷不同之处在于其中氮和硅的结合属于共价键性质的键合,因而有结合力强、绝缘性好的特点。
氮化硅的烧结与一般陶瓷的烧结工艺不同,采用的是反应烧结法,此法制造的氮化硅陶瓷,不能达到很高的致密度,一般只能达到理论密度的79%左右,不能制造厚壁部件。提高氮化硅陶瓷致密度的有效方法之一就是在高温下进行加压烧结,由此可得到热压氮化硅陶瓷,其室温抗弯强度一般都在800~1000MPa。如果在其中添加少量氧化钇和氧化铝的热压氮化硅,室温抗弯强度可达到1500MPa,在陶瓷材料中名列前茅,硬度很高,是世界上最坚硬的物质之一;极耐高温,强度一直可以维持到1200℃的高温而不下降,受热后不会熔成融体,一直到1900℃才会分解;有惊人的耐化学腐蚀性能,能耐几乎所有的无机酸(氢氟酸除外)和30%以下的烧碱溶液,也能耐很多有机酸的腐蚀,同时又是一种高性能电绝缘材料。由于其热膨胀系数小,抗温度急变能力很强,因此氮化硅陶瓷具有优良的力学性能,在工程技术的应用上已占有重要地位。
氮化硅陶瓷制品的种类很多,应用也日益广泛,例如可做燃气轮机的燃烧室、晶体管的模具、液体或气体输送泵中的机械密封环、输送铝液的电磁泵的管道和阀门、铸铝用永久性模具、钢水分离环等。利用氮化硅摩擦系数小的特点用作轴承材料,特别适合作为高温轴承使用,其工作温度可达1200℃,比普通合金轴承的工作温度提高2.5倍,而工作速度是普通轴承的10倍;使用陶瓷轴承还可以免除系统,大大减少对铬、镍、锰等原料的依赖。氮化硅作为高温结构陶瓷最引人注目的就是在发动机制造上获得了突破性进展。美国用热压氮化硅制成的发动机转子成功地在5000转/min的转速下运转很长时间。
2.1.2 碳化硅陶瓷[9,10]
工业化生产碳化硅的方法是将石英、碳素(煤焦)、木屑和食盐混合,在电炉中加热到2200~2500℃下制成。碳化硅陶瓷和许多陶瓷的不同之处,在于它在室温下既能导电,又耐高温,是一种很好的发热元件。用碳化硅制成的电热棒叫硅碳棒,在空气中能经受1450℃的高温;质量好的重结晶法制成的硅碳棒甚至可耐1600℃的高温,远高于金属电热元件(除了铂、铑等贵金属外),这是因为它在高温空气中会氧化生成一层致密的氧化硅薄膜,起到隔离空气的作用,大大减慢了内层碳化硅的进一步氧化,从而使它能在高温下工作。用热压工艺可以制得接近理论密度值的高致密碳化硅陶瓷,它的抗弯强度即使在1400℃左右的高温下仍可达到500~600MPa,而其它陶瓷材料在1200℃以后,强度都会急剧下降。因此,碳化硅是在高温空气中强度最高的材料。
高温燃气涡轮发动机要提高效率,就必须提高工作温度,而解决问题的关键是找到能承受高温的结构材料,特别是发动机内部的叶片材料。碳化硅陶瓷在高温下有足够的强度,且有良好的抗氧化能力和抗热震性,这些优良品质都使它极其适合作为高温结构材料使用。用于在1200~1400℃下工作的高温燃气涡轮发动机叶片的材料,许多科学家认为它和氮化硅陶瓷是最有希望的候选材料。
碳化硅陶瓷的热传导能力仅次于氧化铍陶瓷。利用这一特性,可作为优良的热交换器材料。太阳能发电设备中被阳光聚焦加热的热交换器,其工作温度高达1000~1100℃,具有高热传导性的碳化硅陶瓷很适合做这种热交换器的材料,从试验情况来看,碳化硅陶瓷热交换器的工作状态良好。此外,在原子能反应堆中碳化硅陶瓷可用作核燃料的包封材料,还可作为火箭尾喷管的喷嘴及飞机驾驶员的防弹用品。
此外,为了提高切削刀具的切削性能,20世纪以来,刀具材料经过了高速钢和硬质合金两次发展过程,目前正在进入陶瓷刀具大发展的阶段。新型陶瓷以其耐高温、耐磨削的特点,已在20世纪初引起了高速切削工具行业的注意。陶瓷刀具不仅红硬性高,而且具有高硬度、高耐磨性,因此便成为制造切削刀具的理想材料。目前,制造陶瓷切削刀具的材料主要有氧化铝、氧化铝-碳化钛、氧化铝-氮化钛-碳化钛-碳化钨、氧化铝-碳化钨-铬、氮化硼和氮化硅等[11]。以这类材料制作的刀具没有冷却液也可以工作,比起硬质合金来具有切削速度高、寿命长等优点。目前,欧美各国都已广泛使用陶瓷材料做钻头、丝锥和滚刀;原苏联确定了7000多个品种的合金刀具,用喷涂表面陶瓷涂层的办法来提高车刀的工作速度和使用寿命。
陶瓷除作切削刀具外,利用其耐磨、耐腐蚀的特性还可用作各种机械上的耐磨部件。如用特种陶瓷制作农用水泵、砂浆泵、带腐蚀性液体的化工泵及有粉尘的风机中的耐磨、耐腐蚀件或密封圈等都已取得良好的实用效果。此外,高纯氧化铝(刚玉)可制作金属拉丝模,尤其在高温下的热拉丝更显示出陶瓷的优越性;工业陶瓷中纳球磨筒和磨球,金属表面除锈用的喷砂嘴,喷洒农药用的喷头等。总之,凡是需要耐磨、耐腐蚀的场合,几乎都会看到特种陶瓷的存在。
2.2 耐高温、高强度、高韧性陶瓷
新型陶瓷具有高强度、高硬度、耐高温、耐磨损、抗腐蚀等性能,因此在冶金、宇航、能源、机械等领域有重要的应用。由于陶瓷的韧性差,因此也限制了它的使用范围。1975年澳大利亚的伽里耶(Garie)首次成功地利用添加氧化锆来大大提高陶瓷材料的强度和韧性,自那时起世界各国利用氧化锆增韧这一办法,开发出多种具有高强度和高韧性的陶瓷材料,掀起了寻求打不碎陶瓷的热潮。
氧化锆能够增加陶瓷材料韧性和提高强度的原因,至今虽没有完全搞清楚,但研究结果已经表明,它和均匀弥散在陶瓷基体中的氧化锆晶粒的相变有关。一种增韧理论认为相变膨胀导致的微裂纹可以阻止造成脆断的裂纹扩展;另一种理论认为应力诱导相变,而相变可吸收应力的能量,从而起到增韧的作用[12~14]。总之,在某些陶瓷材料中引入一定量亚稳氧化锆微粒,并使其均匀分布都可大大提高陶瓷材料的强度和韧性。
氧化锆增韧陶瓷已在工程结构陶瓷研究中取得重大进展,经过增韧的陶瓷品种日益增多。现在已经发现可稳定氧化锆的添加物有氧化镁、氧化钙、氧化镧、氧化铈、氧化钇等单一氧化物或它的复合氧化物。被增韧的基质材料,除了稳定的氧化锆外,常见的有氧化铝、氧化钍、尖晶石、莫来石等氧化物陶瓷,还有氮化硅和碳化硅等非氧化物陶瓷。日本在氧化铝基质(强度为400MPa、断裂韧性为5.2 J/m2)材料中,添加16%体积百分数的氧化锆进行增韧处理,制得材料的强度高达1200MPa,提高了3倍,断裂韧性达到15.0J/m2,几乎也提高了3倍,基本达到了低韧性金属材料的程度[12]。最近的研究表明,强度和韧性是相互制约的。尽管如此,许多陶瓷材料通过氧化锆增韧,大大拓宽了应用领域,增强了取代某些金属材料的能力,出现了喜人的应用前景。利用氧化锆增韧陶瓷可替代金属制造模具、拉丝模、泵机的叶轮、特种陶瓷工业用的磨球、轴承,替代手表中的单晶红宝石。日本用增韧氧化锆做成剪刀,既不会生锈,又不导电,可以放心地剪断带电的电线。氧化锆增韧陶瓷还可用于制造汽车零件,如凸轮、推杆、连动杆、销子等。
2.3 耐高温、耐腐蚀的透明陶瓷[4,15]
现代电光源对构成材料的耐高温、耐腐蚀性及透光性有很高的要求,而同时满足这些性能的材料直到20世纪50年代后期才开始得到发展。1957年,美国通用电器公司的科布尔等人在平均尺寸只有0.3μm的高纯超细氧化铝原料中,添加氧化镁,混匀后压成小圆片,放在通氢气的高温电炉中烧制,意外地发现它像玻璃一样透明。科布尔还发现,把透明的陶瓷片放在显微镜下观察,几乎看不到微气孔。经过多次实验观察和研究分析发现,陶瓷的透光能力和内部气孔大小有很大关系,当微气孔的大小在1μm左右时,厚度为0.5mm的陶瓷试样只要含有千分之三的气孔就能使光线的透过率减少90%。一般氧化铝陶瓷中所含的气孔都超过这个数字。因此,构成氧化铝陶瓷的刚玉小晶体本身能够透过光线,而陶瓷还是不透明。使陶瓷透明的关键,是坯体中只能有一种晶型的晶体,而且对称性愈高愈好,否则会发生双折射,此外气孔要愈少愈好,有人做过试验,当气孔小到埃的数量级时,光会沿着微气孔发生绕射现象,这有助于透明度的提高。
氧化铝陶瓷是高压钠灯极为理想的灯管材料,它在高温下与钠蒸气不发生作用,又能把95 %以上的可见光传送出来。这种灯是目前世界上发光效率最高的灯。在相同功率下,一只高压钠灯要比2只水银灯或10只普通白炽灯发出的光还要亮,寿命比普通白炽灯高20倍,可使用2万小时以上,是目前寿命最长的灯。人眼对高压钠灯的黄色谱线十分敏感,而且黄光能穿过浓雾,特别适合街道、广场、港口、机场、车站等大面积的照明,效果极好。目前,许多国家正在推广使用,其发展速度之快,超过了以往任何一种电光源。由此不难看出,新型透明氧化铝陶瓷的出现,引起了电光源发展过程中的一次重大飞跃,带来了巨大的社会经济效益。
除半透明氧化铝陶瓷外,研究得较多的还有氧化镁、氧化钙、氧化铍、氧化锆、氧化钇、氧化钍、氧化镧等。透明氟化镁、氰化钙、硫化锌、硒化锌、硒化镉等也有报道。用氧化铝和氧化镁混合在1800℃高温下制成的全透明镁铝尖晶石陶瓷,外观极似玻璃,但其硬度、强度和化学稳定性都大大超过玻璃,可以用它作为飞机挡风材料,也可作为高级轿车的防弹窗、坦克的观察窗、炸弹瞄准具,以及飞机、导弹的雷达天线罩等。
2.4 纤维、晶须补强陶瓷复合材料[12,16~18]
近年来,以陶瓷为基体、纤维或晶须补强的复合材料由于其韧性得到提高而受到重视。碳化硅晶须增韧的氧化铝陶瓷刀具在20世纪80年代初开始研究,1986年已作为商品推向市场。碳化硅晶须的加入大大提高了氧化铝陶瓷的断裂韧性,改善了切削性能。用碳纤维和锂铝硅酸盐陶瓷复合,材料的强度已接近或超过1000MPa,其断裂功高达3000J/m2,即达到了铸铁的水平。用钽丝补强氮化硅的室温抗机械冲击强度增加到30倍;用直径为25μm的钨丝沉积碳化硅补强氮化硅,这种纤维补强陶瓷的断裂功比氮化硅提高了几百倍,强度增加60%;用莫来石晶须来补强氮化硼,其抗机械冲击强度提高10倍以上。可以认为,继20世纪70年代出现的相变增韧热后,晶须、纤维增强、均韧复合陶瓷已成为结构陶瓷发展的主流。高性能(强度、韧性)、高稳定性、高重复性的晶须、纤维复合陶瓷材料的获得,除要求晶须、纤维与基体间化学、物理相容性较好以外,从复合工艺上,还必须保证晶须纤维在基体中能均匀地分散,才能获得预期的效果。最近,利用“织构技术”,在某些陶瓷坯体中生长出纤维状态针状第二相物质如莫来石晶体进行“自身内部”复合,这种复合增韧是一项简便易行的陶瓷补强新技术。目前高性能陶瓷复合材料,还处在深化研究阶段,关键在于改进工艺和降低成本,提高其实际应用的竞争力。
2.5 生物陶瓷[4,5,19]
生物陶瓷材料是先进陶瓷的一个重要分支,它是指用于生物医学及生物化学工程的各种陶瓷材料。它的总产值约占整个特种陶瓷产值的5%。生物陶瓷目前主要用于人体硬组织的修复,使其功能得以恢复。全世界1975年才开始生物陶瓷的临床应用研究。但是,最近10多年间,各国在这方面的基础应用研究很活跃。
目前生物植入材料在人体硬组织修复中应用的有:金属及合金、有机高分子材料、无机非金属材料和复合材料。材料被埋在体内,在体内的严酷条件下,由于氧化、水解会造成材料变质;长期持续应力作用会造成疲劳或者破裂、表面磨损、腐蚀、溶解等,这些都可引起组织反应,腐蚀产物不仅在种植体附近聚集,还会溶入血液和尿中,引起全身反应。因此,对生物植入材料的要求是严格的、慎重的。陶瓷材料作为生物植入材料和其他材料相比,它和骨组织的化学组成比较接近,生物相容性好,在体内的化学稳定性、生物力学相容性和组织亲和性等也较好,因此,生物陶瓷越来越受到重视。目前国内一些高等院校已对羟基磷灰石及氧化铝陶瓷等进行了研究,并已开始临床应用。
随着人类社会物质文明的发展,人们对提高医疗保健水平和健康长寿的要求必然成为广泛的社会需要。可以相信,生物陶瓷材料今后必将会有重大发展。
3结构陶瓷的发展趋势
当今世界,材料,特别是高性能新材料由于以下原因而得到迅速发展:(1)国际军事工业激烈竞争,航空航天技术的发展需要;(2)新技术的需要促进了新材料的发展;(3)地球上金属资源与化石能源越用越少,石油、天燃气等在本世纪末将用尽,开发与节约能源成为当务之急;(4)科学技术的进步为新材料的发展提供了条件[14]。目前使用的金属合金,在无冷却条件下,最高工作温度不超过1050℃,而高温结构陶瓷,如Si3N4和SiC则分别在1400℃和1600℃以上仍保持着较高的强度和刚性[16]。先进结构陶瓷所表现出的优异性能,是现代高新技术、新兴产业和传统工业改造的物质基础,具有广阔的应用前景和巨大的潜在社会经济效益,受到各发达国家的高度重视,对其进行广泛的研究和开发,并已取得了一系列成果。但结构陶瓷的致命弱点是脆性、低可靠性和重复性。近20年来,围绕这些关键问题已开展了深入的基础研究,并取得了突破性的进展。例如,发展和创新出许多制备陶瓷粉末、成形和烧结的新工艺、新技术;建立了相变增韧、弥散强化、纤维增韧、复相增韧、表面强化、原位生长强化增韧等多种有效的强化、增韧方法和技术;取得了陶瓷相图、烧结机理等基础研究的新成就,使结构陶瓷及复合陶瓷的合成与制备摆脱了落后的传统工艺而实现了根本性的改革,强度和韧性有了大幅度的提高,脆性得到改善,某些结构陶瓷的韧性已接近铸铁的水平。
先进结构陶瓷今后的重点发展方向是加强工艺-结构-性能的设计与研究,有效地控制工艺过程,使其达到预定的结构(包括薄膜化、纤维化、气孔的含量、非晶态化、晶粒的微细化等),重视粉体标准化、系列化的研究与开发及精密加工技术,降低制造成本,提高制品的重复性、可靠性及使用寿命。目前,高性能结构陶瓷的发展趋势主要有如下三个方面:
3.1 单相陶瓷向多相复合陶瓷发展
当前结构陶瓷的研究与开发已从原先倾向于单相和高纯的特点向多相复合的方向发展[20]。复合的主要目的是充分发挥陶瓷的高硬度、耐高温、耐腐蚀性并改善其脆性,其中包括纤维(或晶须)补强的陶瓷基复合材料;异相颗粒弥散强化的复相陶瓷;自补强复相陶瓷(也称为原位生长复相陶瓷);梯度功能复合陶瓷[21]。以往研究的微米-微米复合材料中,微米尺度的第二相颗粒(或晶须、纤维)全部分布在基体晶界处,增韧效果有限,要设计和制备兼具高强度、高韧性且能经受恶劣环境考验的材料十分困难,纳米技术和纳米材料的发展为之提供了新的思路。
20世纪90年代末,Niihara教授领导的研究小组报道了一些有关纳米复相陶瓷的令人振奋的试验结果,如Al2O3-SiC(体积分数为5%)晶内型纳米复合陶瓷的室温强度达到了单组分Al2O3陶瓷的3~4倍,在1100℃下强度达1500MPa[8~12,22~26],这些都引起了材料研究者的极大兴趣。从那时直到现在,纳米复相陶瓷的研究不断深入[13~17,27~31],我国也相继开展了一系列的工作,目前对纳米复相陶瓷的研究已处于国际一流水平[18~22,32~36]。
3.2 微米陶瓷向纳米陶瓷发展
1987年,德国Karch等[37]首次报道了纳米陶瓷的高韧性、低温超塑。此后,世界各国对发展纳米陶瓷以解决陶瓷材料脆性和难加工性寄予了厚望。从20世纪90年代开始,结构陶瓷的研究和开发已开始步入陶瓷发展的第三个阶段,即纳米陶瓷阶段。结构陶瓷正在从目前微米级尺度(从粉体到显微结构)向纳米级尺度发展。其晶粒尺寸、晶界宽度、第二相分布、气孔尺寸以及缺陷尺寸都属于纳米量级,为了得到纳米陶瓷,一般的制粉、成形和烧结工艺已不适应,这必将引起陶瓷工艺的发展与变革,也将引起陶瓷学理论的发展乃至建立新的理论体系,以适应纳米尺度的需求。由于晶粒细化有助于晶粒间的滑移,使陶瓷具有超塑性,因此晶粒细化可使陶瓷的原有性能得到很大的改善,以至在性能上发生突变甚至出现新的性能或功能。纳米陶瓷的发展是当前陶瓷研究和开发的一个重要趋势,它将促使陶瓷材料的研究从工艺到理论、从性能到应用都提升到一个崭新的阶段。
纳米陶瓷的关键技术在于烧结过程中晶粒尺寸的控制。为解决这一问题,目前主要采用热压烧结、快速烧结、热锻式烧结、脉冲电流烧结、预热粉体爆炸式烧结等致密化手段[39~43],但总的来说,以上各种手段,虽对降低烧结温度、提高致密度有一定作用,但对烧结过程中晶粒长大的抑制效果并不理想,大块纳米陶瓷的制备一直是目前国际上纳米陶瓷材料研究的前沿和难点。目前纳米陶瓷在商业应用方面尚未取得突破性进展,若能制备出真正意义上的纳米陶瓷,则将开创陶瓷发展史上的新纪元,陶瓷的脆性问题也将迎刃而解[44]。大量的研究结果表明[45~49],将等离子喷涂技术与纳米技术相结合,以纳米陶瓷粉末为原料经等离子喷涂技术制备的纳米陶瓷结构涂层表现出极其优异的性能,已经使纳米材料的应用逐步进入大规模实用化的阶段。
3.3 由经验式研究向材料设计方向发展
由于现代陶瓷学理论的发展,高性能结构陶瓷的研究已摆脱以经验式研究为主导的方式,陶瓷制备科学的日趋完善以及相应学科与技术的进步,使陶瓷材料研究工作者们有能力根据使用上提出的要求来判断陶瓷材料的适应可能性,从而对陶瓷材料进行剪裁与设计,并最终制备出符合使用要求的适宜材料。
陶瓷材料常常是多组分、多相结构,既有各类结晶相,又有非晶态相,既有主晶相,又有晶界相。先进结构陶瓷材料的组织结构或显微结构日益向微米、亚微米,甚至纳米级方向发展。主晶相固然是控制材料性能的基本要素,但晶界相常常产生着关键影响。因此,材料设计需考虑这两方面的因素。另外,缺陷的存在、产生与变化、氧化、气氛与环境的影响,对结构材料的性能及在使用中的行为将产生至关重要的作用。所以这也是材料设计中要考虑的重要问题,材料的制备对结构与缺陷有着直接影响,因此人们力求使先进陶瓷材料的性能具有更好的可靠性和重复性,制备科学与工程学将在这方面发挥重要作用。
陶瓷相图的研究为材料的组成与显微结构的设计提供了具有指导性意义的科学信息。最近提出的陶瓷晶界应力设计,企图利用两相或晶界相在物理性质(热膨胀系数或弹性模量)上的差异,在晶界区域及其周围造成适当的应力状态,从而对外加能量起到吸收、消耗或转移的作用,以达到对陶瓷材料强化和增韧的目的[1]。为克服陶瓷材料的脆性而提出的仿生结构设计,通过模仿天然生物材料的结构,设计并制备出高韧性陶瓷材料的新方法也成为研究热点[12,50]。
4结语
先进结构陶瓷材料在粉体制备、成形、烧结、新材料应用以及探索性研究方面取得了丰硕的成果,这些新材料、新工艺、新技术,在节约能源、节约贵重金属资源、促进环境保护、提高生产效率,延长机器设备寿命以及实现尖端技术等方面,已经并继续发挥着积极的作用,促进了国民经济可持续发展、传统产业的升级改造和国防现代化建设。
先进结构陶瓷材料的研究,需要跟踪国际科技前沿,对新设想、新技术进行广泛探索。自蔓延高温燃烧合成技术(SHS)、凝胶注模成形技术、微观结构设计已成为研究热点。
陶瓷材料的许多独特性能有待我们去开发,所以先进陶瓷的发展潜力很大。随着科技的发展和人们对陶瓷研究的深入,先进陶瓷将在新材料领域占有重要的地位。
参考文献
1 郑昌琼主编.新型无机材料[M]. 北京:科学出版社,2003
2 朱晓辉,夏君旨. 从材料科学的发展谈陶瓷的发展前景[J].中国陶瓷,2006,42(5):7~9
3 韩以政. 高技术陶瓷发展简论[J].陶瓷研究与职业教育,2007,2:45~48
4 耿保友. 新材料科技导论[M]. 杭州:浙江大学出版社,2007
5 尧世文,王华,王胜林.特种陶瓷材料的研究与应用[J].云南冶金, 2007,36(8):53~57
6 代建清,马天,张立明. 粉料表面氧含量对GPS烧结氮化硅陶瓷显微结构的影响[J].稀有金属材料与工程,2005,34,2:8~11
7 祝昌军,蒋俊,高玲. 氮化硅陶瓷的制备及进展[J].江苏陶瓷,2001,34 (3):10~13
8 吴明明,肖俊建. 氮化硅陶瓷在现代制造业中的应用[J].机电产品开发与创新, 2004,17(2):1~4
9 李 缨,黄凤萍,梁振海.碳化硅陶瓷的性能与应用[J].陶瓷,2007,5:36~41
10 黄凤萍,李贺军等.反应烧结碳化硅材料研究进展[J].硅酸盐学报,2007,5:49~53
11 仟萍萍. 氧化铝基复合陶瓷的制备和性能测试:硕士学位论文[D]. 合肥:合肥工业大学,2004
12 穆柏春等.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002
13 王柏昆. 结构陶瓷韧化机理的研究进展[J].中国科技信息,2007,19:264~273
14 王正矩,余炳锋. 陶瓷基复合材料增韧机理与CVI 工艺[J].中国陶瓷,2007,43(6):11~14
15 李双春. 激光陶瓷的粉体制备研究:硕士学位论文[D]. 西安:西安电子科杖大学,2006
16 周玉编著. 陶瓷材料学(第二版)[M].北京:科学出版社,2004
17 李 缨. 碳化硅晶须及其陶瓷基复合材料[J].陶瓷,2007,8:39~42
18 王双喜,雷廷权. 碳化硅晶须增强氧化锆复相陶瓷材料的组织观察[J]. 中国陶瓷,1998,34(2):9~11
19 孙玉绣. 羟基磷灰石生物陶瓷纳米粒子的制备、表征及生长机理的研究:博士学位论文[D]. 北京化工大学,2007
20GUO J K.The Frontiers of Research on Ceramic Science[J]. J Solid State Chem,1992,69(1):108~110
21 郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报,1996,24(1):7~12
22 NIIHARA K. New Design Concept of Structural Ceramics-ceramic Nanocomposites[J].J Ceram Soc Japan,1991,99(10):974~982
23 NIIHARA K, NAKAHIRA A. Strengthening and Toughening Mechanisms in Nanocomposite Ceramics[J].Ann Chim Fr,1991,16:479~486
24 HIRANO T,NIIHARA K.Microstructure and Mechanical Properties of Si3N4/SiC Composites[J].Mater Lett,1995,22:249~254
25 HIRANO T,NIIHARA K.Thermal Shock Resistance of Si3N4/SiC Nanocomposites Fabricated from Amorphous Si-C-N Precursor Powders[J].Mater Lett,1996,26(6):285~289
26 SAWAGUCHI A,TODA K,NIIHARA K. Mechanical and Electrical Properties of Alumina/Silicon Carbide Nano-composites[J].J Ceram Soc Japan (Japanese), 1991,99(6): 523~526
27 EBVANSA G. High Toughness Ceramics[J].Mater SciEng,1988,A105/106(11-12):65~75
28 ZHAO J,STEARS L C, HARMER M P, et al. Mechanical Behavior of Alumina-silicon Carbide Nanocomposites. [J].J.Am CeramSoc,1993,76(2):503~510
29 KENNEDY T,BROWN J, DOYLE J,et al.Oxidation Behaviour and High Temperature Strength of Alumina-silicon Carbide Nanocomposites[J].Key EngMats,1996,113:65~70
30 PEZZOTTI G, AKAI M.Effect of A Silicon Carbide Nano-dispersion on the Mechanical Properties of Silicon Nitride[J].J.Am CeramSoc,1994,77:3039~3041
31 NAWA M. Microstructure and Mechanical Behaviour of 3Y-TZP/Mo Nanocomposites Possessing A Novel Interpenetrated Intragranular Microstructure[J].J.Mater Sci,1996,31:2849~2858
32 王 昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析[J].陶瓷学报,2000,21(2):107~111
33 焦绥隆,BORSACE.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理[J].材料导报,1996,10(增刊):89~93
34 郭景坤.关于先进结构陶瓷的研究[J].无机材料学报,1999,14(2):194~202
35 SHAO G Q,WU B L,DUAN X L, et al. Low Temperature Carbonization of W-Co Salts Powder[A].Ceramic Engineering & Science Proceedings-23rd Annual Conference on Composites, Advanced Ceramics,Materials, and Structures:A[C]. Ohio: The American Ceramic Society,1999.45~50
36 张志昆,崔作林. 纳米技术与纳米材料[M].北京:国防工业出版社,2000
37 KARCH J, BIRRINGER R, GLEITER H. Ceramics Ductile at Low Temperature[J].Nature,1987,330(10):556~558
38 Liao S C,Mayo W E,Pae K D.Theory of High Pressure/Low Temperature Sintering of Bulk Nanocrystalline TiO2[J]. Acta Mater,1997,45(10):4027~4040
39 Yoshimura M,Ohji T,Sando M,et al. Rapid Rate Sintering of Nano-grained ZrO2-based Composites Using Pulse Electric Current Sintering Method[J]. Mater Let, 1998, 17(16): 1389~1391
40 Kim H G, Kim K T.Densification Behavior of Nanocrystalline Titania Powder Compact under High Temperature[J]. Acta Mater,1999,47(13):3561~3570
41 Li Ji guang,Sun Xudong. Synthesis and Sintering Behavior of A Nanocrystalline Al2O3 Powder[J].J Acta Mater,2000,48:3103~3112
42 李晓贺. 纳米复相陶瓷材料的烧结技术[J].中国陶瓷,2007,43(7):43~46
43 傅正义. 陶瓷材料的SHS 超快速致密化技术[J].硅酸盐学报,2007,35(8):949~956
44 高 濂,李蔚著. 纳米陶瓷[M]. 北京:化学工业出版社,2001
45 B H Kear. Plasma Sprayed Nanostructured Powders and Coatings[J].Thermal Spray Technology,2000,9(4):483~487
46 H Chen, S W Lee,H Du,et al.Influence of Feedstock and Spraying Parameters on the Depositing Efficiency and Microhardness of Plasma-Sprayed Zirconia Coatings[J]. Materials Letters,2004,58:1241~1245
47 E P Song,J Ahn,S Lee.Microstructure and Wear Resistance of Nanostructured Al2O3-8wt.%TiO2 Coatings Plasma-Sprayed with Nanopowders[J].Surface & Coatings Technology,2006,201 (3~4):1309~1315
48 J X Zhang. Microstructure characteristics of Al2O3-13 wt.%TiO2 Coating Plasma Spray Deposited with Nanocrystalline Powders[J]. J. of Materials Processing Technology,2008,197:31~35
49 徐滨士.纳米表面工程[M]. 北京化学工业出版社,2003
50 黄勇等.陶瓷强韧化新纪元――仿生结构设计[J].材料导报,2000,14(8):8~10
Research Progress on Advanced Structural Ceramic Materials
Lu XuechengRen Ying
(Handling Equipment Mechanical Department, Academy of Military TransportationTianjin300161)