医学影像技术新进展范文

时间:2023-08-09 17:41:56

导语:如何才能写好一篇医学影像技术新进展,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

医学影像技术新进展

篇1

关键词:图像融合;医学图像;多模态;小波变换

中图分类号:TP301文献标识码:A文章编号:1009-3044(2011)09-2122-04

1 背景知识介绍

图像融合是指综合两个或多个源图像的信息,以获取对同一场景的更为精确、全面和可靠的图像描述。它将不同传感器所采集到的关于同一目标的多幅图像,或同一传感器在不同时间采集到的关于同一目标的多幅图像,经过一定的图像处理算法,提取各自的有用信息,生成一幅能够更加有效地表示目标信息的新图像。从信息论的角度讲,融合后的图像将比组成它的各个子图像具有更优越的性能,综合信息大于各部分信息之和,也就是说,融合的结果应该比任何一个输入信息源包含更多的有用信息[1]。

图像融合通过多幅图像间的冗余数据处理,提高图像的可靠性;通过对多幅图像间的处理,提高图像的清晰度。与单一、孤立的原始图像相比,经融合得到的图像更适合人或饥器的视觉特性,可以提供更多的目标信息。比如,由于受到云、烟雾、照明环境以及传感器固有特性等因素的影响,通过单一传感器所获得的图像信息不足以用来对目标和场景进行更好的检测、分析和理解.将一些成像条件相同、镜头聚焦目标不同的多个图像,通过图像融合技术处理可以得到一幅目标清晰的融合图像[2]。

图像信息融合按信息抽象程度的不同(也对应完成不同级别的功能)可分为3个从低到高的层次:像素级(原始数据)融合、特征级(或目标级)融合、决策级融合。

图像融合从配准的图像出发,经过特征提取、属性判决而得到融合结果。上述三个层次与图像工程的三个层次有一定的对应关系,在实际中要根据需要选择和结合不同层次融合的特点,获得全局最优的效果。

多模态医学图像融合技术是20世纪90年代中期发展起来的一项高新技术,也是当前国内外在医学图像处理与分析研究中的热点之一。医学图像融合则是指对医学影像信息如CT、MRI、SPECT和PET所得的图像,利用计算机技术将它们综合在一起,实现多信息可视化,对各种医学影像起到取长补短的作用。

2 多模医学图像融合技术

2.1 多模医学图像融合的主要步骤

多模医学图像的融合是建立在两种或多种不同模态医学图像配准基础之上的,它可归纳为三步,如图1所示。

第一步是预处理。对获取的两种或多种图像数据分别进行去噪、增强以及分割图像特征的提取等处理,统一两种数据格式、图像大小和分辨率,对序列断层图像做三维重建和显示;第二步是配准。配准是指对图像寻求一种或一系列空间变换,使它与另一图像上的对应点达到空间上的一致。配准主要解决的问题是两幅图像之间的几何位置差别,包括平移、旋转和比例缩放等基于对特征空间、相似性准则和搜索策略的不同选择,配准方法可分为基于全局域准则的方法、频域傅立叶法、基于特征的匹配法和基于弹性模型的匹配法;第三步是融合。图像在空间域配准后便可选择不同的融合算子和融合规则进行融合。本文主要讨论第三步融合,以下介绍的各种融合技术都是在配准之后的基础上进行的。

2.2 医学图像融合算法

目前常用的医学图像融合技术包括:加权平均法、多分辨金字塔法、小波变换法、基于假彩色技术的融合算法及基于调制技术的融合算法等。下面就其中几种方法作进一步的说明,由于基于小波变换的方法在图像融合技术中的重要性,将在下一节详细介绍。

2.2.1 简单图像融合方法

像素灰度值极大(小)法:设g1(x, y), g2(x, y)为两幅输人图像,f(x, y)是融合图像。则像素灰度值极大法为f(x, y) = max{g1(x, y), g2(x, y)}

此方法只需要对两幅配准图像取对应点的极大值即可。像素灰度值极小法思想相同,只须取原图像对应点的极小值即可。这些方法简单,效果一般,应用有限。

加权平均法:加权平均法同是一种最简单的多幅图像融合方法,也就是对多幅图像的对应象素点进行加权处理。这种方法的优点是简单直观,适合实时处理,但实现效果及效率较差,其难点主要在于如何选择权重系数。

基于图像分割的融合方法:这种方法是以一幅待融合的图像为基准,从另一幅图像中分割出感兴趣的部分(通常是病灶),然后对两幅图像进行配准,建立空间映射关系,将一幅图像上的特征映射到另一幅图像上。比如我们可以利用CT图像空间分辨率好的特性,以它为基准,再利用MRI图像对软组织成像清晰的特性,从中分割出病灶,经过配准、融合得到新图像。该方法的特点是图像的融合效果好,难点在于如何自动准确地分割出ROI。医学图像由于其对比度低、细节丰富、边缘模糊等特点,分割更为困难。常用的边缘检测算子有Roberts、Sobel、Canny等。其中Canny算子因其有良好的信噪比而使用较多。文献[7]提出一种用改进的Canny算子对病灶轮廓提取的方法。此外,我们还可以使用小波或神经网络等智能方法进行病灶特征的提取。

2.2.2 多分辨金字塔形分解融合法

这是一种多尺度、多分辨率的图像融合方法,其融合过程是在不同尺度、不同空间分辨率、不同分解层次上进行的。高斯金字塔、拉普拉斯金字塔、梯度金字塔、比率低通金字塔及形态学金字塔被统称为多分辨金字塔。多分辨金字塔方法是目前较为常用的图像融合方法。在这类算法中,原图像不断地被滤波,形成一个塔状结构。在塔的每一层都用一种算法对这一层的数据进行融合,从而得到一个合成的塔式结构。然后对合成的塔式结构进行重构,最后得到合成的图像,合成图像包含了原图像的所有重要信息。

2.2.3 智能图像融合

2.2.3.1 神经网络方法

自1986年BP神经网络模型诞生以来,神经网络在各种领域获得广泛应用。神经网络适合于非线性建模,具有自学习、自组织、自适应能力。在进行图像融合时,神经网络经过训练后把每一幅图像的像素点分割成几类,使每幅图像的像素都有一个隶属度函数矢量组,通过对其提取特征,将其特征表示作为输人来参加融合。文献[11]给出一种自组织特征映射(SOFM)神经网络融合算法,文献[12]是一种基于知识的神经网络(KBNNF)融合算法。

2.2.3.2 演化方法

演化方法模拟自然界生物演化过程,具有自适应、自学习和鲁棒性强等特点。另外,演化计算对于刻画问题特性的条件要求较少,效率高且易于操作,目前已广泛应用于各种领域中。文献[13]给出了基于进化策略和HIS变换的图像融合方法,其效果优于传统算法。

2.3 基于小波变换的图像融合算法

2.3.1 图像的二维小波分解

图像是二维离散信号,对它的分析和处理需要使用离散二维小波变换。Mallat提出了小波变换的快速分解与重构算法,利用两个一维滤波器实现对二维图像的快速小波分解,再利用两个一维重构滤波器实现图像的重构。

二维小波分解和重构各使用一组滤波器,分解使用一维分解低通滤波器L和高通滤波器H;重构使用一维重构低通滤波器L'和高通滤波器H'。在分解阶段,首先使用低通滤波器L和高通滤波器H对图像的每一行进行滤波得到两组矩阵系数。然后,使用低通滤波器和高通滤波器对两组系数矩阵的每一列滤波。这样,1副图像经过第1级小波分解,产生4副子图像LL、LH、HL和HH。3幅细节子图像LH、HL和HH分别包含原图像在水平、垂直和对角线3个方向上的高频信息,而近似子图像LL是原图像低通滤波版本。另外,这副子图像还是下一级分解的输入。因此,一幅图像经过N级小波分解产生3N+1副子图像。在同一分解级上的子图像尺寸相同。合成运算首先对子图像的每一列使用低通滤波器L'和高通滤波器H'滤波,然后对得到的图像的每一行滤波。

图像经二维分解之后,分别得到图像的低频分量、水平高频分量、垂直高频分量和对角方向的高频分量,下图是图像经三层小波分解的结果。

上述过程即金宇塔形小波分析,另外对图像的分解还有树状小波分析、多小波分析、提升小波分析,它们较之于金宇塔形小波分析,具有更多优点,在试验中能够获得更好的效果。现今大部分对小波图像融合的研究重点一般集中在两方面:一是使用不同的小波基函数和不同的小波分析方法;二是后面讨论的在进行系数融合过程中对融合策略的改进及融合算子的选择研究。

2.3.2 基于小波变换的图像融合过程

基于小波变换的图像融合,就是将待融合的原始图像经过特定的小波变换得到小波图像序列,在不同的特征域(如高频和低频图像)上的图像序列采用不同的融合规则进行融合以得到小波图像序列,最后将融合后的小波图像序列经过小波逆变换(重构),得到多传感器图像的融合图像。基于小波变换的图像融合过程(如图3所示)。

两幅图像融合的基本步骤如下:

1) 对A、B两幅图像分别进行小波变换,建立各待融合图像的小波金子塔图像序列;

2) 分别使用不同的融合算子作用于各个分解层的不同高频子图像以及最高层的低频子图像,从而得到融合后的小波金子塔图像序列;

3) 对各分解层进行小波反变换,最终所得到的图像就是融合图像。

2.3.3 基于小波变换的融合规则

基于小波变换进行图像融合的关键是系数组合,即为获得质量尽可能好的融合图像,以适当的方式合并系数的过程.合并系数的方式称为融合法(Fusion Rule).融合法则由活动水平测度(Activity-Level Measurement)、系数分组方法(coefficient Grouping Method)和系数组合方法(Coefficient Combining Method)组成,对这三者的不同选择形成不同的融合法则[17]。

目前小波域的融合规则主要分为两种:基于单个像素的和基于区域特征的融合规则。前者主要包括:(1)小波系数的直接替换或追加;(2)最大值选取;(3)加权平均等。后者主要包括:(1)基于梯度的方法;(2)基于局域方差的方法;(3)基于局域能量的方法等。

基于像素的融合规则在融合处理时表现出对边缘的高度敏感性,使得在预处理时要求图像是严格对准的,否则处理结果将不尽人意,这就加大了预处理的难度。基于区域的融合规则由于考虑了与相邻像素间的相关性,降低了对边缘的敏感性[18],所以具有更加广泛的适用性。

2.4 不同融合算法的评估

由于图像融合技术所面向的研究对象的多样性和复杂性,至今尚未找到普适的参量能对所有的图像融合结果作标准量测。不同融合方法的结果,可用目视判别:优点是直接、简单,可直接根据图像处理前后的对比做出定性评价,缺点是主观性较强。

为了进一步客观定量评价融合效果,从融合图像包含的信息进行分析,对不同类的图像融合结果所采用的定量评价参量有熵、交叉熵、平均梯度、标准偏差、光谱扭曲程度、互信息量等,且不同的文献资料对这些参量的具体定义存在差异。下面介绍几种常见的定量评价指标。

1) 信息熵

图像的熵值是衡量图像信息丰富程度的一个重要指标.融合前后的图像其信息量必然会发生变化,计算信息熵可以客观地评价图像在融合前后信息量的变化。根据Shannon信息论的原理,一幅图像的信息熵为。

在某种程度上可以认为,如果融合图像的熵越大,表示融合图像的信息量越大,融合图像所含的信息越丰富,融合质量越好。

2) 交叉熵

交叉熵(Cross entropy)亦称相对熵(Relative entropy),交叉熵直接反映了两幅图像对应像素的差异,可用来度量两幅图像间的差异,确定各种融合效果的优劣。交叉熵越小,说明融合后图像与标准参考图像问的差异越小,即融合效果越好。若标准参考图像为尺、融合后图像为F,则参考图像尺与融合图像F的交叉熵为:,式中pRi表示参考图像尺中灰度级i出现的相对频率;pFi表示融合图像F中灰度级i出现的相对频率。

3) 平均梯度值

平均梯度是敏感反映图像对微小细节反差和纹理变化特征表达的能力,同时也反映了图像的清晰度,一般平均梯度越大,图像层次越多,融合后图像纹理越清晰,融合达到了提高空间分辨率的目的。

这里,M和N分别是图像的行数与列数。

Ix=g(i+1,j) - g(i,j)

Iy=g(i,j+1) - g(i,j)

式中g(i,j)为(i,j)像素点的灰度值。

3 医学图像融合技术的应用

作为当今医学影像技术研究中的热点问题之一,多模态医学影像融合技术的研究及其研究成果,对临床治疗有着重要的意义。医学图像融合经过近些年的研究,已经应用在影像诊断、临床治疗中,国外已经有了产品化的融合软件系统。

3.1 图像融合在颅脑成像的应用

由于脑组织有颅骨的限制与界定,相对较为固定,容易确定标志进行准确配准。目前,临床主要进行颅脑的图像融合。融合图像精确定位颅内病变,提高诊断准确性:形态学成像与功能成像的图像融合,可精确定位功能图像所示异常改变区,提高诊断的准确性。丁里等研究认为,SPECT与MRI融合可精确判断rCBF减少的范围及部位,为脑变性疾病和脑血管病的诊断提供标准化方法。例如:融合图像可精确确定脑变性疾病rCBF减少及消失区,尤其当其位于额叶、颞顶枕交界等与神经心理功能有关区域时,融合图像研究结构和功能改变与临床神经心理改变之问关系更佳。

原发癫痫病灶的准确定位一直是困扰影像界的一大难题,许多学者利用融合技术对此做出了富有成效的探索。例如:于发作期和发作间期,对癫痫患者分别进行SPECT检查,将二者的图像相减,再分别与MRI图像融合,可使功能损伤的解剖学标记更准确,以SPECT所示的局部脑血流定位大脑新皮质的癫痫灶进行准确定位,从而为立体定向外科手术提供重要依据。

3.2图像融合在体部成像的应用

感兴趣区在图像采集中无变形和失真是图像融合的前提。由于多数体部脏器的形状不规则,又易受呼吸运动影响,较难做到准确匹配,故图像融合应用于体部成像的报道还比较少,主要从受呼吸运动影响相对较小的颈部和盆腔开展研究工作,但是对受呼吸运动影响较大的肝、胰和肺等脏器也尝试进行融合。Magnani等证实,CT/PET对非小细胞肺癌侵犯纵隔淋巴结的分期诊断,融合图像比单纯应用CT或PET更为准确。

4 多模医学图像融合技术的最新进展与前景

4.1 图像融合技术新进展

在图像融合技术研究中,不断有新的方法出现。像素级图像融合的最新进展[22],主要有图像融合理论框架、实时融合系统集成、统计学方法、新的图像分解方法、神经视觉生理学方法图像融合与图像处理算法的互相结合、基于成像物理模型的融合方法、自适应优化图像融合研究、基于图像融合的目标识别和跟踪算法研究等。

其中新的分解方法有:

1) 矩阵分解法:文献[23]认为从不同传感器获取的图像,可以看作是融合图像乘以不同的权重,故可以使用非负矩阵分解技术来进行图像融合。

2) 易操纵金字塔分解:易操纵金字塔是一种多尺度、多方向、并具有自转换能力的图像分解方法,它把图像分解成不同尺度、多方向。与小波变换不同,它不止三个方向的子带系列,不仅保持了紧支集正交小波的特点,而且具有平移不变性及方向可操纵等优点。使用基于拉普拉斯变换、小波变换的融合方法,即使待融合的图像间存在较小的配准误差,也会引起融合图像的严重退化,出现双边缘以及虚假成分,而基于易操纵金字塔的融合方法能够克服这些缺点。

3)Hermite变换:由于Hermite变换基于高斯梯度算子,所以对图像融合来说,具有更好的图像表示模型。

4.2 医学图像融合技术难点与存在的问题

医学图像融合技术难点与存在的问题目前,医学图像融合技术中还存在许多困难与不足。首先,基本的理论框架和有效的广义融合模型尚未形成。以至现有的技术方法还只是针对具体病症、具体问题发挥作用,通用性相对较弱。研究的图像以CT、MRI、核医学图像为主,超声等成本较低的图像研究较少且研究主要集中于大脑,肿瘤成像等;其次,由于成像系统的成像原理的差异,其图像采集方式、格式以及图像的大小、质量、空间与时间特性等差异大,因此研究稳定且精度较高的全自动医学图像配准与融合方法是图像融合技术的难点之一;最后,缺乏能够客观评价不同方法融合方法融合效果优劣的标准,通常用目测的方法比较融合效果,有时还需要利用到医生的经验。

4.3 医学图像融合技术的研究前景

在图像融合技术研究中,不断有新的方法出现,其中小波变换在图像融合中的应用,基于有限元分析的非线性配准以及人工智能技术在图像融合中的应用将是今后图像融合研究的热点与方向[25]。目前,图像融合主要应用于体层成像。随融合技术不断进步,其在非体层成像方法(例如:x线平片、超声等二维图像)的应用逐渐增多,并具有较高的临床价值。随着三维重建显示技术的发展,三维图像融合技术的研究也越来越受到重视,三维图像的融合和信息表达,也将是图像融合研究的一个重点。另外,在医学图像的压缩、计算机辅助科学、图像存档及通信系统、远程医学等方面,图像融合技术,都有巨大的发展空间。

综上所述,医学图像融合可综合各种影像学技术的优势,提供丰富信息,对疾病的诊断、治疗、判断预后和观察疗效均有重要意义。医学图像融合研究虽起步较晚,但发展很快,各个学科间的交叉渗透是发展的趋势。我们有理由相信,随着研究的不断深人和技术的不断成熟,医学图像融合技术一定会得到越来越广泛的应用。随着该技术的不断完善,图像融合可能成为临床常规应用的方法之一。

5 结束语

近十几年来,图像融合技术虽然得到了快速发展,并在很多领域得到成功应用,但是由于其自身理论仍然不够成熟,因此仍在不断发展和完善中。其中存在的主要问题有:1) 缺乏完备、系统的理论。目前,对数据融合的方法研究尚处于初步阶段,许多新技术如人工智能、神经网络、模糊理论等在数据融合方面的应用研究还处于初级阶段。目前为止还没有出现一整套完备、系统的理论来推动该领域的发展。此外,还需要研究建立相应的融合标准和评价方法。2) 快速实时算法。由于图像的特殊性,在设计图像融合算法时一定要考虑到计算速度和所需的存储量,如何得到实时、可靠、稳定、实用的融合算法和硬件电路是目前的一个研究热点。3) 对于像素级融合而言,作为一个广义上的图像预处理,对目标探测识别的贡献很有限,而且应用也很受限。要想从图像融合中获得目标的更多信息,就需要特征级融合乃至决策级融合。而研究特征级和决策级图像信息融合的文献没有研究像素级融合问题的文献多,这是一个具有挑战性的重要研究领域,图像序列以及视频信息的融合问题也是非常有意义的研究课题。

小波变换用于图像融合有不少优点:图像经小波分解后,不同分辨率的细节信息互不相关,这样可以将不同频率范围内的信号分别组合,产生多种具有不同特征的融合图像;图像在不同分辨率水平上的能量和噪声不会互相干扰;融合图像的块状伪影亦容易消除。图4为使用Dabechies小波进行分解并进行融合的例子。

基于小波变换图像融合的优点,小波变换在医学图像融合中的应用已经受到大家的普遍重视,是融合研究的一个新热点,而且目前多分辨小波分析技术已经成为多分辨图像融合的一种主流技术。由于小波分解的快速算法能实现图像的实时融合,我们相信采用基于小波分析的医学图像融合方法具有广阔的应用前景。

参考文献:

[1] Hall D I, Llinas J. An introduction to multi-sensor data fusion[J]. Proc IEEE,1997,85(1):6223.

[2] Pohjonen H. Image fusion in open-architecture PACS environment[J]. Computer Methods and Programs in Biomedicine, 2001(66):69-74.

[3] 郭利明. 图像处理及图像融合[D]. 西安: 西北工业大学, 2006.

[4] Vaquero JJ, Pascau J. PET, CT, and MR image registration of the rat brain and skull [J]. IEEE Trans Nucl Sci, 2001,48(4):1440-1445.

[5] Aiazzi B, Alparone L, Baronti S, et a1.Context-driven fusion of high spatial and spectral resolution images based on over sampled multi-resolution analysis[J]. IEEE Trans Geosci Remote Sens, 2002,40(10):2300-2312.

[6] Hill DL.Medical image registration. Phys Med Biol, 2001,4(1):6.

[7] 曲桂红,张大力,阎平凡.一种基于图像分割的医学图像融合方法[J]. 北京生物医学工程, 2003,22(1):1-4.

[8] Burr PJ, Adelson EH. Merging images through pattern decomposition [A]. In: Proe SPIE Appl Digit Imag Proe VIII[C]. San Diego, 1985:173-181.

[9] Poh IC. Van Genderen J L. Multi-sensor image fusion in remote sensing: concepts, methods, and applications[J]. Int J Remote Sens, 1998,19(5):823-854.

[10] Toet A, Van Ruyven LJ, Valeton JM. Merging thermal and visual images by a contrast pyramid[J]. Optic Eng, 1989,28(7):789-792.

篇2

儿科影像学一向不被学生所重视,所以要从思想上使生能够认识儿科影像学的重要性。儿科放射学不同于成人放射学,俗话说:“麻雀虽小,五脏俱全”,而且由于小儿患者年龄和疾病的特殊性,我们无法套用成人的标准进行诊断。所以,在教师的讲授和课堂教学相结合的方式进行学习的同时,借助网络和多媒体技术,提高学生对儿科疾病的认识,是非常有必要的。深刻理解和记忆概念,加上教学互动,充分发挥教师与学生的主观能动性,可以调动学生学习的积极性,从而在教学活动中形成教师与学生,学生与学生,教师与教师之间的多边互动交流。

不断提高医学影像学教学质量

1综合运用多种教学方法医学影像教学的幻灯片不仅应图文并茂,而且文字要简洁明了,概念准确,条理清楚,图像显示要求清晰、典型,其次在一张幻灯片上,还可以插入多幅图像及动画演示。因为影像显示是医学影像学教学的核心内容,这是由于医学影像学这门课的特点来决定的。为使教学更活泼、生动、形象,我们配套使用了一系列教学模具、教学录像。为了体现医学影像教学以图像学习为主的特点,我们利用先进的多媒体教学法结合病例分析,借助多媒体技术,给学生生动的体验;既充实了学生的基础知识,又拓宽了知识面,增加了新技术、新进展的学习与掌握。通过多媒体课件的动画旋转演示,课堂气氛活跃,学生更容易轻而易举地接受。比如,讲授小儿先天性心脏病章节时,采用小儿心脏CT血管造影(CTA)的动态旋转以及电影模式,全方位反映了小儿心脏的心内畸形及心外大血管畸形的情况。

学生过目不忘,在进入工作岗位后,就能迅速独立适应临床工作。综合运用影像学比较,通过对正常生理解剖学及临床治疗过程进行比较,找出病理学和影像学之间的异同,从而找出疾病发展的规律和特点,掌握疾病的发展趋势。在医学影像学教学中,将解剖学、生理学、病理学、临床医学、医学影像技术学和病理学影像、医学影像学等多学科结合起来,对不同设备产生的不同检查结果,疾病发展的不同阶段的特征,俗称同病异影、异病同影。将“理论联系实际,重视实践”作为总的指导思想。我们专门配置了电脑和投影仪用于影像图片示教,通过幻灯片演示典型病例,采用启发式提问分析病例的方式,调动学生的积极性,使其最大限度地掌握教学内容。

2加强医学影像实验课教学医学影像学是一门实践性很强的学科,我们在安排学生实习时,不是按检查设备分设实习岗位,而是按解剖部位分类设实习岗位,按系统分为若干个实习小组:影像技术组、小儿神经放射组、小儿心血管放射组、小儿消化道放射组、小儿骨科组等,使学生的知识结构更系统,更合理。我们的教学目的是使学生走上工作岗位后,无论是做临床医生还是影像学医生,都能正确选择检查的适应证,提高诊断的阳性率、准确率。

3建立儿科影像学教学片库,多给学生实践的机会对于影像学专业的学生来说,导师制的跟班临床带教学习成为其最主要的学习方法。但这种学习方法并不可取,我们在临床中遇到的病例不系统、不典型,这样不利于学生理解,常会将学生带入误区,使学生感觉一头雾水。当学生走上工作岗位后,遇到很多从未见过的病例后,就会挫伤自信心和学习的积极性。因此,我们在安排实习过程中,按照各个系统分门别类地将各种典型病例进行归纳,通过病例讨论的形式讲授给学生,系统讲授诊断和鉴别诊断方面知识,鼓励学生多参与阅片讨论会,多给学生创造实践的机会,让学生的知识更全面、更系统。

篇3

转化医学(translationmedicine)是近年国内外医学领域流行的一个新概念,2003年美国国立卫生研究院正式提出“转化医学”概念。它以人的健康为本、以重大疾病为研究出发点、以促进科学发现转化成医疗实践为宗旨。其主要目的是打破基础医学与临床医学领域固有的隔阂,搭建两者间的桥梁,使日新月异的基础医学研究成果转化为改善人类健康的防治措施[3]。因此,转化医学本质上是一个双向开放、往返循环、持续向上的研究过程[4,5]。转化医学理念已逐渐成为世界医学研究领域的共识,其应用有利于推进临床医学更好、更快速地发展。

2肿瘤影像医学教学的现状

肿瘤影像学是医学专业中较为特殊的一门学科,其教学主要包括肿瘤医学影像诊断和肿瘤医学影像技术两方面。肿瘤医学影像诊断的教学模式比较成熟,主要注重临床常见肿瘤的诊断及鉴别诊断。但肿瘤医学影像技术教学则较为欠缺,尤其是对肿瘤影像新技术的研发、功能拓展、临床医学与工程技术结合及运用等方面的授教还较为薄弱。目前肿瘤影像医学教学工作主要存在以下问题:①传统的肿瘤影像医学教学授课的模式过于单一,跨学科联系较少,不利于学生创新思维的培养。②现行课程安排中有关学习方法、获取知识手段的课程较少,不利于学生综合素质的培养。③缺乏理论联系实践的教学方法,单纯从理论和阅片等教学手段难以让学生对肿瘤影像表现与临床特征之间的关系进行系统地理解。④教学内容陈旧。该学科知识更新快,教材、教案等教学内容和方法不足以满足临床工作的需求[6]。⑤学生技术研究能力的培养与临床实际应用能力脱节。肿瘤影像医学教育要求培养既会诊断又会技术研究,既有转化理念和能力又有肿瘤影像学基础知识与临床实践经验的综合型人才。因此,开展转化医学教育尤为必要,它是当前培养综合型人才最有效的途径之一。提倡“从实验桌到病床旁”的转化医学教学理念在肿瘤影像医学教学中的应用具有重要的现实意义。

3转化医学教育理念在肿瘤影像医学教学中应用的意义

3.1促进肿瘤影像医学教学多学科的合作

不同学科、不同思想、不同理念的相互碰撞有利于创新思维的产生,而一个学科的发展壮大,也需不断加强不同学科间的知识与技术合作,加强学科的交叉与融合。因此建立肿瘤影像学、基础肿瘤学、工程技术学、物理学等多学科的科研小组,让各组组员发挥各自的专业优势,形成多学科交叉研究,通力合作及协调发展,形成纵横交错的综合体系,才有望实现肿瘤影像医学的可持续发展[7]。转化医学教育强调理念的改变,它打破以往的单一学科或有限合作的教育模式。首先为学生提供一个学科交叉的开放式研究平台,鼓励将物理工程实验室发现的有意义的成果转化成能为临床提供实际应用的手段,有效将肿瘤的基础研究成果转化到临床实践中,同时也对肿瘤影像征象进行基础研究。其次,不同的影像成像手段各有优劣,将彼此的优势互相融合已成为医学影像设备研发的潮流。转化医学教育对这一潮流的发展具有重要的推动作用,从而进一步为肿瘤的诊断提供更多的成像手段,有利于肿瘤的诊断及鉴别诊断。如在既有的CT、MRI、PET、B超等设备的基础上研发PET-CT、PET-MRI或将几种成像设备融合的机器。多学科交叉研究的平台具有稳定而强大的效果,所形成的多学科介入机制能够满足临床及基础研究的需求。

3.2为肿瘤影像医学教学搭建理论与实践的桥梁

转化医学理念的应用一方面能增强肿瘤医学影像学专业的学生加深对临床知识的重视和理解,另一方面也为临床医技人员提供进入实验基地探索基础研究的机会。以转化医学理念为指导,重视从临床中凝练课题,可以培养医学生一切从实际出发的意识,自觉做到理论联系实践,使基础研究与临床应用相结合[8]。如肿瘤医学影像学专业的学生在临床实践过程中发现某种肿瘤具有相同的影像征象,但是纯粹的临床实践无法为其提供相应的基础理论支撑依据。转化医学理念主张临床医生与研究员密切合作,提倡由临床医生仔细观察肿瘤的影像特征,将相关信息提供给基础研究员,再由基础研究员对此进行研究,进而将科研成果反馈到临床,为临床提供有力的依据,通过探究性研究达到解决临床问题的目的,从而提高医疗总体水平。

3.3有利于培养学生的团队精神

转化医学理念的应用为肿瘤影像学专业的学生提供了多学科合作的机会,让学生在学习过程中不断提高与他人进行沟通交流的能力,并在交流过程中获得多种学习方法,从而提高自身的综合素质[9]。如肿瘤影像学专业的学生在学习X射线、CT、MRI、PET、B超检查等的成像原理时,可与物理学专业的学生合作学习。通过观摩物理学专业学生的操作,共同探讨相关问题以获得深层次的实验体验,从根本上理解相关概念及原理,将枯燥、深奥的理论学习转化为有趣且自主参与的实验操作。另外,通过与其他学科学生的交流,可进一步培养肿瘤影像学专业学生的团队精神,培养适应学科发展所需的医学影像技术工程师,塑造能灵活将基础研究与临床实践融为一体的专业人才,构建合作融洽的专业团队。

3.4有利于培养具有转化医学理念和能力的学生

肿瘤影像医学蓬勃发展,临床应用技术不断更新,而现有的教材、教案等教学内容和教学方法却停滞不前,不利于医学生第一时间掌握肿瘤相关研究新进展及新技术。许多学生毕业后开始到临床一线工作,在实际工作中遇到相应的技术问题时,常常无法到实验室通过相关研究来解决当前技术的缺陷,不利于技术的改进与发展。转化医学的应用一方面为肿瘤医学影像技术研究人员熟悉和参与临床工作创造了条件,鼓励学生到临床进行实践,让学生在相关教材内容还未能及时更新的情况下,通过到临床实践仍能及时掌握最新的技术。另一方面,为学生参加工作后再次进入实验室进行技术研究打下铺垫,真正做到将临床影像医学的应用与工程医学授课有机结合,有利于培养具有肿瘤医学影像诊断能力和肿瘤医学影像技术研发能力的综合型人才。

4结语

篇4

分析医学影像专业人才社会需求,探讨医学影像专业应用型人才培养模式,从培养方案、课程设置、教学内容、教学方法、教学手段、实践教学6个方面进行教学改革。

关键词:

医学影像学;人才需求;教学方法;培养模式

提高人才培养质量是加强医学教育工作的核心,《国家中长期教育改革和发展规划纲要(2010—2012)》特别强调高等教育的重点应放在提高教育质量上来,人才培养模式改革是提高医学教育质量的关键[1]。医学影像学专业是在放射诊断学的基础上伴随现代科学飞速发展应运而生的新兴专业[2-3]。随着医学影像学科及新项目、新技术的迅速发展,CT、MRI、DSA、ECT以及彩色超声(多普勒)等设备在国内不断普及、更新,影像诊断水平明显提高。我院自1999年开办甘肃中医药大学(甘肃中医学院)本科医学影像专业二段式教学工作以来取得了一定成果,毕业生深受用人单位欢迎。2015年7月,我院的二段式教学工作被甘肃中医药大学批准为临床实践教学基地重点建设项目,根据学校的办学定位和培养目标,医学影像学专业人才培养坚持知识、能力、素质协调发展和综合提高的原则和方法,以学科建设为基础,以专业建设为重点,以能力培养为主线,通过调整培养方案、课程体系的优化、教学方法的改革、教学手段的更新、实践教学改革等[4],努力培养临床实践能力强、适应社会主义市场经济要求的医学影像专业应用型人才。

1医学影像专业社会需求分析

1.1医学整合性更趋明显

随着经济发展和社会进步,我国的疾病谱发生了很大变化。20世纪70年代末,我国死因前三位的是呼吸系统疾病、寄生虫病和传染病、意外伤害,到2012年,已经变为恶性肿瘤、脑血管疾病、心脏病。慢性非传染性疾病的发生率、患病率迅速上升,成为人民健康的主要威胁。由于社会经济结构和生活行为方式的改变,健康的范畴也随之改变,不仅局限于没有疾病,而是身体、心理都能适应社会和环境的一种完好状态。在我国,引起疾病的心理、社会、行为因素约占60%,已大大超过单纯的生物因素致病的比例,与发达国家一致。医学模式已从单一的生物医学模式转变为生物-心理-社会-环境医学模式。医学的整合性基本特征表现为:医学内部各学科之间合理耦合,学科研究领域相互交叉、融合。

1.2医学强调高度的人文关怀

医学的使命是救死扶伤,面对的对象是人,而人具有整体性、社会性等特点,因此,医学作为一门自然科学,“它有着深刻而明显的人学标记”[1]。医学不像其他自然科学,它的研究内容首先应该是对人的关怀,我国历代医家也都奉行“医乃仁术”的思想,它强调“人学”。医学的理想模式应该是科学技术和人文精神的完美结合,这是医学的核心理念即人文精神所决定的。

2医学影像专业培养模式探讨

现代医学影像学的发展为广大影像医学工作者提供了广阔的舞台和无限契机,但不可否认的是我国影像学整体上与国际先进水平仍有较大差距,以教师、教材和课程为中心的传统的影像学教学方法已不适应现代医学影像学的发展。因此,要建立“大影像学”概念,组建包括介入、超声和核医学在内的现代医学影像学学科。影像学的发展趋势要求各个学科协同合作、优势互补,将各分支学科融会贯通。

2.1优化人才培养方案,构建应用型人才培养的教学体系

2.1.1构建“四个教育平台”,提高学生的综合素质及临床综合能力

以公共基础课为基础构建大学通识教育基础平台;以基础医学课程、基础医学实验教学中心为基础构建基础医学教育平台;以临床医学课程及标准化病人模拟实训室、临床技能实验教学中心等为基础构建临床医学教育平台;以医学影像专业课程、医学影像数字化仿真实验教学中心、PACS实验室、电子阅片室和附属医院影像科室为基础构建医学影像学专业教育平台。通过上述“四个教育平台”,不断提高学生的综合能力。

2.1.2拓宽专业基础,强调临床与影像并重

优化课程结构,专业课教学形成以影像诊断学为核心的多门专业课程体系;加强形态学基础课程教学,使系统解剖学、组织胚胎学、病理学等形态学课程教学时数与临床医学专业课程教学时数相同;将断层解剖与影像解剖学合并为一门课程,增加图像处理、放射防护学等选修课程,拓宽培养口径。

2.1.3采用“2.5+1.0+1.5”培养模式,加强学生的综合分析能力

第一阶段:两年半基础学习(学习公共基础、医学基础、临床医学等课程);第二阶段:一年临床科室轮转实习(进行内科、外科、妇科、儿科实习);第三阶段:一年半影像专业学习(其中半年学习专业核心课程,半年在医院影像科室实习,半年在数字化仿真实验教学中心进行综合阅片能力培养及科研能力训练),学习内科、外科、妇科、儿科等临床医学课程后,即到医院进行为期一个学期的临床实习,实习后再学习影像诊断学等专业课程,然后再进行一个学期的影像专业实习。这样就使得学生在学习影像诊断专业课程时,能够结合临床医学的理论与病例等问题听讲,有利于学生综合能力的提高。

2.2形成以学生为中心的教学理念,实施学习、实践、探索相结合的应用型人才培养教学模式

2.2.1改革教学内容,促进课程知识体系的更新及相关知识的交叉和融合

医学影像学与基础医学中的解剖学、病理学、内科学、外科学等多门学科均有密切联系,是联系基础医学与临床医学之间重要的桥梁学科之一[4]。因此,在专业教学过程中加大教学改革力度,通过PACS系统调阅所有影像、临床病历、病理图像等资料,将影像诊断理论知识与实践融会贯通,培养学生灵活运用理论知识去认识、观察、分析问题和解决问题的能力,提高学生的临床适应能力和职业素质。注重传授专业理论基础,讲授新技术、新进展,突出对学生基本技能、临床思维能力、科研能力的培养。

2.2.2改革教学方法,提高学生的阅片能力及影像学诊断与鉴别能力

灵活运用启发式、以系统疾病问题为中心及病例讨论等多种教学方法,因材施教,培养学生的独立阅片能力,使学生掌握人体各系统的影像学解剖及常见病的影像诊断与鉴别诊断。

2.2.3改革教学手段,提供丰富的教学资源

建成数字化影像仿真实验中心网站,包括实践操作指南、教案与课件、影像试题、影像诊断学仿真课件、视听教具(如人体断层标本、病理标本、手术录像、各种影像检查录像和电影)等资源,更新医学影像学电子教学片库和试题库,构建网络化、多媒体化新型影像学见习及实习教学模式,形成网络化的医学影像教学和管理平台,使学生可以通过医学影像学电子教学片库和试题库及医学影像学电子阅片室进行专业技能训练和考核。

2.3加强实践教学改革,构建集知识、能力、素质培养于一体的实践教学体系

2.3.1加强专业实验室建设

建成PACS实验室,与附属医院进行无缝对接,能够实时、安全、有效地将附属医院CT、MR、DR、DSA等设备所产生的数字化图像信息同步传输到PACS实验室,使学生能实时调阅典型病例的影像和检查报告,形成了一个开放、仿真和资源共享的教学环境,有效提高了学生的影像诊断能力。更新和丰富医学影像资源库和试题库,建立涵盖医学影像原理及全身各大系统、病种齐全、内容表达形式多样、功能强大的医学影像网络资源库[5],便于学生随时在网上学习。

2.3.2加强校内外实践基地建设

加大实验室开放力度,做到时间、空间、内容的全面开放,建立师生互动平台。让学生在医疗实践中学习,将临床问题渗透到基础教学中,营造实训氛围,开辟学生的实习基地。

2.3.3加大实践技能训练和考核比重

教学中所有专业课程理论授课与课间见习课时分配为1∶1,理论授课与见习全部由富有经验的临床副高以上教师讲授并带教,毕业考试实行理论考试加实践技能考核的全方位考核模式,毕业专业课考试实行理论成绩与读片成绩分值分配为1∶1的考核模式。

参考文献:

[1]张岩波,段志光,程牛亮,等.结合专业认证开展内部评估助推人才培养模式改革与实践[J].中国高等医学教育,2011(11):3-4.

[2]袁小平,任俊杰,谢榜昆,等.培养高质量的医学影像学本科专业人才——医学影像学本科生的实习教学研究[J].影像诊断与介入放射学,2000(4):253-254.

[3]赵云.培养医学影像专业应用型人才的探索[J].山西医科大学学报:基础医学教育版,2007,9(5):560-562.

[4]杨小庆,杨明,刘斌.参照本科医学教育标准构建医学影像学高素质人才培养模式[J].西北医学教育,2008,16(6):1236-1239.

篇5

医学放射物理学是以物理学知识研究和解决有关疾病诊断和治疗的交叉学科。从1895年伦琴发现X射线以来,放射诊断和放射治疗不断地在临床应用和实践,目前已发展成现代医学的重要学科。现今的放射诊断(包括核医学诊断)已具有良好的设备如X线诊断机、CT(计算机断层摄影)、DSA(数字减影仪)、MRI(核磁共振成像)等影像技术。这些技术的创新必然改变医学影像的思维。原来的二维模式被现代的三维(立体)甚至四维(脏器移动、血管搏动)影像所取代。从解剖学结构转化成功能化影像学(分子生物学水平),能够观察到非常细微的形态学改变,其图像质量、清晰程度和扫描速度均达到了空前的高度。这为医学的提高,为数字化医院的实现奠定了坚实的基础[1]。除诊断机外,60钴治疗机、直线加速器、近距离治疗机(后装机)、伽玛刀(γ刀)和体层放射治疗(tomotherapy)等设备的不断完善,为恶性肿瘤提供了强有力的治疗手段。两者的结合是发展现代医学牢固的支柱。近年来从放疗机又派生出很多治疗肿瘤的仪器。国内能见到的有“超声聚焦刀”“射频治疗仪”“各种热疗机”“氩氦冷冻治疗刀”等,虽名目繁多,然皆属于物理学治疗肿瘤的范畴。其治疗效果,各单位僅有少量报道,难以确切评价。

2影像诊断技术在肿瘤放射治疗中的应用

影像技术在现代肿瘤放射治疗中的作用已越来越显示其重要性,已成为多学科交叉研究和关注的热点,而且贯穿于肿瘤放射治疗的全过程。对肿瘤早期诊断、鉴别诊断、临床分期、治疗方式选择、生物靶区的精确定位、外科手术方案中的切除范围、疗效监测和评价、治疗后随访、复发再分期和再次治疗计划的实施等各个阶段提供了精确信息,极大地促进了肿瘤放射治疗技术的发展。进入21世纪以后各种新的影像信息源和成像新技术迅速普及,使放射治疗从常规放疗转换成三维适形放疗(3D-CRT)、调强放疗(IMRT)和图像引导放疗(IGRT)[2]。近年来不断有新的组合型一体化设备先后问世例如CT与直线加速器组合、PET与CT组合[3],PET与MRI组合等,打破了医学影像与肿瘤临床治疗的传统界限和模式,经历了一个从一般到特殊,从单纯形态到功能结合,从宏观诊断向微观和分子水平诊断的发展过程。

3放射治疗物理学新进展

随着计算机的临床应用和医学影像新技术的问世,先后出现了各种类型的放射治疗仪器,使三高一低(高剂量、高精度、高疗效和低损伤)这一治疗目标成为可能。最具代表性的设备有X刀和γ刀[4]、智能跟踪放射手术加速器(Cyberknifer)[5]、断层放射治疗机(Tomotherapy)、动态靶向定位治疗机(dynamictargeting,DT)[6]、影像引导放疗机(imageguidedradiotherapy,IGRT)和诺力刀等。以往的常规放射治疗虽有效果,但受到肿瘤周围正常组织耐受量的限制而被迫中断。提高肿廇组织剂量,减少周围正常组织受量,改善“治疗增益比”就能增加局部控制率和治疗效果。适形放疗能使肿瘤在照射过程中高剂量区剂量分布在三维(立体)方向,不但与肿瘤靶区形状一致,且其强度均等分佈,但当肿瘤紧邻或包裹正常重要组织时就必须对射野各点的输出剂量率或强度进行调整,使周围正常组织受到保护,从而引入了调强的机制。1993年临床开始应用调强适形放疗和逆向治疗计划设计[7],不仅能使照射与靶区形状一致,还能通过动态多叶光栏(MCL)对射线束强度进行调整,使多束不同强度的射线束穿透治疗区形成射线边界锐利(类似刀切),射野内各点剂量均匀的照射。调强适形放射治疗是放射治疗领域内一次重大的历史飞跃,对肿瘤放射治疗的发展起到了巨大的推动作用。放射治疗物理学经过漫长的发展阶段基本上已满足临床放射治疗的需要。但有些问题尚需进一步研究和探索。特别是调强适形放疗中有关照射时间,剂量分割,各单位自行设定,无常规可循。其次,肿瘤靶区的精确定位,亚临床灶的判断,照射时病人的移动均很难撑握及控制。希望能找到一个理想的解决办法。

4高LET(线性能量传递)治疗机

尽管加速器所产生的X线和电子线,60钴所产生的γ线能量很大,能杀死大量癌细胞,但当射线进入人体后,沿着行进的径迹(轨迹)其传递能量却很小称低LET,低LET对缺氧细胞和静止期细胞(不参与分裂和增殖的细胞)起不到杀灭的作用。因此20世纪70年代国外开始研究高LET射线。这类射线的生物效应对细胞氧含量和细胞分裂(增殖)各期的依赖性较小。它们可以在缺氧或低氧状态下仍可起到杀灭肿瘤细胞的作用。问世的仪器有快中子、负π介子、各种重粒子及质子等。临床已开始应用,更多的还处于研究阶段。国内中子刀临床已开展,积累了较丰富的治疗经验。质子治疗[8]正在试运行中,这些仪器造价昂贵,费用难以承受,短期内无法普及。在高LET治疗中要算硼中子俘获治疗系统(boronneutroncapturetherapy,BNCT)[9]能量释放最为猛烈。它是一种通过发生在肿瘤细胞内的原子核爆炸摧毁肿瘤细胞的治疗方法。其原理是给患者注射一种含非放射性的自然元素硼(10B)能与肿瘤细胞有很强亲和力的特殊化合物。当进入人体后迅速浓聚于肿瘤细胞内,此时用超低能中子射线照射,中子射线与进入肿瘤细胞的硼元素发生核反应,释放出一种具高线性能量转换的α粒子,即使少量的α粒子在肿瘤细胞内释放就足以杀死肿瘤细胞(此种方法类似于氢弹爆炸必须有引爆装置才能发挥氢弹的威力)。该治疗方法尚处在实验室阶段,国内亦正在酝酿之中。

5放射物理剂量和放射生物剂量

采用X线治疗肿瘤必需标明剂量单位。临床最初采用“红斑量”即生物体受照后皮肤出现红斑现象,但这一定义含糊不清,既有物理剂量的内容又有生物反应的表示。要区别各自剂量内涵,物理学首先提出以“伦琴”命名剂量单位。实际是一个物理剂量,反映光子辐射本身的性质,但不能作为临床剂量使用,以后逐渐转换成吸收剂量。它不仅反映射线的性质,也显示射线与生物体相互作用的程度。常用戈瑞(GY)和cGY。(GY的百分单位)作为剂量单位,一直沿用至今。而生物剂量是指对生物体辐射响应程度的测量。这是二个不同的定义,但又紧密相关。为达到二者的统一,1967年ELLIS将辐射的“疗程时间”“分割次数”“每次剂量”“照射体积”和“射线性质”等物理学剂量因子与生物剂量有机的组合,提出放疗的效应估算,设计出一系列公式,称为名义标准剂量(nominalstandarddose,NSD)即时间——剂量——分割(time-dose-fraction,TDF)。将此公式制成表格式便于查找。但TDF不能区别对各种肿瘤组织照射后所产生的损伤程度,有的早期即表示(早反应组织),有的晚期才发生。(晚反应组织)为充分表达物理剂量与生物剂量之间的关系,代之以线性二次方程公式(简称α/β公式)来计算,仍以GY为剂量单位。Fowler用α/β公式的概念提出了生物效应剂量(biological-effective-dose,BED)即DBE公式。经计算可以分别求出早反应和晚反应组织的等效剂量,但它仅仅是一个大致的范围。公式来源于动物实验。临床应用必须慎重。要考虑物理剂量的各种参数,又需要注意肿瘤组织照后的各种反应。尤其是组织修复和再增殖现象的发生。因此,很多学者提出了外推反应剂量(extrapolatedresponsedose,ERD)公式。DER是一个简便的数学模式,把物理学诸因子与生物反应相结合,希望能更正确的反映肿瘤组织受照后的真实变化。DER也并不是最完美和理想的方案。由于个体的差异,各种肿瘤组织对受照后的反应亦不同,难于用单一公式来表达物理剂量单位和生物剂量单位的转换。这一课题尚待进一步探索。目前,有关放射剂量学的改制国家已经启动,放射物理工作者应努力按ICRU(国际辐射剂量单位委员会)24号出版物。IAEA(国际原子能机构)227、374号出版物和中华人民共和国JJG(国家剂量检测规程)589-2001标准执行。总算有了一个规范的物理学剂量的法律保证。

6近距离治疗(后装机)

自1898年居里夫人发现了镭(Ra)元素之后,1905年开始了第一例组织间Ra插植治疗。1930年Paterson和Packer建立了Ra针插植规则及剂量计算方法,正式开始了近距离治疗。直到20世纪80年代近距离放射治疗技术(后装机)取代了传统的近距离放射治疗。后装机采用远距离操作,计算机控制,能够勾划出清晰的图像和剂量曲线分布。无论从安全性、可靠性、防护性和病人舒适程度考虑,明显提高了精度和治疗效果,从而迅速推广。近距离治疗有多种方式,因肿瘤位置或解剖结构的差异,可采取不同的照射技术,空腔脏器常用腔内治疗,实质性肿块采取组织间植入,近几年又开展了放射性粒子植入技术,配合其他治疗手段治疗前列腺癌[10]、胰腺癌[11]、甚至某些类型的肺癌、脑瘤等,取得良好效果。这也是继近距离放疗后的进一步发展,过去有些模具或敷贴器治疗现在已为浅层X线或电子束所取代,术中置管术因受条件限制,国内仅有少数单位作过报道。近距离治疗常用的核素种类繁多,源型各异,(管、针、液、胶囊等剂型)能量和半衰期也不同,除60钴能量较高外,多数为低能含γ和β的混合线。放射线经金属外壳过滤后成单一的γ线能谱。它照射的范围有限,损伤危险性很小,是重要的辅助放射治疗工具。

篇6

[关键词] 64排螺旋CT;胃肠道疾病;诊断

[中图分类号] R57 [文献标识码] B [文章编号] 1674-4721(2011)02(b)-077-02

随着CT技术的不断提高与完善,多排螺旋CT在胃肠道疾病检查中的应用也日渐增多。多层螺旋CT(MSCT)因为具有良好的密度分辨率和空间分辨率[1],因而能同时评价胃肠道腔内、外及腔壁的病理过程,但是大多数胃肠道疾病都表现为肠壁增厚,征象重复鉴别诊断有一定难度。现对本院50例胃肠道疾病患者通过64排螺旋CT进行诊断及应用进行分析总结,报道如下:

1 资料与方法

1.1一般资料

本院就诊的53例胃肠道疾病患者,其中,男35例,女18例;年龄6~71岁,平均年龄为53.6岁。临床表现主要有腹胀、腹痛、恶心、呕吐等症。其中急性机械性肠梗阻21例,胃肠道穿孔12例,急性阑尾炎8例,胃癌6例,结肠癌3例,末端回肠肿瘤3例。所有患者均经手术或活检证实。

1.2 64排螺旋CT检查

设备采用飞利浦64排螺旋CT(BRILLIANCE 64),所有患者扫描前均未口服造影剂,均行全腹部CT平扫。患者取仰卧位,自膈顶扫描至耻骨联合下缘止,扫描过程中对于能够配合的患者要求屏气。扫描参数为120 kV,200~220 mA,螺旋准直64.000 mm×0.625 mm,重建层厚1.0 mm,进床速度12 mm/s,机架旋转时间0.7 s。原始图像在Bril-liance Extended Workspace工作站进行重建,横断图像重建层厚1 mm,层间距1 mm;多平面重建层厚2 mm,层间距1 mm。工作站后处理图像:①多平面重组(MPR);②三维重建(3D),主要采用气体铸型、透明化X线模拟投影、仿真内镜等。

1.3 方法

将本院53例胃肠道疾病患者进行64排螺旋CT检查,并做出诊断与手术或活检病理诊断进行回顾性对比分析。

2 结果

2.1 64排螺旋CT 影像特征

2.1.1 肠梗阻CT表现多为居于前腹壁明显扩张的肠管,可见气液平面,或呈串珠样扩张的肠管,肠壁增厚或变薄,可见弹簧状黏膜纹,肠璧边缘呈锯齿。

2.1.2胃肠道穿孔表现为膈下,肠腔外,剑突下隐窝点状或带状游离气体。

2.1.3急性阑尾炎表现为阑尾管径增粗,外径通常>6 mm,管壁环形增厚,MPR显示较清晰。

2.1.4肿瘤患者CT分别显示为肠壁局限或广泛增厚,局部异常强化和局部多层结构消失,充盈缺损、龛影。肠壁增厚较常见,最厚达1.5 cm。肠腔狭窄,其中黏膜不规则中断、黏膜呈偏心样、花瓣样,裂隙样黏膜纹等。

2.2 诊断符合情况

对53例胃肠道疾病患者进行64排螺旋CT检查诊断与手术或活检诊断进行比较,了解64排螺旋CT检查诊断与手术或活检诊断符合情况,具体见表1。

3 讨论

多排螺旋CT检查可以很好地显示胃肠道病变的大体形态、腹壁的厚度、病灶周围软组织受侵程度。对于胃、十二指肠、回盲部及直肠等相对固定的脏器,多能对病变做出准确的判断。MPR操作简单,成像速度快,图像清晰,可冠状、矢状及任意角度重组图像。能够全面观察胃肠道腔内、腔壁、腔外情况,当肠壁受累时,大多数肠道感染性疾病,特征表现为对称性、环状肠壁增厚,通常不超过1.5 cm[2]。然而,肠壁增厚的程度主要依赖的是肠壁各层受累的程度。还可以很好地观察肠周间隙、系膜及网膜的改变。对邻近肠周或脂肪的浸润观察有助于部分胃肠道炎性疾病作出特异性诊断。比如急性阑尾炎、肠脂垂炎和憩室炎。当CT发现阑尾直径>6 mm或密度增高,周围脂肪浸润,阑尾结石钙化可确诊急性阑尾炎[3]。胃肠道新生物在CT的特点是偏心或非对称肠壁增厚或肠壁肿块;肠壁增厚常常超过1.5 cm[4-7]。当多病灶受累常见于淋巴瘤、脂肪瘤和转移新生物,而病变与正常肠道之间的移行段多为突发性。良性肿瘤常有光滑的边界,而恶性肿瘤呈分叶状、不规则和锐利的边界。

本研究显示,53例胃肠道疾病患者进行64排螺旋CT检查,急性机械性肠梗阻64排螺旋CT检查诊断与手术或活检诊断符合率为85.71%,胃肠道穿孔符合率为100%,急性阑尾炎符合率为87.5%,胃癌符合率为83.33%。总之,64排螺旋CT及图像后处理在胃肠道疾病的诊断中,是一种快速、无创的检查方法,可以对肠道疾病做出判断。

[参考文献]

[1]吴利忠,丁小龙,钱海珊,等.多层螺旋CT在诊断外科急腹症病因中的使用价值[J].现代医学影像学,2003,12(2):52-55.

[2]杜勇,张小明.医学影像学新进展[J].成都:四川科学技术出版社,2000:80-84.

[3]刘佐贤,欧阳羽,吕发金,等.肠道恶性淋巴瘤的诊断[J].实用放射学杂志,2003,19(1):4.

[4]张晓鹏,徐刚,徐舟,等.胃肠道螺旋CT三维成像方法及临床应用评价[J].中华放射学杂志,2000,34(12):308-312.

[5]Lee PH,K YT.Advanced gastric carcinoma:the role of the three -imensinal and axial imaging by spiral CT[J].Abdom Imaging,1999,24(20):111-116.

[6]田素伟,韩铭钧.多排螺旋CT曲面重建在肠道病变的应用[J].中国实用医药, 2009,11(3):79-80.

篇7

[关键词]可视化;口腔种植;临床应用;研究进展

1影像学技术在口腔种植的应用

医学影像新技术层出不穷,从开始的X线、B超、CT、MRI、PET,再到后来的医学图像三维重建可视化,其中,X线和锥形束计算机断层技术(conebeamcomputertomography,CBCT)在口腔临床应用广泛。X线片空间分辨率高于CT、价格便宜、放射剂量少、使用安全,但是其仅能显示局部解剖结构的二维平面图像,且常出现变形和失真。CBCT与X线片相比,可从三维角度显示颌骨解剖结构,弥补了二维平片的缺陷,但有金属伪影等失真现象。目前在口腔种植术前,均建议拍摄CBCT以评估患者牙槽骨骨量和质量,极大提高了口腔种植成功率和准确率。Michele等[3]对离体下颌骨分别进行CT和CBCT扫描发现,相对于CT扫描,CBCT放射剂量较小且成本较低,可以获得临床可接受的颌骨重建精度以及骨质密度评估精度,但其影像学重建精度低于CT扫描。Lílian等[4]研究了100例患者的CBCT后发现,CBCT可以精确重建包括下颌下腺窝深度、骨质深度与厚度、皮质骨厚度、下颌神经管等下颌骨解剖标志,对临床医生进行牙种植术有重要指导意义。Maryam等[5]通过研究157例患者的曲面断层片与CBCT发现,与平面的曲面断层相比,CBCT不仅能全面观察上颌磨牙根尖与上颌窦底的毗邻关系,对于上颌磨牙根尖周炎引起的上颌窦病变的诊断也明显高于曲面断层片。

2可视化技术在口腔种植的应用进展

种植义齿因固位支持效果理想、美观舒适、对邻牙无伤害等优点,逐渐成为牙列缺损和缺失患者口腔修复的首选方法[6]。然而,种植体植入的角度和位置常受手术视野、骨内神经、颌骨生理或病理性吸收等条件限制,因此可能出现诸多手术和修复并发症[7]。所以科学精确的术前规划十分重要,目前应用于口腔种植的三维可视化技术主要为:3D打印种植导板技术、虚拟现实技术以及基于VisualizationToolkit(VTK)软件平台的医学图像三维可视化系统。

2.13D打印种植导板技术

2.1.1种植导板的定义

3D打印技术是以计算机辅助设计(computeraideddesign,CAD)、计算机辅助制造(computeraidedmanufacturing,CAM)技术、激光技术、计算机数控技术以及新材料技术为基础发展起来的一种基于计算机三维数字成像技术和多层次连续打印技术制造实体模型的方法[8]。种植导板由导管与定位板组成,其中导管的位置和角度记录了术前设计的种植置、角度、深度信息,导管可将这些信息转移到手术中,使种植体植入到准确位置。导板通过与骨、牙齿或牙槽嵴表面贴合起定位作用,根据种植导板支持组织不同可分为黏膜支持式、骨支持式、牙支持式和混合支持式[9-11]。

2.1.2种植导板的特点

随着口腔种植学的飞速发展以及患者要求的提高,数字化种植技术成为当前口腔种植学研究的热点。以CAD/CAM技术制作的快速成型种植导板,可根据数字化重建患者颌骨解剖信息,为不同患者制定全面、科学、精确的种植术前规划。利用CBCT对患者口腔进行数字化影像扫描定位后,将数据导入相应软件,实现影像信息向数字化信息的转化,系统全方位的将患者牙齿、牙周组织、牙神经、牙槽骨等逼真地呈现在医生和患者面前[12-15]。医生根据颌骨的三维解剖结构和咬合关系设计种植体的最佳植入方案,包括种植体的位置、角度、数目、深度,将设计方案数据输入到医学专用快速成形机直接制作导板[11,16]。

2.1.3种植导板的研究进展

种植导板精确性的评价是通过把种植后的三维影像与术前模拟种植的三维影像进行配准,测量实际种植体的位置与模拟种植体的位置偏差值(颈部、底端、角度)来进行的。风险评估显示,种植体头部的偏差极限值对于种植体成功与否尤为重要,当水平偏差达1.86mm或垂直偏差达2.7mm可能会对种植体周围解剖结构造成损害[17]。目前国内外对种植导板精确性评价的研究较多,结果各有不同。Vermeulen等[18]在体外模型上分别研究了徒手种植和种植导板引导单牙缺失牙种植的精度,结果发现:导板种植在种植体颈部平均偏差为0.42mm,底端平均偏差为0.57mm,平均角度偏差为2.19°,均远高于徒手种植精度。Alzoubi等[19]通过对比种植导板引导下即刻种植与延期种植的精度发现,二者在颈部偏差和角度偏差无统计学差异,平均偏差分别是0.85mm和0.88mm,3.49°和4.29°,在种植体底端,即刻种植精度高于延期种植精度,平均偏差分别是1.10mm和1.59mm。Yolanda等[20]通过统计1602篇关于种植导板精度研究的文献,Meta分析显示:与牙支持式导板相比,骨支持式导板角度偏移较大,颈部偏差和顶端偏差二者无明显统计学差异。回顾性研究发现:黏膜支持式导板在颈部偏差、底端偏差和角度偏差均大于骨支持式导板,与牙支持式导板相比二者无明显统计学差异。国内种植导板研究起步相对较晚,但目前发展迅速。梁烨等[21]研究结果显示种植体颈部偏差(0.805±0.567)mm,底端偏差(0.957±0.518)mm,角度偏差3.124°±1.582°。徐良伟等[22]研究显示:牙支持式导板颈部平均偏差为1.56mm,底端平均偏差1.78mm,深度平均偏差1.1mm,角度平均偏差2.96°;黏膜支撑导板颈部平均偏差1.71mm,底端平均偏差1.9mm,深度平均深度偏差1.09mm,角度平均偏差3.19°。由于实验条件和方法不同,国内外的研究对导板精确度的评价有所不同,原因分析如下:①导板固位方法不同:Yolanda等[20]研究发现牙支持式种植导板在种植体颈部、底端、角度的精确性都大于骨支持式;②实验条件不同:体内研究中,导板的精度与患者、唾液、血液等息息相关,而在体外研究中,每个研究者模拟的环境有所差异;③术前、术后配准方法不同:目前多数种植体精确性评价多借助于第三方软件,如比利时的Mimics软件、SimPlant软件等,研究者对不同配准软件的选择以及研究者本身测量的误差,是造成不同研究者数据差异的主要原因。

2.1.4种植导板的局限

首先,应用数字化导板在术中视野较小,且只能按照预定的手术方案进行备洞,并不能根据实际临床情况及时调整钻针深度、尺寸和方向,尚存在损伤重要解剖结构的风险。其次,种植导板、钻针以及其他附件的高度叠加要求患者需要良好的开口度,尤其在后牙区,患者不适宜的开口度可能不适用于种植导板。再次,种植导板制作精密,其与黏膜、钻针间隙极小,术中的温度控制是一项很大的挑战。最后,如果术前种植规划系统科学性及准确性不足,种植导板在术中易引起诸多并发症,特别是不翻瓣种植术式下,种植导板可能产生更高的穿孔率。

2.2虚拟现实技术

2.2.1虚拟现实技术的定义

虚拟现实(virtualreality,VR)是一种多元信息融合的新型人机交互设备,参与者可以通过视觉、听觉、触觉等感知通道来感知计算机模拟的虚拟世界。参与者可以通过人机交互传感设备沉浸于该三维模拟环境中,计算机也可以对参与者的输入作出实时响应,并分别反馈到参与者的五官感知通道[23]。目前,虚拟现实技术临床应用前景良好。

2.2.2虚拟现实技术的特点

VR是具有交互性、沉浸性及构想性三种基本特征的高级人机交互设备。目前,VR技术在口腔种植学的应用主要是数字虚拟口腔、种植仿真模拟教学等方面,并实现了视觉模拟和力觉反馈模拟。VR技术在术前模拟、术中导航、植体定位等方面为医生提供了客观精确的方案。对于存在解剖缺陷患者,如颌骨骨量不足、上颌窦底过低、下颌神经管距离较小等,VR技术允许医师在生成的数字化模型上进行上颌窦提升术等精细虚拟种植手术,以确定提升高度、植骨数量以及下颌神经管解剖位置。

2.2.3虚拟现实技术的研究进展

关于口腔虚拟现实技术的应用,国内外学者做了诸多研究和探索。Elby等[24]通过对目前医疗市场上投入使用虚拟现实设备的综述,强调了虚拟现实技术在现代口腔医学教育的重要作用,其不仅可以完美模拟真实口腔环境,也可以模拟真实口腔操作手感。Corrêa等[25]研究开发出下牙槽神经阻滞麻醉虚拟现实设备,通过对训练者进针角度、深度、力度等多方面考核,认为该虚拟现实设备完全可以作为高效的学习方法投入使用。国内学者[26-28]对口腔数字化模型的建立也做了诸多研究和探索,最终建立了可精确显示牙体、牙槽骨及牙周组织的三维立体模型,实现了三维方向的全方位观察。

2.2.4虚拟现实技术的局限

尽管VR技术在医学应用前景较好,但是目前VR技术仍主要应用于医学前期训练、医学教学等方面,其与口腔临床的实际结合仍然需要继续探索和研究。

2.3基于VTK平台三维可视化系统

VisualizationToolkit(VTK)软件是一种广泛应用在医学图像处理领域的开源工具包,其封装了丰富的计算机图形学、图形图像处理、可视化方面的算法,能够以类库的形式给开发工作以直接支持[29]。以VTK为平台,整合患者颌面部CBCT相关图像,可设计出可视化的视觉显示界面,实现患者颌面部的三维重建,可对患者进行科学全面的种植术前规划。李芳等[30]基于VTK的平台,研究了三维模型坐标转换,并采用针刺取点法,通过直接拾取三维空间点完成了人机交互定位操作。并将该系统应用于虚拟牙种植系统,成功实现了种植体的全功能定位。VTK平台的三维可视化技术,充分利用CBCT提供的图像信息,可以重建包括上颌窦、下颌神经管等重要解剖结构,医生在术前可对颌骨进行深入观察、测量和分析,以确定最佳植入部位。VTK平台的三维可视化技术优势可概括为:①手术部位全方位的可视化;②种植体植入部位定位精确化;③术前直观手术模拟;④种植导板实现种植方案精确转移;⑤种植手术微创化。基于VTK平台环境的三维可视化技术,国内外已有多篇文献报道相关研究进展,但多数仍处于临床实验阶段,尚未全面投入临床使用。

3展望

目前,医学三维可视化技术在口腔种植学应用广泛,但可视化技术仍然存在诸多缺点,如对硬件和软件要求较高、对信息的处理时间较长、三维可视化模型交互性不够等。未来可视化发展方向将是更简洁化、智能化、科学化和精确化,医学影像设备也向智能化、小型化、专门化、高分辨力可视化和超快速化方向发展[12]。随着数字化牙种植技术的发展,三维可视化技术将在未来扮演更加重要的角色。

篇8

【关键词】 剪切波;定量超声弹性成像技术;双肾弹性;杨氏模量

DOI:10.14163/ki.11-5547/r.2016.02.031

人体不同组织器官具有不同的硬度或弹性, 如何获得其客观数据一直是人们的追求。1991年由Ophir等[1]提出通过超声波去获得这一物理属性, 之后开发的弹性成像技术均无法定量测量这一物理属性。目前法国声科影像(Supersonic Imagine)公司Aixplorer?声威型彩色多普勒超声诊断仪成功地实现了实时剪切波弹性成像(shear wave elastrography, SWE), 通过它可以实时得到组织的杨氏模量, 即组织弹性的客观数据。组织杨氏模量的数值越大, 说明剪切波在该组织中传播的速度越快, 组织的硬度就越大即弹性越小。

由于剪切波在不同组织中的传播速度各不相同, 本文通过分析实时剪切波在双肾之间的杨氏模量差异, 以探讨剪切波定量超声弹性成像技术在肾脏超声诊断中的应用价值。现报告如下。

1 资料与方法

1. 1 一般资料 选取本院2013年11月25~28日的体检志愿者68例, 其中男32例, 女36例, 年龄18~73岁, 平均年龄(45.7±14.0)岁, 体质量指数(23.1±3.27)kg/m2。所有志愿者既往病史无糖尿病、高血压、肾炎;实验室检查尿素氮、肌酐正常。所有志愿者均获得详细告知。

1. 2 仪器与方法 采用法国声科影像(Supersonic Imagine) 公司生产的Aixplorer?声威型彩色多普勒超声诊断仪, 凸阵探头6-1, 频率3.5~5.5 MHz, 在“Renal”下选取专门优化条件“RENAL”选项。

志愿者均采取仰卧位, 上肢上举放于头两侧, 经配合训练后听医嘱屏气或平静呼吸。常规肾脏纵切面扫查, 图像清晰后, 启动弹性成像模式(SWE), 取样框大小包含肾实质、部分肾窦及部分肾周组织, 嘱志愿者屏住呼吸3~4 s待图像色彩均匀且稳定后, 冻结, 启动定量取样框(Q-Box), 直径设置为2.0 mm, 将其置于肾脏中上部包膜下约1 mm处肾实质, 系统自动计算出ROI区域内组织杨氏模量平均值, 单位kPa, 重复操作3次, 取3次结果进行统计分析。

1. 3 统计学方法 采用SPSS20.0统计学软件进行数据统计分析。计量资料以均数±标准差( x-±s)表示, 采用t检验;计数资料以率(%)表示, 采用χ2检验。P

2 结果

68例志愿者中, 男性右肾杨氏模量(7.2±1.3)kPa, 男性左肾杨氏模量(7.2±1.1)kPa;女性右肾杨氏模量(7.5±1.8)kPa, 女性左肾杨氏模量(7.2±2.0)kPa。右肾杨氏模量在性别上比较, 差异无统计学意义(t=0.138, P=0.890), 左肾杨氏模量在性别上比较, 差异无统计学意义(t=0.631, P=0.531)。整体右肾杨氏模量(7.2±1.3)kPa, 整体左肾杨氏模量(7.2±1.5)kPa, 右肾和左肾杨氏模量相比, 差异无统计学意义(t=1.419, P=0.161);所有志愿者肾脏杨氏模量统计学分析为(7.3±1.5)kPa。

3 讨论

弹性成像作为一个新兴的技术, 短时间内得到了迅猛的发展, 一个重要原因就是它实现了声波下的“触诊”。

以往的超声弹性成像技术是根据人体组织间硬度或弹性的不同, 在同一区域受力后产生不同的应变及应变率, 从而人工按照一定频率施压或超声脉冲交变振动后接收被测区域反馈信号后, 采用复合互相关法分析后以灰阶或彩色编码方式成像[2-4], 得到该区域硬度的分布图谱;或者通过计算得出组织间硬度的相对值或者以剪切波在组织中传播的速度间接表达该组织的硬度。显然以上方法都不能直观得到组织硬度或者弹性这一物理属性的客观表述数据。

1996年Sarvazyan等[5]提出可利用声波辐射产生的剪切波来探测生物体组织的弹性程度。目前该技术已发展至实时剪切波弹性成像(SWE)。SWE是一项安全的声辐射脉冲控制技术[6]。声科影像(Supersonic Imagine)公司Aixplorer?声威超声诊断仪器通过快速成像系统捕获、追踪剪切波得到实时的弹性成像图的同时通过系统定量分析系统(Q-Box)测量反映该组织弹性的数值――杨氏模量绝对值。根据胡克定律, 在组织的弹性限度内, 组织的杨氏模量是仅取决于组织本身的物理特性。即组织的杨氏模量数值越大, 则说明该组织的硬度越大即弹性越低。SWE与以往的弹性成像相比, 具有无需人为施压、实时成像、定量测量以及重复性佳的优点。测量获得的组织杨氏模量绝对值, 可为该组织的弹性做出定量的判断。

关于肾脏SWE成像的报道相对少见, 2011年徐建红等[7]曾报道, 俯卧位用SWE方法测量男性体检者的左肾下段皮髓质杨氏模量分别为(4.440±2.445)、(3.971±2.659)kPa。2013年郭海燕[8]曾报道双肾中部肾皮髓质杨氏模量分别为(3.92±0.56)、(3.70±0.59)kPa, 以上报道均没有对肾脏中上部弹性做杨氏模量分析。

本次实验所得杨氏模量均值高于徐建红等[7]及郭海燕[8]的报道。由于所获得郭海燕[8]文章为摘要且无及取样方式等内容详细描述, 故仅与徐建红等[7]文献对比。考虑影响因素为:①检测深度。本次实验考虑到避免肋骨声影及避免按压影响采用相对较深的肾脏中上部, 据姚春晓等[9]使用同款设备SWE弹性成像检测正常成人肝的影响因素探讨中报道, 杨氏模量不受、ROI大小影响, 但是随着深度的增加逐渐增加;②取样框Q-Box大小, 本次实验采用包含肾周至肾窦的大ROI, 该方法只是为了增加图像更多的稳定性, 由于Q-Box是取该圆形范围内的平均值, 根据郭万学《超声诊断学》第6版肾皮质正常厚度为10 mm, 因此Q-Box采用最小范围直径2 mm, 尽可能减少肾周组织及肾髓质的影响。徐建红等[7]文献中为ROI及Q-Box均为7 mm。2009年姚春晓等[9]曾报道通过声触诊组织定量分析(VTQ)技术探查肾脏皮质、髓质及肾窦中剪切波传播速度得出各部分硬度顺序为肾皮质>肾髓质>肾窦;③年龄。本次实验年龄均数为徐建红等[10]报道病例均数22岁的2倍。据相关学者报道正常人肾小球增大及硬化随年龄增加而增加, 其不受性别影响[11];④其他因素。本次实验受条件限制无法得到志愿者明确血压、血脂、血糖等生化指标, 无法尽可能对志愿者肾脏的潜在病变进行进一步排除;且无法详尽核实志愿者既往病史。

肾脏在人体新陈代谢维持内环境稳定中起着重要作用, 对肾脏的损伤原因也是多种多样, 而影响肾功能的主要区域位于皮质。以往对肾脏疾病的早期超声诊断中, 能提供的参考数据仅为某切面的面积及肾脏体积的测定[12, 13], 实时剪切波弹性成像SWE可以通过杨氏模量的测量为肾脏疾病的早期诊断提供新的客观超声参考信息。

参考文献

[1] Ophir J, AlamSK, GarraB, et al. Elastoglaphy: imagingtheelastic-propertiesof soft tissues withultrasound. Med Ultrasonics, 2002(29): 155-171.

[2] Nieuwstadt HA, Fekkes S, Hansen HH, et al. Carotid plaque elasticity estimation using ultrasound elastography, MRI, and inverse FEA-A numerical feasibility study. Med Eng Phys, 2015, 37(8):801-807.

[3] 罗建文, 白净.弹性成像及其应用前景.世界医疗器械, 2003, 9(6):75-77.

[4] 徐智章, 俞清.医学超声的热点与新进展.上海医学影像, 2003, 12(4):306-308.

[5] Sarvazyan AP, Rudenko OV, Swanson SD, et al. Shear wave elasticity imaging a new ultrasonic technology of medica diagnostics.Ultrasound Med Biol, 1998, 24(9):1419-1435.

[6] Bercoff J, Tanter M , Fink M, et al. Supersonic shear imaging a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Fer roelectr Freq Control , 2004, 51(4):396-409.

[7] 徐建红, 刘智惠, 孙雷, 等.剪切波定量超声弹性成像技术在肾脏中应用的初步研究.中华医学超声杂志(电子版), 2011, 8(5):1048-1052.

[8] 郭海燕. 超声剪切波弹性成像技术在慢性肾病中的诊断价值. 郑州大学, 2013.

[9] 姚春晓, 傅宁华, 杨斌, 等.声触诊组织定量分析在慢性肾病中应用的初步探讨.中国超声医学杂志, 2009, 25(12):1169-1172.

[10] 徐建红, 刘智惠, 靳霞, 等.剪切波定量超声弹性成像技术在慢性肾病中应用的初步研究.中华医学超声杂志(电子版), 2012, 9(5):405-407.

[11] 吴琼. 弹性成像技术评价肾脏硬度的研究进展. 中国医学影像学杂志, 2014, 22(05):395-397.

[12] 陈鸣.彩色多普勒超声对诊断早期糖尿病肾病的价值.中国临床医学影像杂志, 2012, 23(2):88-90.

篇9

安徽省池州市人民医院,安徽池州 247000

[摘要] 目的 探讨多层螺旋CT静脉成像在18例肝硬化门脉高压症诊断中的应用价值,为今后临床诊治提供参考和借鉴。方法 该研究随机选取该院2012年1月—2013年5月期间收治的行腹上区多层螺旋CT静脉成像检查的患者28例,其中18例为肝硬化门脉高压症,10例为正常对照组,测量其门静脉和肝脏右静脉管径,以此分析多层螺旋CT静脉成像在肝硬化门脉高压症诊断中的应用价值。结果 患者的血管显示较为清晰,18例肝硬化门脉高压症患者的门静脉宽度及肝脏右静脉宽度和正常人比较,差异有统计学意义(P<0.05);肝脏右静脉宽度内径在代偿期患者中呈明显增宽表现,在失代偿期则呈明显变窄表现,18例肝硬化门脉高压症患者的PV/RHV(门静脉宽度/肝脏右静脉宽度)在失代偿期为(1.75±0.03),与代偿期及正常人比较,差异有统计学意义(P<0.05)。结论 多层螺旋CT静脉成像能够同时显示肝硬化门脉高压症患者的门静脉和肝静脉,能够从多角度观察及测量分支血管,诊断肝硬化门脉高压症效果显著,值得在临床实践中广泛的应用和推广。

关键词 多层螺旋CT;静脉成像;肝硬化;门脉高压症;诊断

[中图分类号] R445 [文献标识码] A [文章编号] 1674-0742(2014)06(c)-0186-02

肝硬化在我国临床病例中所占比例较高,死亡率也较高,有资料报道失代偿期肝硬化患者的5年生存率仅为30.0%[1]。门脉高压症并发的肝功能衰竭、顽固性腹水等多种并发症,均是导致肝硬化患者死亡的重要原因,因此,对肝硬化门脉高压症的诊断已成为当前医学界研究的热点课题之一[2]。为此,该院在2012年1月—2013年5月期间,采用多层螺旋CT静脉成像检查肝硬化门脉高压症患者18例,诊断效果显著,现报道如下。

1 资料与方法

1.1 一般资料

该研究随机选取该院收治的行腹上区多层螺旋CT静脉成像检查的患者28例,其中男性28例,女性20例。所有患者经病理证实,18例为肝硬化门脉高压症,其中8例为失代偿期肝硬化患者,10例为代偿期肝硬化患者,余下10例为正常对照组。排除碘过敏试验阴性患者,排除肾功能失常患者,排除心肺功能失常患者,排除伴有恶性肿瘤、糖尿病、高血压等疾病的患者,排除有腹上区外伤和手术史,不能连续屏气8 s,精神失常的患者。入选患者依从性好,在知情同意下签署相关的协议,自愿接受治疗并参与该研究。

1.2 检查方法

所有患者均行Philips Brilliance 多层螺旋CT检查,120 kV电压,140 mA电流。从患者膈顶上部2 cm处开始扫描,直至肝脏下缘。准直0.6 mm为扫描参数,在扫描前叮嘱患者饮600 mL左右的水,扫描期间屏气,每次屏气6~8 s。选用碘海醇来强化扫描所用造影,用高压注射器行静脉注射,速度为4.0 mL/s,剂量为90 mL。动脉期扫描延迟时间以患者腹部主动脉中心作为感兴趣区,将阈值设为120 Hu。动脉期结束后的30 s,开始扫描门静脉期,延迟63 s。完成血管成像后,监测患者肝实质,以此确保多层螺旋CT静脉成像能够达到最大利用化[3]。

1.3 图像分析

采用1 mm的间隔三维重组原始资料,将重建范围设为膈顶上部2 cm处至肝脏下缘,选用多平面重组定位门静脉主干三点,通过相应软件测量管径宽度,每组需测量3次,取平均值,并计算PV/RHV(门静脉宽度/肝脏右静脉宽度)值。

1.4 统计方法

该研究采用spss18.0软件包对所得的数据进行统计学分析,计量资料采用(x±s)表示,组间比较采用t检验,计数资料采用率表示,进行χ2检验。

2 结果

2.1 3组患者血管分支参数对比

患者的血管显示较为清晰,18例肝硬化门脉高压症患者的门静脉宽度及肝脏右静脉宽度和正常人比较(P<0.05),差异有统计学意义,见表1。

2.2 3组患者门静脉主干、肝脏右静脉、PV/RHV参数对比

肝脏右静脉宽度内径在代偿期患者中呈明显增宽表现,在失代偿期则呈明显变窄表现,18例肝硬化门脉高压症患者的PV/RHV(门静脉宽度/肝脏右静脉宽度)在失代偿期为(1.75±0.03),与代偿期及正常人比较,差异有统计学意义(P<0.05),见表2。

3 讨论

多层螺旋CT静脉成像是一种无创性血管成像技术,对肝硬化门脉高压症的诊断具有重要意义。对患者行多层螺旋CT静脉成像检查,当PV内径难以对肝硬化的进展做出精准判定的时候,则可以测量RHV内径,以此达到更精准的诊断早期肝硬化作用。PV/RHV值具备较高的特异性,能较为准确地诊断肝硬失化代偿[4]。诊断肝硬化门脉高压症,多层螺旋CT静脉成像检查具有下述优点:一次曝光能够得到多幅图像,不但拥有较高的时间、空间分辨率,还能确保年龄较大患者于短暂屏气之后便可得到质量较好的图像[5];再加上多科室的合作,患者能够得到病理切片的证实;能够同时显示门静脉和肝静脉,能够多角度地观察并测量分支血管,和超声探头比较,其优势更为显著。

该研究结果显示,患者的血管显示较为清晰,18例肝硬化门脉高压症患者的门静脉宽度及肝脏右静脉宽度和正常人比较,差异有统计学意义(P<0.05);肝脏右静脉宽度内径在代偿期患者中呈明显增宽表现,在失代偿期则呈明显变窄表现,18例肝硬化门脉高压症患者的PV/RHV(门静脉宽度/肝脏右静脉宽度)在失代偿期为(1.75±0.03),与代偿期及正常人比较(P<0.05),差异有统计学意义,和国内相关研究结论基本一致。

综上所述,多层螺旋CT静脉成像能够同时显示患者的门静脉和肝静脉,能够从多角度观察及测量分支血管,诊断肝硬化门脉高压症效果显著,值得在临床实践中广泛的应用和推广。

参考文献

[1] 王晓波.多层螺旋CT静脉成像在肝硬化门脉高压症诊断中的应用[J].临床医药实践,2012,21(11):816-818.

[2] 陈贺明,范志奎.多层螺旋CT门静脉成像对门静脉高压症个体化治疗术前评估的作用[J].河北医学,2013,19(6):915-917.

[3] 肖平,娄明武,谭理连,等.肝硬化门静脉高压多层螺旋CT灌注成像的临床应用研究[C].//全国医学影像诊断与肿瘤介入治疗技术新进展临床应用学术研讨会论文集.2010:239-242.

[4] 段芙红,姜建威.多层螺旋CT门静脉成像对肝硬化门静脉高压42例的诊断和评价[J].中国误诊学杂志,深圳:中国医学影像学杂志,2010, 10(19):4723-4723.

篇10

【关键词】 血液透析; 临时插管; 并发症

中图分类号 R69 文献标识码 B 文章编号 1674-6805(2014)1-0099-02

血液透析(hemodialysis,HD)是急慢性肾功能衰竭患者最常见的治疗方式之一[1]。它通过将体内血液引流至体外,经过透析器通过弥散或对流进行物质交换,清除体内废物及多余水分,维持水、电解质及酸碱平衡[2]。保证血液透析顺利进行和充分透析的首要条件是建立和维护良好的血液透析的血管通路。临时插管就是建立血管通路的重要手段之一,它具有建立快速,即插即用,是长期血管通路成熟期的过渡或短期透析时使用。但同时也可能引起导管感染和导管功能不全,血管内血栓形成等远期并发症,给患者造成沉重的生理和心理负担。现针对临时插管部位不同引起的远期并发症进行研究,探索影响到远期并发症的发生因素,现将结果报道如下。

1 资料与方法

1.1 一般资料

选取2009年1月-2012年3月共计135例采用临时插管血液透析患者为研究对象,其中男74例,女61例,平均年龄(64.2±16.8)岁,其中急性肾衰竭23例,慢性肾衰竭患者107例,多器官功能衰竭5例患者。临时插管术共计164例次(24例重复置管两次以上),留置时间7~136 d,平均(17.42±16.69)d。其中股静脉置管63例次,颈内静脉置管共计101例次。

1.2 方法

(1)插管前在患者病情允许的情况下常规行相应血管彩超检查,排除插管处血管狭窄、血管内血栓形成、血管异位,血管畸形等;(2)插管时医生严格进行无菌操作;(3)透析治疗时护师注意加强无菌操作;(4)透析前询问患者有无发热,置管处有无疼痛等症状,观察插管处是否有渗血、渗液或红肿等感染征象,透析中注意有患者无寒战、高热症状。

1.3 观察指标

通过观察在不同的插管部位是否出现导管相关感染、导管功能不全,血管内血栓形成等远期并发症。导管相关性感染包括导管出口感染、隧道感染及导管相关性菌血症;血管内血栓形成主要发生在股静脉插管病例中,高凝状态患者容易出现,表现为置管侧下肢水肿,结合血管影像学检查可发现;导管功能不全为透析血流量低于150 ml/min[3]。

1.4 统计学方法

采用SPSS 13.0软件对所得数据进行统计分析,计量资料用均数±标准差(x±s)表示,比较采用t检验;计数资料以率(%)表示,比较采用字2检验。P

2 结果

135例采用临时插管的血液透析患者(临时插管术共计164例次)中,共27例次患者出现导管相关感染,占总例次的16.5%,不同插管部位感染发生率不同(P

3 讨论

血管通路设计时应根据患者肾功能衰竭的原发病因,可逆程度、年龄、患者单位及医院条件来选择临时性血管通路还是永久性血管通路等。随着血液透析的不断完善和技术手段的日趋成熟,临时插管被越来越广泛地应用到了血液透析中。插管解决了血液透析血管通路的问题,具有可行性强,安全性高等优点。但仍可能发生一些并发症,常见临时插管远期并发症包括透析导管相关感染、导管功能不全及血管内血栓形成等[4-5]。本次实验研究中前两类并发症的发生率分别为16.5%、11.6%,血管内血栓形成5例均发生在股静脉插管患者中。导管相关性感染可引起机体其他组织转移性感染,包括骨髓炎、感染性心内膜炎等,以菌血症危害最大,严重者可以出现感染性休克而危及生命;导管功能不全也是影响血液透析治疗的原因之一,可因导管易位、血栓、导管漂移或折叠等引起导管功能不全外[6]。

本研究结果表示临时插管并发症的发生与插管部位有关:颈内静脉、股静脉导管中远期并发症的发生率不同,数据表明导管相关性感染、导管功能不全及血管内血栓形成均为股静脉插管病例中多见,这与腹股沟处不易保持清洁,下肢活动多,不易制动有关。为了减轻患者的负担,有效预防并发症,应在透析患者治疗过程中引起高度重视,保持透析室的环境清洁,根据患者病情选取合适的部位插管,严格进行无菌操作,降低并发症的发生率。

参考文献

[1]刘铁柱.加强血透设备维护减少血透并发症[J].中国医疗设备,2010,25(4):96-97.

[2]陆海娟,钟惠琴,伍小辉,等.彩超引导高危血透患者颈内静脉穿刺置管及并发症的追踪监测[J].中国临床医学影像杂志,2011,22(2):116-117.

[3]刘劲,秦文俊.血液透析机原理及最新进展[J].中国医疗设备,2008,23(2):54-56.

[4]薛颖芝,董玲,夏虹.可调钠透析技术在预防血透急性并发症中的应用[J].中国医药导刊,2011,13(5):885-888.

[5]匡鼎伟,丁峰,薛骏,等.老年血透患者动静脉内瘘并发症监测及其影响因素分析[J].老年医学与保健,2011,17(5):274-277.