欧姆定律基础范文
时间:2023-07-21 17:40:03
导语:如何才能写好一篇欧姆定律基础,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
通过本节课的教学,构建一个“人文、物理、社会”三维的教学课堂,在引导学生探究物理知识的同时,渗透“以人为本”的理念。让“研究性学习”走进课堂,走入学科教学,以此来切实增强课堂教学的开放性、生成性。张扬学生个性,最大限度地发展学生的创新思维和实践能力。实现落实从生活走向物理,从物理走向社会的课程理念。
二、教学目标
1.通过对科学家欧姆事迹的介绍,激发学生勇攀科学高峰的斗志;通过欧姆定律的建立,使学生体验自然界各种运动和变化必然遵循一定的客观规律;在科学探究的活动中亲身体验,受到从特殊到一般的科学方法熏陶,以此来培养学生严谨细致、实事求是的科学态度。
2.记录实验数据,知道简单的数据处理方法,提高连接电路及正确使用电流表、电压表、滑动变阻器的技能。
3.使学生初步了解科学实验的设计,培养学生设计实验、控制变量并运用分析、比较、归纳等方法进行科学探究的能力。以此来培养学生初步提出问题的能力及信息的收集和交流能力。
三、教学重点
建立欧姆定律,理解其含义。
四、教学难点
就是实验的设计和探究过程。
五、课时安排
一课时。
六、教学过程
1.提出问题:通过一系列实际问题,引出“探究电流与电压、电阻会不会有定量关系”的问题,体现了从生活走向物理的课程理念。
2.猜想或假设:让学生参与到课堂学习中来,结合已有的电学知识和生活经验让学生作出猜想,并说明猜想的依据。
3.设计实验:小组讨论如何改变电压?如何进行研究?(提出解决问题的思路。要求画出实验的电路图,列出所需器材、实验步骤,设计好数据记录表)
全班交流,许x代表用实物投影仪展示自己的方案,由老师或下面的学生当场提问(如:为什么要使用滑动变阻器等),共同完善实验设计。
4.动手探究:动手准备,根据设计方案进行实验时,该由教师引导,让学生动手操作。
5.分析归纳:将学生的数据用投影仪投影,引导学生分析I与U的关系,将不同组的数据进行比较,引导学生分析I与U的关系。在这中间,穿插介绍欧姆的事迹。
七、布置作业
练习第一、第二题。
篇2
关键词:欧姆定律;理解概念;实际问题
欧姆定律是初中物理教材中一条很重要的电学定律,是电学内容的重要知识,也是学生今后学习电磁学最基础的知识。欧姆定律无论在理论上还是在实际生活中运用都非常广泛,可是对于初中生来说,学习起来有很大的难度,因此,作为一名物理教师,有责任教会学生怎样学好欧姆定律。下面是我在教学实践中的几点尝试,仅供大家参考:
一、引导学生理解概念内涵
学习欧姆定律的关键是从理解概念入手,因为多年的教学经验告诉我:很多学生能够准确地背诵欧姆定律公式,但不会对公式进行巧妙的运用,更说不上对公式进行深入理解了。这种现象往往导致学生在考试时经常出错,纵观我们的中考试题,很多题目涉及概念题,所以说理解概念是非常重要的。因此,在学习欧姆定律时,我这样引导学生理解欧姆定律:1.导体中的电流与导体两端电压是成正比的,与导体电阻是成反比的。2.在实际的电路中有几个导体,即使是同一个导体,在不同的时刻I、U、R值也是不同的,因此在运用欧姆定律时应看清是不是同一导体、同一时刻的I、U、R值。3.要明白是电阻大小的一个计算公式,不是决定式,如果某段导体两端的电压变化几倍,它的电流也随之变化几倍,因此,比值R是一个定值。
二、引导学生解决实际问题
在物理教学中,教师不只是让学生掌握教材知识,更重要的是引导他们运用物理知识来解决生活问题,学生只有把书本中的知识运用到生活当中,才能适应社会发展的需要。例如在学习欧姆定律时,我给同学们出示了这样一个问题:在开汽车时,听听音乐可以减轻司机驾车疲劳,使乘车人身心愉快,某汽车上的收音机基本结构如图所示,
初中物理中的欧姆定律对学生来说是一个难点,教师只有运用恰当的教学方法,学生才能有所收获。在今后的教学中,我将继续研究新颖的教学方法,进一步提高物理课堂教学效率。
参考文献:
[1]蒋国成.中考对欧姆定律的考查分析与复习指要[J].中学教学参考,2009(23).
篇3
关键词:全电路;欧姆定律;实验教学;感性教学
中图分类号:G712 文献标识码:A 文章编号:1672-5727(2012)08-0098-02
欧姆定律是《电工基础》中最常用的基本定律之一,技工院校现在使用的《电工基础》教材(中国劳动社会保障出版社出版,第四版)中把欧姆定律分为部分电路欧姆定律和全电路欧姆定律两部分。对于部分电路欧姆定律,由于中学物理课本已作详细介绍,学生容易接受,但对于全电路欧姆定律,由于其涉及的概念较多且各物理量之间的关系复杂,再加上教材未附相应的实验,学生缺乏感性认识。因此,学生很难理解和接受,也是其成为教师教学中重点和难点的原因。笔者针对学生在学习过程中容易产生的困惑和疑问,借助实验来帮助学生理解,收到了较好的效果。
明确教学目标是教师组织
全电路欧姆定律教学的关键
掌握全电路欧姆定律对于学好《电工基础》这门课程来说至关重要。因为后续章节中多处电路的分析和计算要应用到这一定律。教学是一个教师与学生双向互动的过程,作为教师,要组织好全电路欧姆定律教学,必须先明确教学目标,做到心中有数,才能更好地开展教学。
知识目标:(1)理解电动势、内电阻、外电阻、内电压、外电压、端电压、内压降等物理量的物理意义;(2)掌握全电路欧姆定律的表达形式,明确在闭合电路中电动势等于内、外电压之和;(3)掌握端电压与外电阻、端电压与内电阻之间的变化规律;(4)掌握全电路欧姆定律的应用。
能力目标:(1)通过实验教学,培养学生的观察和分析能力,使学生学会运用实验探索科学规律的方法;(2)通过对端电压与外电阻、端电压与内电阻之间的变化规律的讨论,培养学生的思维能力和推理能力。
理解各物理量的物理意义是
学生掌握全电路欧姆定律的基础
全电路欧姆定律的难点在于概念较多,且各物理量之间的关系复杂。因此,首先,应让学生准确理解各物理量的含义。
全电路是指含有电源的闭合电路,如图1所示。其中,R代表负载(即用电器,为简化电路,只画一个),r代表电源的内电阻(存在于电源内部),E代表电源的电动势。整个闭合电路可分为内、外两部分,电源外部的叫外电路(图1中方框以外的部分),电源内部的叫内电路。外电路上的电阻叫外电阻,内电路上的电阻叫内电阻。当开关S闭合时,电路中就会有电流产生,I=,该式表明:在一个闭合电路中,电流强度与电源的电动势成正比,与电路中内电阻和外电阻之和成反比,这个规律称为全电路欧姆定律。
要理解这个定律,要先理解以下几个物理量的物理意义:第一个是电动势,它是指在电源内部,电源力将单位正电荷从电源负极移到正极所做的功。这个概念比较抽象,涉及知识面较广,要使学生全面、深刻地理解它是有困难的。考虑到学生的接受能力和满足后续知识的需要,需向学生讲清两个问题:一是电动势的值可用电压表测出——电动势等于电源没有接入电路时两极间的电压;二是电动势的物理意义是描述电源把其他形式的能转化为电能的本领,是由电源本身的性质决定的。第二个是电源的端电压(简称端电压),它是指电源两端的电位差(在图1中指A、B两点之间的电压,也等于负载R两端的电压)。需要注意的是,端电压与电动势是两个不同的概念,它们在数值上不一定相等。第三个是内压降,它是指当电流流过电源内部时,在内电阻上产生的电压降。全电路欧姆定律也可表示为:“在闭合电路中,电动势等于内、外电压之和。”
掌握各物理量的变化规律是
掌握全电路欧姆定律的重点
全电路欧姆定律的难点在于各物理量之间的变化规律,也是学生容易产生疑惑的地方。可以利用演示实验来验证各物理量之间的变化规律,以增加学生的感性认识,提高学生的逻辑推理能力。
第一,验证电源内电阻的存在并计算其大小。对于电源的内电阻,由于存在于电源的内部,既看不见,也摸不着,学生对此存在质疑。为此,可用图2进行实验,不但可以证明内电阻的存在,还可测出内电阻的大小。在图2中,用1节1号干电池作电源,电阻R为已知值(可根据实际情况选定)。开关闭合前,记下电压表的读数U1(此值即为干电池的电动势),开关闭合后,记下电压表的读数U2,发现U2比U1小(见表1),就是因为电源内部存在内电阻的缘故。
根据公式r=R可算出该电池的内电阻。再用不同型号的干电池(如5号干电池、7号干电池)进行重复实验,发现它们的电动势虽然相等(为了后面实验的需要,尽量选用电动势相等的电池,并保留这些电池),但内电阻不一定相同。
第二,端电压U跟外电阻R的关系。
实验电路如图3所示,用1节1号干电池作为电源,移动滑动变阻器的滑动片,观察电流表和电压表的读数变化,并将它们的读数记录到表2中。通过观察发现:当滑动片从左向右移动时(为保证实验设备安全,滑动片不要移到最右端),电流表的读数慢慢变大,电压表的读数慢慢变小;当滑动片从右向左移动时,电流表的读数慢慢变小,电压表的读数慢慢变大。由此得出结论:端电压随外电阻上升而上升,随外电阻下降而下降。根据表2中的数据可绘成曲线(如图4所示),即电源的端电压特性曲线。从曲线上可以看出:电源端电压随着电流的大小而变化,当电路接小电阻时,电流增大,端电压就下降;当电路接大电阻时电流减少,端电压就上升。
思考:如果滑动片移到最右端,电压表、电流表的读数将为多少?
第三,端电压与内电阻r的关系。
根据公式U=E-Ir分析可知:当电流I 不变时,内阻下降,端电压就上升;内阻上升,端电压就下降。实验电路同图3,只需将电路中的电源用前面已测过内阻值的不同型号的电池代替即可,观察电流表、电压表的读数,上述结论即可得到验证。
应用规律,解决实际问题
首先向学生提出问题:你是否注意到,电灯在深夜要比晚上七八点钟亮一些?这个现象的原因何在?在回答这个问题之前,可先通过实验验证这一现象的存在,如图5所示。图中5个灯泡完全相同,先将开关全合上,使灯泡发光,再逐个断开开关,发现灯泡逐渐变亮,原因分析:随着开关的断开,外电阻增大,导致干路电流减小,使得内压降下降,从而端电压增大,即灯泡两端的实际电压增大,故灯泡变亮了。上述问题也得到了解决。
在教学过程中,如果尽可能地增加一些实验,通过生活中的实验记录其数据并指导学生得出规律,提高感性认识,不但可以提高学生的学习兴趣,也会提高教学效果。
参考文献:
[1]李书堂.电工基础(第4版)[M].北京:中国劳动社会保障出版社,2001.
[2]毕淑娥.电工与电子技术基础(第2版)[M].哈尔滨:哈尔滨工业大学出版社,2004.
[3]王兆良.关于“全电路欧姆定律”的教学[J].福建轻纺,2007(2).
篇4
关键词:物理定律;教学方法;多种多样
关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。
(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。
(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。
(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。
(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。
(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。
篇5
关键词:数学推理;科学探究;问题情境;科学方法;理论联系实际
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2017)1-0019-3
人教版高中物理选修3-1第二章第七节《闭合电路的欧姆定律》是电学知识的核心内容,其中包含了许多科学思想方法,是学生学习和体会科学思想方法的好素材。作为一节典型的规律探究课,本节内容较抽象,学生在学习时,对电源内电路认识模糊,难以理解电源有内阻;对内外电路的电压与电源电动势的关系及路端电压与负载关系感到疑惑,对其中蕴含的科学方法未能深刻领会。“如何有效突破这些教学难点?”“如何设计好闭合电路欧姆定律的探究过程,有效实施三维目标教学?”一直是广大物理教师研究的重要课题,本文试图通过对本节课的教材、教法的分析,探究形成学生认知困难的主要原因以及在本节课中如何有效实施探究教学,培养学生的核心素养。
1 教材、教法分析
人教版教材是把《闭合电路的欧姆定簟钒才旁诘缭础⒌缍势、欧姆定律、串并联电路、焦耳定律和导体的电阻之后来学习的。很显然,这种安排的意图是在承接“从做功角度认识电动势”的基础上,引导学生从功能关系角度来建立闭合电路的欧姆定律,体现了循序渐进的教学原则。顺应这种构想,教材对本节内容以如下方式呈现:先直接给出闭合电路的概念,然后从功能关系出发, 根据能量守恒,理论推导出闭合电路的欧姆定律和U+U=E,再根据闭合电路的欧姆定律,理论分析路端电压与负载的关系。这种呈现方式的好处是:既充分体现了功和能的概念在物理学中的重要性,又有利于学生从理论角度理解闭合电路的欧姆定律。从教材体系来看这种呈现方式具有一定的合理性和科学性。
笔者曾多次参与“闭合电路的欧姆定律”的观摩教学,领略了执教老师们的各种处理方法,比较有代表性的是以下两种教法:
第一种教法是沿用原教材的思路,采用比较传统的方式,注重理论探究,先从理论上推导得出闭合电路欧姆定律的数学表达式,再应用定律讨论了路端电压随外电路电阻的变化规律,最后引导学生运用规律解题,把立足点放在训练学生的解题能力上。
第二种教法注重突出实验的地位,发挥实验在探究教学中的作用。利用实验创设悬念,引入课题,设计探究实验,让学生在实验中总结归纳出内外电压之间的关系,再利用教材中的图2.7-3实验探究路端电压与负载的关系。
根据课后反馈发现,沿用原教材思路设计的教学,效果并没有达到设计者想象的结果,究其原因,主要有以下几个方面:
1.教材中的闭合电路的欧姆定律是从理论角度得出的,注重于数学推理,比较抽象,缺乏令人信服的探究实验,学生无直接经验感知和相应的认知过程,难以形成深刻的理解。
2.教材对闭合电路,特别是内电路的建构过于直接,无感知过程,学生对教材中为了突出闭合电路而提供的闭合电路中电势高低变化的模型图难以理解,加之学生对部分电路的欧姆定律印象深刻,对电源内部的电路无直观印象,对电源也有内阻心存疑虑,难以突破初中形成的“路端电压不随外电路变化”的思维定势。
3.教材是利用纯电阻电路中的能量守恒关系推导得到IR+Ir=E和U+U=E,这种处理方式,会让学生对U+U=E的普适性产生怀疑:非纯电阻电路还适用吗?
4.作为一节规律探究课,本节课包含了许多科学思想方法,教材过于注重理论推导,忽视了实验探究,淡化了猜想、类比、比较、分析等多种科学思想方法教育,这对培养学生的探究能力和体验研究物理问题的方法是不利的,也不利于提高课堂教学的有效性。
第二种“通过设计多个实验来进行实验探究”的处理方法,调动学生学习的主动性和积极性,学生能获得更直观的认识,有效地突破一些教学难点,但由于本节知识点多,思维量大,设计过多的实验(特别是设计繁杂的分组实验)势必会分散学生的注意力,干扰学生的正常思考,挤压学生思考和实践应用的时间,影响了学生主体作用的发挥,效果同样不尽如人意。
2 教学建议
2.1 尊重学生的认知规律,科学设计探究过程
从物理学史来看,欧姆定律是基于实验而发现的,并非演绎推理的结果,教材通过功能关系分析来建立闭合电路的欧姆定律。这种处理方法带来的负面影响是学生缺乏感性认识,没有参与知识发现过程中的情感体验,难以形成深刻的理解,课堂上学生学习的积极性也不高。规避这种负面影响的方法就是在教学设计时,应当尊重学生的心理特点和认知规律,科学地设计探究过程,让学生在亲身探究中理解定律,体验方法。基于这种指导思想,笔者在教学设计时,先用两节新电池和内阻较大的9 V电池组分别给灯泡供电,产生了与学生日常生活经验相矛盾的现象来设置“悬念”――引入新课。然后,引导学生针对“引入实验”中的现象展开探究,让学生在实验探究中分析、思考、归纳,得出电源内电压和外电压之间的关系。接着再引导学生利用功能关系,从理论角度来推导、探究,让实验得出结论在理论上获得支撑。最后,引а生利用所学规律解决引入实验和实际生活中的问题。这种在引入实验为基础的“实验和理论推导相互结合的探究过程”的设计,既避免了设计过多的实验,又让学生亲身体验了探究的过程,加深了对知识的理解,深刻领会到物理学科的严谨性和流畅性,感受到物理的探究之美和应用之美。同时,又能激发学生的学习热情,使物理课堂教学产生无穷的乐趣,进而实现高效的物理课堂教学。
2.2 合理创设问题情境,引导学生质疑探究
作为一节规律探究课,本节课的重点是如何落实探究教学,让学生在探究中理解闭合电路的欧姆定律,感知科学探究的过程和方法。在探究教学中,问题是探究的起点,没有问题就不可能有探究,正是在问题的驱动下,学生才能积极思考,从而产生探究欲望。这就需要教师在深入挖掘规律形成过程的基础上,精心创设问题情境,以问诱思,引导学生融入到探究学习的情境中去。例如:在构建“闭合电路”概念时,用两节新电池和内阻较大的9 V电池组分别给灯泡供电后,可设置如下问题情境:“为什么灯泡接到电动势为9 V的电池时,亮度反而暗了?难道电池坏了?”“为什么电池与灯泡接通时两端的电压变小?减小的电压哪儿去了?”“电池有内阻?可能吗?”“我们来看看电池(触摸电池),电池变热了,什么原因导致工作的电池会变热?”学生在问题的引领下观察、实验、体验,由此认识到“电源内部也有电阻和电流”“电源内部电流的通路,称为内电路”。这种以问题启发学生思考,以实验引导学生体验来构建闭合电路的方法,既弥补了教材对内电路建构的非直观性,也让学生经历了在质疑中分析、探究的过程,学生对闭合电路的认识潜移默化、水到渠成,远比直接灌输效果好。
在引导学生从能量角度验证实验探究结果时,设置如下问题情境:“刚才我们通过实验探究了闭合电路中的电流规律,这个结论可靠吗?”“如果我们能从理论上找到依据,是不是更可靠?如何从理论上来分析呢?”“从能量角度行吗?”“内、外电路在时间 t 内消耗多少电能? ”“这些能量从何而来?”学生在上述问题的引导下,发现也可以从能量角度来推导得出与实验相同的结果。
在引导学生探究路端电压与负载的关系时,设置以下问题情境:“实验表明,灯泡变暗是由于路端电压变小的缘故,你们能说说路端电压与什么有关吗?”“它们之间具体的关系是什么?”“如何设计实验来研究呢?”“从实验数据中能得出什么结论?”“能从理论上分析为什么会发生这样的变化吗?”“如果外电阻断开,路端电压为多少?外电阻短路,路端电压又为多少?”“谁能说说路端电压随外电阻变化的根本原因是什么?”在这一个个问题的引领下,学生从实验探究到理论分析两个方面找到了路端电压与外电阻的关系,不仅体验了科学探究过程,提高了理论分析和实验探究的能力,也养成了乐于探索、勤于动手的好习惯。
2.3 注重渗透科学方法教育,加深对规律本质的认识
作为一根主线,科学探究法贯穿在整个课堂教学过程中,教学中要注意尊重学生的心理特点和认知规律,强化科学探究法的显性教育:以引入实验为线索,引导学生经历“观察实验、提出问题、猜想假设、设计实验、分析论证”等过程,领会科学探究的方法。
“闭合回路中的电势变化”抽象而难以理解,突破这一难点的最重要的方法就是“比法”。教材试图以图1的模型来形象地说明这个问题,但这种模型对学生来说还是比较抽象,难以理解。笔者用如图2所示的“电梯加滑梯”模型和闭合电路加以类比,来说明闭合电路中的电势高低变化情况。这样的方法,既简单又源于学生的生活经验,学生容易接受,教学中应注意引导学生体会类比法的作用。
“演绎推理法”在“闭合电路欧姆定律的推导”和“路端电压与负载的关系推导”中两次用到,教学中要注意借助问题情境,把规律的探究以一个个问题的形式呈现出来,让学生在问题的引领下经历演绎、推理过程,构建对“闭合电路的欧姆定律”和“路端电压与负载关系”的正确理解,体验演绎推理过程中获得成功的愉悦。
另外,本节课中,要特别注意引导学生在了解路端电压与负载电阻的关系的基础上,通过极限法分析和理解电路断路时的路端电压和短路电流的现实意义,体会极限法在物理学习中的作用和意义,有效地训练学生突破思维定势,培养创造性的思维能力。
2.4 注重理论联系实际,物理与生活的联系
研究和学习物理最重要的方法就是理论联系实际,将理论和实际、物理与生活联系起来,可以帮助学生更透彻地理解所学的物理知识,培养学生的创造性思维和逻辑思维能力。欧姆定律与生产、生活联系密切,教学设计时,应注意还原知识的产生背景,注重将知识应用于实际生活。例如:新课引入可以从生活现象来提出问题,引发学生思考探究;在得出路端电压与外电阻R的关系后,引导学生通过将R推向两个极端情况的分析,来理解实际中“为什么电源开路时路端电压就等于电源的电动势”及“为什么电源不能用导线直接相连”;在学完了本节知识后,可引导学生用本节课所学知识分析解决新课引入及生产、生活中的实际问题。让学生充分地感知从生活走进物理、从物理回到生活的过程,培养学生利用物理知识分析解决实际问题的能力,建构对知识(尤其是难点知识)的正确理解,从而真切地感受所学物理知识的实用性,充分理解物理学科对时展的深远意义。
参考文献:
篇6
一、建模的理论基础及过程
1.电功知识
学生在电功知识的学习过程中,已经知道电流做功的过程实质上就是电能不断转化为其它形式的能的过程,同时知道了电流做功的多少即电功的大小,跟下面这三个因素的大小有关:电压U、电流I、时间t,计算公式为W=UIt,并且,对运用这个公式计算出的结果,学生们也能理解成电能转化为其它形式能之和的一个总量。
2.焦耳定律
电流通过导体会产生热量,这个热量的多少,跟电流I、电阻R、时间t有关,计算公式为Q=I2Rt,这就是焦耳定律。由这个定律计算出的数值,物理老师要引导学生把它理解为仅是电流做功转化为内能的一部分,为下面进行欧姆定律成立条件的理论模型构建做好铺垫。
3.引线搭桥之一
老师:当电流通过电扇时,电流在做功过程中会将电能转化为哪些形式的能呢?
学生:机械能和内能。
老师:此时电功W与内能Q谁大谁小呢?
学生:电能W大于内能Q,即W>Q。
老师:将上式W>Q中的W和Q,分别用公式W=UIt,Q=I2Rt进行替换,不就成了UIt>I2Rt吗?请同学们注意观察这个不等式它是不是一个最简式?
学生:不是。
老师:请同学们化简,并研究一下化简后所得的新的不等式会给我们怎样的启示?
学生:不等式两边同时约去It这个正数值,不等号的方向仍不会改变,即U>IR,这与我们前面学习过的欧姆定律I=不相符合。这就表明前面我们所学的欧姆定律,其成立是有条件限制的,这个限制条件为什么教科书的前前后后都没有说明呢?难道说我们找到了一个教科书上应该有的却不曾有的“新发现”?同学们兴奋不已,教室里的气氛顿时活跃了起来。
老师:同学们,你们的分析是有根有据的,做出欧姆定律成立是有条件的,判断也是正确的。因为我们所依据的物理公式W=UIt、Q=I2Rt,电扇工作时电能转化为机械能和内能的物理事实,以及运用不等式进行变形的数学知识都正确无疑。
老师:接下来我们就自然要追问:什么条件下U=IR呢?这个条件也就是欧姆定律成立的限制条件,请同学们再接再厉。
4.引线搭桥之二
老师:当电流通过哪种或哪类用电器做功时,它们两端的U才会等于流过的电流I与其自身的电阻R的乘积呢?请从电能转化的角度,列举实例进行分析。
学生:电流通过电饭煲、电水壶、电熨斗等用电器做功时,电能会全部转化为内能,即有W=Q。再将此式中的W和Q,分别用公式W=UIt,Q=I2Rt进行替换,得UIt=I2Rt,最后化简得U=IR。
老师:请同学们在你们的笔记本上写出这个理论的推导过程,好吗?
学生:对电饭煲、电水壶、电熨斗有W=Q
UIt=I2Rt 则U=IR
电能全部转化为内能的用电器,欧姆定I=就一定成立。
二、建模的功效
1.正确理解和区分电功或电热计算公式的多样性
对于电能全部转化为内能的用电器来说,U=IR,W=UIt都成立,因此,在计算电功W=UIt公式的四个量中,除时间t这一个物理量外,其它的三个物理量电压U、电流I、电阻R,任一个量可由公式U=IR用另外两个量求出,所以,可推出W=UIt=I2Rt=t三个计算公式,同理可得Q=UIt=I2Rt=t。而对于电扇、电动机等这类用电器,由于U>IR,计算电功只能用W=UIt,计算电热只能用Q=I2Rt了。
2.减轻学生在学习过程中理解和记忆知识所造成的心理负担,增强学生学习物理知识的理论水平和理解能力
比起借用“纯电阻”这个初中学生根本模糊不清的物理概念来理解和区分电功和电热计算公式的多样性来说,学生少吃了一知半解的亏,并且能在老师的引导下,从自己所理解的电功和电热的计算公式中,经历发现两者的区别和联系的数理推导过程,于自然的融合中,增强了学生的理论水平,深化了学生理解知识的能力。
3.为初中教师钻研教材、用好教材提供了一种方向
篇7
欧姆定律有效性反思电路设计滑动变阻器教材安排是通过实验探究来研究电流与电压电阻关系,从而得出欧姆定律。这样安排比较好,但实际学生动手参与率不高,学生的科学探究有效性不高,有点照本宣科,对欧姆定律不能真正实现探究的思想,如何改变你?
欧姆定律(初中学习的是部分电路欧姆定律)作为一个重要的物理规律,反映了电流、电压、电阻这三个重要的电学量之间的关系,是电学中最基本的定律,是分析解决电路问题的金钥匙。
欧姆定律这节课的特点是,十分重视科学方法教育,重视科学研究的过程。让学生在认知过程中体验方法、学习方法,了解得出欧姆定律的过程。了解运用“控制变量法”研究多个变量关系的实验方法,同时也为进一步学习电学知识打下了基础。
教材安排是通过实验探究来研究电流与电压电阻关系,从而得出欧姆定律。这样安排比较好,但实际学生动手参与率不高,学生的科学探究有效性不高,有点照本宣科,对欧姆定律不能真正实现探究的思想。究其原因有三点:
1.本实验是用欧姆定律来研究欧姆定律由于学生还没学习欧姆定律很难理解为什么调节滑片的位置就能改变或保持这段电路两端的电压。
2.学生很难正确区分一段电路和整个电路两个概念及它们之间的关系,在本实验中研究AB这段电路中的电流与电压和电阻的关系时不容易将这段从整个电路中分离出来,更不会分析探究它们之间的关系。
3.在一个电路图中却要分次研究两个实验规律先研究电流与电压的关系,后又更换电阻,研究电流与电阻的关系,学生很难理解,更别说自己设计这个电路来探究其中规律了。
以上是学生探究实验和分析实验电路的障碍,如何来解决呢?
在教学中笔者对实验教学做了适当的改变。让学生自己分两步实验来设计电路探究规律:先激疑,后激智,引出正确的电路设计,再完成正确的实验操作。
第一步,研究电流与电压的关系,他们的设计是:保持电阻不变,用改变电池节数来改变电池两端的电压。(因为学生很容易想到串联电池越多电压越大),于是我说,那你们就按你们的思路去探究,结果是能得出:电阻一定时,电压越大,电流越大,却得不出:电阻一定时,电流与电压成正比的关系。此时,他们反问:问题出在哪呢?我接着反问:你们怎么知道定值电阻两端的电压是在成倍数的变化呢?学生马上回答,因为电池是成倍的增加啊,我说,那你们用电压表测测看,一测发现电压并没随电池节数的成倍增加而成倍增大,学生反问:那怎么办?有学生很快想到上节课学到滑动变阻器可以调节电压,立即就串联了滑动变阻器上去,结果,水到渠成,完成了该实验,而且不用改变电池节数。现在再反问学生这两种电路设计的区别在哪,问题在哪,优势在哪,这时老师点拨一下:因为导线也有电阻,学生就会豁然开朗,会心一笑,经过一次挫折他们重新设计出探究电流与电压关系的电路,同时也自行将这段电路从整个电路中分离出来,研究出这段电路中电流与电压的关系:电阻一定时,电流与电压成正比的关系。
第二步,研究电流与电阻的关系,起初他们的设计是:保持电池节数不变,再改变电阻。(因为学生很容易想到串联电池节数不变,电压也不变),很快,有些学生就想到在第一步中出现的问题,于是想到可以用滑动变阻器控制电压不变,只要在原来的电路图上改变电阻就行了,并想到如用电阻箱来改变就更好了,因为不仅改变方便,能多次成倍数改变电阻,并且能知道电阻的值,这样也更方便找到电流与电阻的更具体的关系。
这样分两个实验电路图分别设计,分别实验,避免了照搬照抄,死记硬背的教学模式,实验从开始设计到实验障碍,再到改进实验,总结规律,都是学生亲身实践,学生真正理解了:
1.两步实验中为何要用滑动变阻器,如何用滑动变阻器?
在研究电流与电压的关系时,如果不用滑动变阻器,虽然能够测量出R两端的电压和其中的电流,但该电路只能测量出一组电压和电流的值,而从一组电流和电压的数据是无法找出二者之间的关系的,应该再测几组电压和电流,因此就需要改变R两端的电压,用滑动变阻器可以成倍地改变R两端的电压,简单方便,当然也可以采用改变电池节数的方法,但因为导线有电阻,很难成倍地改变R两端的电压,比较下来,当然是用滑动变阻器更方便快捷。同时,滑动变阻器还可以起到保护电路的作用。
2.用控制变量法探究电流I与电阻R之间的关系实验中,应该如何操作?探究电流I与电压U之间关系时,应该如何操作?
探究电流I与电阻R之间的关系时,如何保持电压U不变?即改变定值电阻的阻值的同时,该电阻两端的电压就发生了变化,因此,要及时调节滑动变阻器以保持电压不变,观察并记录电流表的示数随电阻的变化关系。
探究电流I与电压U之间关系时,要不断的改变电压,即保持定值电阻的阻值不变的同时,要改变电阻两端的电压,因此,要及时调节滑动变阻器使电压成倍地变化,观察并记录电流表的示数随电压的变化关系。
总之,这样改进充分发挥了实验的作用,降低了教学环节中学生遇到问题的难度,调动了学生的学习兴趣和积极性,更深入地理解和掌握了知识。既培养了思维能力,又培养了实验能力,进一步实现了以教师为主导、学生为主体、思维为核心、能力为目标的教学理念,开阔了学生思路,有效地提高物理教学质量。
参考文献:
[1]教育部.初中物理新课程标准(实验稿).
篇8
【关键词】初中物理;教学方式;研究
物理作为初中生必学的自然学科,有着其自身独特的科学性,物理课程给学生提供了了解自然规律的平台,并且通过物理课程的学习还可以增加学生的见解,帮助他们熟悉自然界中某些事物发展的本质,并理解一些现象的科学内涵(例如雷电的形成、电流的形成、人体的静电现象等)。正是因为物理严谨的科学性,使学生们接触它的时候也带来了一些困难,比如对有些现象的解释太抽象,并且在传统的物理教学模式中,都是以老师授课为主,老师占据了课堂的主体,只一味的向同学们简单的传授课本上的知识,忽略了课堂的灵活性,导致初中物理的教学方式存在较大漏洞。因此,借着新课改和素质教育的平台,老师应该在物理教学的课堂中尝试新的教学方法。
1.结合案例分析物理教学中存在的一些问题
1.1案例一——力学
力学是初中物理课程中最基本的章节,它是带领学生走进物理世界的开篇之章,因此力学知识授课的好坏直接影响到学生对这门课程的认识,也会奠定学生们对物理印象基础。在我国几乎所有课程的教学模式都是以老师讲课为主,学生听课为辅,物理老师在讲授力学这一章时也是这样,缺乏和学生的交流,由于学生在课堂上发挥不了主体作用,并且物理是一门相当乏味的自然科学学科,因此,许多学生在接收物理知识时都存有被动心理,有的也只是为了完成学业的需要,并没有真正的去好好掌握。
1.2案例二——欧姆定律
初中物理课程中,必不可少的一章就是《欧姆定律》,它作为初中物理课程中最基础的知识章节,影响着许许多多初学者对物理课程的印象以及日后对学习物理的兴趣培养,因此,作为一名初中物理老师,在讲授该章节时需要注意的问题有很多,而不是一股脑的把所有知识概念都讲完。
在传统的授课方式中,物理老师在讲授这一节时一般都是先把需要解释的概念给学生讲解一下,然后把这一章节涉及到的公式(主要是I=U/R)在例题中给同学们讲解。这种授课方式如果不是天生对物理充满兴趣的人在听起来时都会觉得很无聊。这就直接导致了许多学生在学习这一章时上课不认真听讲,老师留的作业题也是抄别人的,使教学的效果很不理想,教学任务也几乎不能按时完成。
1.3案例三——物理实验课
物理实验课是带领学生走入物理世界最直接、最有效的方法,然而由于教学资金的缺乏,许多初中学校根本就没有开设这一门课程,或者是开设了这一门课程,却因为缺乏实验道具和器材,而从未真正上过。这种教学漏洞的出现,损失了教育学生学习物理的最好机会,由于物理知识大多数都十分抽象,初中生基本上无法从理论课上真正搞懂那些知识,而又没有最直观的教学实验来演示,错失了引导学生学习物理的最佳机会。
2.解决上述问题的有效措施
2.1消除力学知识的学习障碍
由于力学知识是物理课程最基本的入门知识,因此学好它对学好物理课程会打下良好的基础。初中是一个人学生生涯中最容易对事物充满好奇的时间段,教师要充分的利用学生的好奇心把他们引入物理的世界。最有效的方法就是让学生成为课堂的主体,允许学生在课堂上发问,增加师生之间的交流,建立良好的师生关系,营造良好的课堂氛围。例如教师在讲解牛顿第一定律时可以在上课时带一个苹果,让学生们在课堂上真实的体验万有引力;在讲授自由落体的知识时,可以让同学们在课堂上进行实验,用自己的笔、纸片等来感受自由落体的妙处;在讲力是相互的这一章节时,老师可以让同学们自己报名来前台互相感受一下;在讲摩擦力时借助实验道具在课堂上给同学们演示等。
2.2学习欧姆定律的有效途径
其实要想有效的学习欧姆定律,在老师授完理论课的基础上最有效的方式就是开设这一章节的实验课。欧姆定律这一章的主要内容包括:欧姆定律并不适用于所有物体、导体的电阻不是一成不变的、串并联电路欧姆定律的推广式不同。
这些有关电路的问题在实际的课堂讲解上是十分抽象的,教师只有亲自带领学生,让学生们在实验课中自己动手,体验欧姆定律的实验表现,才能使他们把这些知识真正掌握,否则即使他们掌握了理论要点,也无法真正的与实际相结合。
2.3充分借助多媒体资源
其实以上方法适用于所有物理章节的学习,实验课是物理教学中的重点课程不能忽视。随着科技的发达,多媒体教学方式也逐渐引入了物理教学的课堂,多媒体教学方式的实施,给学生们带来了一种学习知识的新鲜感,PPT上鲜活的文字、图片以及教学视频等内容增加了物理教学的趣味性,也增加了学生们对物理课程的兴趣。因此在初中物理的教学中要充分借助多媒体资源使抽象的物理知识在多媒体中得以具象化。
此外,改变教学最根本的方式是增加教师授课的趣味性,一个幽默的物理教师和一个死板的物理教师教学的效果是完全不一样的,因此,要改变教学方式还需要教师从自身寻找问题,好的教学效果需要学生和老师共同完成。
作为一名初中物理老师,不仅要把知识完整的传授给学生,还要让他们能够接受并且消化成为自己的东西。随着国家经济水平的提高和教学方式的改进,多媒体教学的方式逐渐走进了千千万万的大中小学校,因此,物理老师可以充分借助多媒体的力量来使枯燥的物理知识多彩化。此外物理课程中还应该多安排一些实验课程,让同学们通过自己的亲身体验来感受物理世界的多姿多彩,培养他们不断探索科学的精神,培养他们对物理课程的兴趣。
【参考文献】
[1]张红岩.《新课程理念下的初中物理教学案例与分析》.教学实践,2012
[2]代卫建.《初中物理教学中加强学生实验探究技能的培养》.新课程·中学,2010年9月8日
篇9
1学习物理概念需要重视概念的形成过程
物理概念是物理知识的核心内容.著名科学家钱学森曾说过:“学习理科的关键是概念清,多练习.”学生的物理概念是否清楚对学好物理至关重要.学习物理概念需要重视物理概念的形成过程.学习物理概念需要知道为什么要引入它,它是如何定义的,定义式是什么,单位是什么,如何测量(或测定),有什么应用等.例如:密度是一个十分重要的物理概念,学习它要重视以下过程:在物理学中为了比较相同体积的不同物质的质量一般不同的特性引入了密度,单位体积的某种物质的质量叫做这种物质的密度,定义式是ρ=m/V,国际单位是kg/m3,常用单位是g/cm3,测密度的方法很多,但基本方法是测质量,测体积,再利用密度公式计算出密度,应用有求密度,求质量,求体积等等.速度、压强、功率、比热容、电功率等等都是重要的物理概念,望广大师生重视其形成过程.
2学习物理规律需要重视规律的形成过程
物理规律是物理知识中的最核心内容,多数是从物理事实的分析中直接概括出来的,学习物理规律更需要重视物理规律的形成过程.要知道物理规律的实验基础、基本内容、数学表达式、适用范围、应用等等.例如:欧姆定律是电学中最重要的规律之一,学习它,我们要知道欧姆定律的实验基础,欧姆定律是研究电流与电压、电阻的关系,首先要用到控制变量法,电阻一定,研究电流与电压的关系,电压一定,研究电流与电阻的关系.电阻一定,可找一定值电阻(R=5 Ω),研究电流与电压的关系,实际上要看电压变,电流变不变,若变,如何变.如何改变定值电阻两端的电压呢?方法一:可以改变电源的电压,方法二:可以通过滑动变阻器来改变定值电阻两端的电压.通过探究实验得出电阻一定时,电流与电压成正比.电压一定,可找一稳压电源,也可通过滑动变阻器来保持电阻两端的电压不变,研究电流与电阻的关系,实际上是看电阻变,电流变不变,若变,怎么变?改变电阻,还要知道它的值,可以逐次更换定值电阻(5 Ω、10 Ω、15 Ω),移动滑动变阻器,保持电阻两端的电压(U=3 V)不变,从而测出相应的电流值.分析实验数据得出,电压一定时,电流与电阻成正比.
欧姆定律的基本内容是:通过导体的电流,跟导体两端的电压成正比,跟导体的电阻成反比.数学表达式为I=U/R,欧姆定律是在金属导体做实验的基础上,总结出来的,一定适用于金属导体,对于其它的导体是否适用,要用实验验证,通过实验证明,欧姆定律还适用于电解液导电,不适用于气体导电,可见欧姆定律的适用范围是适用于金属导体,电解液导电,不适用于气体导电.应用有三方面:(1)求电流,(2)求电压,(3)求电阻.解题时要注意I、U、R三个物理量的对应性、同时性、统一性,即对应于同一导体、同一段电路,同一时刻、同一状态,单位要统一于国际单位.
3学生实验需要重视实验过程
学习物理要以观察、实验为基础,观察自然界中的物理现象,进行学生实验,能够使学生对物理事实获得具体的明确认识,这种认识是理解物理概念和规律的必要的基础.学生实验需要重视实验过程,如要了解每个学生实验的实验目的、实验原理、实验方法、需要测量的物理量、实验器材、实验步骤、实验记录、实验结论、必要的误差分析等等都应该清楚.
4科学探究需要重视探究过程
科学探究就是让学生模拟科学家的工作过程,按照一定的科学思维程序探索学习的过程,从中学习科学方法、发展科学探究所需要的能力、增进对科学探究的理解,体验探究过程的心理感受.科学探究需要重视探究过程.科学探究的过程是一个创造的过程,而创造力的核心是创造性思维.因此,探究实质是一个思维的过程,这个思维的过程是模拟科学工作者进行科研的思维程序来进行的,这种思维程序就是学生科学探究的程序步骤.即提出问题、猜想与假设、制定计划与设计实验、进行实验与收集证据、分析与论证、评估、交流与合作.
5做物理习题需要重视解题过程
学习物理要求概念清,多练习.可见做物理习题很重要,做题可以帮助我们巩固所学的知识,检验学习效果,锤炼思维的灵活性,全面提高学生的科学素养,培养学生观察、实验能力,分析概括能力,运用物理知识解决简单的实际问题的能力,以及创新精神和实践能力.物理题型很多,如填空题、选择题、实验题、探究题、简答题、计算题、作图题、推理题等等.无论是做何种题型的物理习题,都需要重视解题过程.不同的题型,有不同的解题要求,不同的解题方法,不同的解题过程.一般来说,无论是做何种物理习题,都要正确理解题意,正确审题;明确相应的物理过程,物理情景,建立物理模型;运用相应的物理概念、物理规律,直接得出结果或结论.稍微有点灵活性,有点难度的题目,要分清层次,理清思路,找出联系,或进行物理公式变换或公式推导,或运用数学思想(如列方程、列方程组)求解.最后就是检查.
6学习物理需要重视有的物理量是过程量
物理学所研究的许多问题,都直接涉及到某一物理现象发生的整个过程,或者是过程中的某些状态.因此,相应地就引人了许多关于描述某些物理过程的过程量和用来描述某些特定的物理状态的状态量.
过程量是描述物质系统状态变化过程的物理量,如冲量、路程、功、热量、速度改变量等都是过程量,它们都与一定的物理过程相对应.一般说来,物质系统从某一个状态变化为另一个状态,如果经历不同的物理过程,虽然初始状态与终了状态量可能保持相同,但过程量不一定相同.
篇10
1实验准备
教师预先将全班学生5人1组,分成若干组,每组实验桌面上放置的仪器有:电源(6 V)、滑动变阻器(0~20 Ω)、电阻箱、定值电阻R0(20 Ω)、阻值约10 Ω的定值待测电阻Rx各1个,电流表、电压表各1只,开关、导线若干等。
首先,引导学生回顾电阻的相关知识,如:电阻的定义、符号、单位,影响电阻大小的因素;滑动变阻器改变电路电阻的原理、连接方法、元件符号;电阻箱的符号及其连接和读数方法。
其次,引导学生回顾一个实验,即伏安法测电阻,复习伏安法测电阻的原理,电路图如图1所示。学生依据电路图连接实物,着重指出实验注意事项,认真讨论滑动变阻器在电路中的作用。
2合作探究
在此基础上,引导学生动手操作、实验测量,并依据欧姆定律,实际计算出Rx的阻值。
教师接着问:“如果现实中缺少电流表,该如何测量未知电阻Rx呢?”
学生马上想到“串联电路电流处处相等”,于是就会想到如图2所示的设计方案。
学生代表解释说:“如图2所示,先用电压表测出R0两端的电压U0;再测出Rx两端电压Ux。先依据I=U0/R0,计算出通过R0的电流I,由于R0与Rx串联,故通过R0的电流也就是通过Rx的电流,利用欧姆定律:
Rx=Ux/Ix=Ux/(U0/R0)=UxR0/U0。
待阐述完毕,各组根据该同学的讲述,选择桌面上的仪器,实际操作。教师适时点拨,利用滑动变阻器,再测量两组数据,实现多次测量求平均值从而减少误差的目的,并与已测得的Rx比较,验证该办法的正确性。
教师又问:“若缺少电压表呢?”
学生马上想到利用“并联电路各支路两端电压相等”来完成实验。
各组学生积极投入到设计实验中。不一会儿,有学生发言:如图3所示,先用电流表测出通过R0的电流I0,再用电流表测出通过Rx的电流Ix,由于R0与Rx并联,根据欧姆定律和并联电路的特点,推算出:Rx=Ux/Ix=U0/Ix=I0R0/Ix。
接着,教师见学生探究的积极性高,乘胜追问道:“上述方法我们都进行了两次测量,并利用了串、并联电路特点,利用欧姆定律测出了Rx的值。下面大家开动脑筋,能否仅连接一次测量出Rx的值呢?”
学生都积极投入探索之中,教师适时巡视点拨,一会儿功夫,探究成果便出来了。
学生1:如图4所示,开关S闭合时,Rx短路,电路中仅有R0工作,故电流表此时的示数是通过R0的电流即I合。根据欧姆定律,电源电压为:U=I合R0;当S断开时,电流表的示数是通过Rx和R0的电流,即I断,故此时电源电压为:
U=I断(R0+Rx)
由于前后电源电压不变,有:
I合R0=I断(R0+Rx),
所以Rx=R0(I合-I断)/I断。
学生2:如图5所示,当开关S闭合时,电路中仅Rx工作,电压表的示数为Rx两端电压U合;当S断开时,R0与Rx串联,电压表的示数为Rx,此时分得的电压为U断,根据串联电路特点,此时R0分得的电压为U0=U合-U断,故通过R0的电流为:I0=(U合-U断)/R0。
即此时通过Rx的电流,故Rx的值为:
Rx=U断R0/(U合-U断)
学生3:如图6所示,当开关S断开时,电流表的示数是通过R0的电流I断;当S闭合时,R0与Rx并联,电流表的示数是Rx与R0的总电流I合;由于电源电压不变,根据并联电路特点与欧姆定律得:
Rx=U/(I合-I断)=R0I断/(I合-I断)
学生4:如图7所示,由于R0为滑动变阻器,且阻值为0~20 Ω,所以,当滑片P在a端时,电流表的示数是通过Rx的电流Ia;当滑片P滑到b端时,电流表的示数是通过Rx与R0的电流Ib;由于电源电压不变,故有:IaRx=Ib(Rx+R0最大)。
所以Rx=IbR0最大/(Ia-Ib)。
学生5:如图8所示,开关S闭合后,滑片P在a端时,电压表的示数为Rx两端电压,即电源电压为Ua;当滑片P滑至b端时,由于Rx与R0串联,此时电压表的示数仅为Rx分得的电压Ub,根据串联电路特点和欧姆定律得:Rx=UbR0最大/(Ua-Ub)。
教师分析、表扬后,接着问:“你们能否利用电阻箱测出未知电阻Rx?”学生很快讨论、设计出实验方案,并积极发言。
学生6:如图9所示,把开关S接a点时,读出此时电流表的示数为I;再把开关S接b点,调节电阻箱,使电流表的示数仍为I,读出此时电阻箱的示数R0。因为(R0+Rx)I=(R0+R)I,所以Rx=R0。
教师总结说:“电路计算题关键是根据电路中开关的断开和闭合,正确判断电流的流向,从而得出用电器的串、并联情况,然后根据串、并联电路特点和欧姆定律灵活解决电学有关计算问题。同学们只要掌握方法,牢记规律,一定没有解决不了的问题。”
3结束语
- 上一篇:全球经济现状及发展趋势
- 下一篇:健康教育小常识