数字化设计和制造技术范文
时间:2023-07-21 17:39:31
导语:如何才能写好一篇数字化设计和制造技术,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
DOI:10.16640/ki.37-1222/t.2017.12.009
0 前言
目前我国以航空制造业和汽车工业为主的机械类制造业发展迅速,促使我国冲压模具以年20%的速度持m增长。冲压模具本质上属于技术密集型产品,冲压生产中的冲压产品的智联、生产效率等与模具设计具有较大的关联,大力发展模具的数字化设计与制造技术的分析与研究,将数字化技术广泛应用在模具工业中,促使现代机械制造业得到快速发展。
1 冲压模具设计和制造中的数字化关键技术
在冲压模具的使用上,要将数字化技术应用在模具制造的全过程,实现自动化制造和精确化制造,促使冲压模具的高效开发。模具制造的数字化技术主要是将计算机技术应用在模具制造的过程中,实现每一制造环节的精确控制,从而满足冲压生产的要求。数字化关键技术具体包括以下几种:
(1)冲压成形CAE技术。冲压成形CAE技术本质上是利用计算机技术制造计算机软件,并将计算机通用软件应用在模具自动化质量控制过程中,促使该技术能够满足模具制造的精确度要求,也显著提高冲压模具的使用周期。如AutoForm/PAM-STAMP软件应用在模具制造过程中,通过计算机分析、模拟机械用材的流动、厚度的变化以及材料的破坏、起皱等,以此来对模具产品零件的成形、工艺设计进行准确的预见和建议,实现模具的形变。
(2)模块化的快速设计系统。对于冲压模具的制造与设计,要重视结果设计,能够将技术系统应用于模具制造上,提高模具设计的质量。如随着现代计算机技术的发展,冲压CAD/CAM的一体化技术应用在模具设计上,可以有效避免单一软件使用的弊端。
CAD通用软件主要是应用在交互绘图和造型层次的设计上,一般是以模具设计人员的设计经验为主来进行模具绘图和造型设计,这种软件设计方法不能够及时发现模具设计中的不足之处,一定情况下会延误模具设计周期,影响模具的设计质量。因此在数字化关键技术的使用上,可以将模具设计的技术结合起来,弥补单一技术应用中的不足之处。
2 冲压模具设计和制造中的数字化技术的优点
(1)数字化装配技术的优点。冲压模具的装配方法一般分为4种,包括互换装配法、分组装配法、修配装配法以及调整装配发等具体内容,在模具设计上,可以将这四种装配法按照先后顺序应用在设计环节中,有利于进行精加工,减少装配过程中模具标准件的损毁。
(2)计算机仿真技术的优点。在传统的冲压模具设计上,高度钢材在循环加载条件的作用下,会产生较强的包辛格效应,而计算机仿真技术的应用极大程度上改变了冲压设计现状,通过计算机仿真模拟将设计参数设计在固定范围内,进行冲压设计,提高了模具设计的精确度。
(3)数字化参数的程编优点。参数化程编应用在冲压模具的加工制造上,在数字化技术的作用下,逐渐从单纯的型面加工扩展到结构面加工,由中低速加工变化为高速加工,从小切深变为高进给,有效改善工件加工质量,减少加工打磨面;减少试模的工作量,提高模具制造的精度;刀具使用上以小型加工模具为主,注重细节制造,以此既满足模具的设计精确度要求,也有效降低使用费用。
3 冲压模具设计和制造中的数字化技术的应用
3.1 软件技术在模具产品设计同步工程中的应用
在模具产品的同步开发中,要想满足冲压模具的建设要求,就要将冲压工艺贯穿于冲压模具的同步开发过程中。在冲压模具的开发设计上,要求设计人员全员参与,从冲压模具的生产工艺、产品的冲压技术再到模具的具体开发,都要依据冲压成形的物理规律进行模具设计,借助计算机数字化技术真实的反映模具与板料的的关系,并将计算机软件应用在模具变形设计的全过程中。
在冲压模具的设计上,可以应用非线性理论、有限元方法以及各项计算机软硬件,以此来对产品零件的成行进行精确的预算,全面提高冲压模具的技术机控制质量与效率。
3.2 模块结构化的快速设计应用
在数字化技术使用上,要预先消化模具的任务要求(冲压要求),结合现场模具生产经验,应用模具结构库,进行模具的初设计;其次再要进行模面设计,这一阶段调用标准机械件库,组装成一套完整的模具。在参数化模块设计上,要实现典型结构模板化和重复工作智能化,以此来提高冲压模具的制造水平。
典型结构模块化,主要是基于模块化的思想,对冲压模具的典型结构进行分类总结,应用数字化技术进行模具设计参数的控制,生成智能化模板,以此在模具设计过程中完成建模;重复工作智能化应用上,主要是将模具设计过程的重复工作利用智能化模板和二次开发工具来实现缩短设计周期的目的,以此来实现冲压模具的智能化、自动控制化进程。
3.3 信息系统的应用
在冲压模具设计上,要将数字化技术应用在制造业的每一环节中,如可以将数字化技术应用在机械自动化管理、绘图设计、参数分析、模具制造以及模具检测中,在这一过程中应用信息化系统,可以实现产品信息的共享,并将模具制造信息以计算机信息化的形式固定下来,从而为冲压模具的制造设计提供借鉴意见,降低模具设计人员的工作量。
4 结语
随着信息技术以及科学技术的发展,我国的冲压模具已经由传统的机械模具形式转变为机械自动化体系,将先进的数字化技术应用在模具制造上,极大提高了我国冲压模具的发展速度,也提高了冲压模具的精确度和使用周期,推进了我国冲压模具的行业的发展进程。
参考文献:
[1]潘宇祥.探讨数字化技术在冲压模具设计与制造中的应用[J]. 工程技术:全文版,2016(07):00258.
[2]肖乐.数字化技术在冲压模具设计与制造中的应用[J].工业c, 2016(06):00201.
篇2
关键词 数字化;设计制造;一体化;应用研究
中图分类号TP3 文献标识码A 文章编号2095―6363(2017)03―0021―01
1概述
飞机设计和制造是飞机研制的重要2个环节。飞机研制是创造新型的飞机,从设计方案的提出到投入使用,需要经历很长的时间,是一件很复杂的系统工程。一般情况下飞机研制分为拟定技术要求、飞机设计、飞机制造和飞机试飞定型等4个阶段。飞机数字化设计制造技术是数字化数据管理和传递系统为基础,在数字化设计技术的前提下,有效结合数字化工艺技术、装配技术、检测技术、机器人自动钻铆技术及数字化的集成控制技术等多种先进技术的综合应用的结果。
数字化设计制造技术在机械、汽车、医药行业应用比较早。航空领域在20世纪80年代诞生于西方航空发达国家。数字化设计制造技术从根本上改变了飞机制造方法。数字装配方法有效解决了传统制造方式的周期长、返工率高、质量低、精度低、风险大和成本高的问题,给飞机研制开辟了崭新的道路。
面对市场竞争,传统的飞机研制方式无法满足企业发展需求,为了能在竞争中处于有利位置,企业必须采用数字化设计制造一体化技术是势在必行。数字化设计制造一体化技术能够大幅降低制造成本,提高制造精度和质量,缩短制造周期,降低返工率。
2数字化设计制造一体化技术的组成
数字化设计制造一体化技术是多个高新技术高度集成的结果。数字化设计制造一体化技术包含数字化设计系统、数字化工艺系统、数字化工装系统、数字化检测系统、自动钻铆系统等子系统。
1)数字化设计系统。数字化设计系统能够在产品的数字化定义和建模的基础上,利用计算机实现模拟预装配,主要作用是对产品M行干涉检查、位置分析以及人际功效分析等工作。通过虚拟预装配可以进行结构协调设计、系统协调设计、检查零部件的安装和拆卸等工作,有效地减少因设计错误而引起的返工和更改。
2)数字化工艺技术。数字化工艺技术是在数字设计的基础上,对设计数据进行按数字装配要求分析,总结归类和工艺设计的过程。包括工艺路线分工、工艺流程设计、工艺装备选择、工艺控制点选取、容差分配和数字化预装配等等。也就是根据现有技术、设备选择最合适的产品实现的方案或工艺技术的过程。
3)数字化工装系统。飞机装配中广泛应用的数字化工装技术有特征定位技术、柔性定位技术和数字化定位技术等等。
特征定位技术是利用零部件的工艺特征或装配配合关系来确定零部件的位置关系,达到准确定位的目的。常用的方法有凸台定位、装配孔和工艺孔定位等。
柔性定位技术是指通过采用可变的工装支撑和定位要素来满足不同产品或类似产品的不同定位要求。柔性工装常用于壁板类部件、翼梁类部件、对接部件、舵面等部件的装配。
数字化定位技术是数字化测量技术在飞机装配中的应用。指通过同一组数字化测量点的位置来确定组、部件的不同站位不同状态下的准确定位。常用的数字化定位系统有激光跟踪仪、iGPS定位系统、照相测量等。
4)自动钻铆系统。自动钻铆系统,也叫机器人加工系统。通过数字化编程的程序控制机器人,用机器人的动作代替部件装配中的制孔、锪窝、送钉、加胶、铆接等工序。自动钻铆系统加工精度高、效率高、工作一致性好等特点。机器人效率是人工的6~10倍。机器人加工工作已拓宽到铆接、焊接、胶接和喷漆等工作。
3国内飞机数字化设计制造一体化应用情况及存在的问题
我国航空工业主要沿袭前苏联的组织生产模式,飞机设计制造技术发展缓慢。飞机研制技术和组织管理方式落后,虽然在不断完善和该机,但与发达国家比差距较大,自动化水平不是很高,半自动和纯手工制造还在应用。目前在技术和管理方面都存在一定的问题。
数字化设计制造一体化体系建设需完善。数字化设计、工艺设计、工装设计、流程设计、数据管理和传输、数字化装配等方面均缺乏完整的、体系的标准规范。虽然已有了基础的标准,但实践过程中存在诸多问题。
在产品设计阶段缺乏设计制造一体化的考虑,缺乏数字化装配的工艺性考虑。在我们飞机装配中发现很多方面可以改变设计方式方法,应逐步加强面向装配的设计,加强“三化”设计。比如壁板设计、地板设计、翼肋设计完全可以按模块设计,便于柔性制造。
数据管理和数据传递平台需规范和完善。从设计到装配需要多个数据库、多个软件、多个接口的交换,数据管理和传递,硬件软件需进一步规范和完善。
数字化装配过程中补偿技术、检测技术需进一步提高。数字化装配是复杂的系统工程,装配过程受产品设计、工艺设计、工装设计与制造、零件制造、检验检测、工具使用等多个方面的影响,以上某个环节出现任何问题均影响部件制造的进度、节奏和质量。
4加快飞机数字化设计制造一体化应用的方法
数字化设计制造一体化技术是制造业发展的必然选择。面对困境和问题,我们需要采取以下措施,加强研究和应用实践。
1)建立产品全寿命工作模型,优化流程。目前发达国家高新企业几乎全部都采用全寿命周期的设计制造方法,其主要特点是充分考虑制造工艺性、售后维护的方便性,在方案论证阶段销售维护和制造问题先考虑并反复迭代。
国内航空产品研制周期长,质量低、成本高的主要原因是没有按照产品全寿命周期模型管理产品的研发,在设计阶段缺乏全寿命考虑,产品没有面向制造、面向用户、面向维护。
具体表现为:(1)缺乏完整的系统工程的研发理念,重功能性能,轻过程管理;白顶向下的设计分解和自底向上的逐级验证过程不清晰,不完整;设计指标逐级分解不全,设计验证迭代不够,验证不充分。(2)缺乏规范化、操作性强的流程;流程结构化差,粗放、层次不清、不够规范、不细化、操作性不强;没有整体流程,流程是串行的,运行缓慢,问题留到了后面,造成返工和拖延;流程的执行缺乏强制和纪律性。
2)加强面向制造的设计。传统的设计方式和传统的模拟量传递技术很难与数字化装配技术接轨,数字装配技术的前提是面向装配的数字化设计技术。具体为,加大产品的“三化”设计,加大产品的模块化、系列化和通用化,尽量加大通用件和共享零部件。比如壁板类零件、地板零件应采取模块化设计。另外,零件剖面选择取、设计分离面的选取应充分考虑数字化装配工艺,如,Z字形长桁剖面比L形长桁更便于机器人加工。
3)加强数字化装配技术的研究。数字化装配技术在国内刚刚起步,从标准的建立和技术的协调兼容没有明确的参考依据。我们知道需要数字化装配技术,但不是很明白需要什么样的数字化装配技术,因为产品类型不同、工艺分离面不同,所选取的装配方法不同。因此目前没有形成完整的技术树,对核心技术、关键技术识别不够。在产品零件到总装结束哪些分里面或哪些工位选取数字化装配更合适、效率更高等方面需研究和探索。
篇3
时代的快速发展,使得汽车的社会需求量也大大提高,人们对于汽车产品的质量以及汽车产品的更新的速度也有更高的要求。为满足社会的需要及人们的需要,汽车制造企业必须想办法提升汽车产品质量、提高产品生产效率以及加快产品更新速度。这样,企业才能在激烈的市场竞争中具有较强的竞争力。数字化技术的诞生为汽车制造的发展创造了一个有利条件,使这一切成为现实。本文详细介绍了数字化技术的概念,以及数字化技术的理论基础,分析了数字化技术在汽车设计制造中的应用,包括了拉延模及拉延面等方面的设计,并且提出了汽车制造采用数字化技术所存在的优势。
【关键词】
数字化技术;汽车设计;制造;应用
最近几年,随着汽车制造业的快速发展,其市场竞争也越来越激烈,为了提高市场竞争力,企业必须加快新产品推出的速度。企业需要降低汽车生产成本,同时提高汽车生产的效率,并且要保证汽车的性能。在这个背景下,数字化汽车制造技术应运而生。数字化技术是先进的、科学的以及系统的现代科学技术。数字化技术在汽车制造的各个环节的应用较为广泛,较大程度上提高了产品生产的效率和质量,在汽车制造企业的发展过程中起到了重要而又积极的作用。
1数字化技术的概念
二十一世纪,人们已经进入数字化时代,数字化技术也使人们生活的各个方面发生翻天覆地的变化。关于数字化技术,其是指借助于计算机系统、数据库以及多媒体等先进技术,结合实际生产的需要,快速进行相关信息的获取,对产品各方面的信息进行处理,以此来完成产品外观及结构的设计、性能的模拟以及生产制造,从而较快地制造出能满足客户需要的产品。计算机的快速发展和相关计算机软件的大量研发,促进了计算机辅助设计()系统的诞生。系统的最重要的部分是数据库,其采用的软件为交互图形系统,其具有较强的计算和数据分析能力。系统对于产品结构的设计可以在二维或者三维的空间里进行,具有较高的准确度,系统的应用使产品的生产效率与质量得到了较大程度上的提高,系统和数控机床及数控技术等一起为机械制造业中数字化的广泛使用创造了有利条件。
2数字化技术应用于制造业的理论依据
数字化制造相比传统制造具有较大的优势:数字化技术能够系统地、独立地、灵活地对产品进行设计和制造,制造参数的数字化是其本质特征。其中,数字化技术最典型的特点是其具有分散性、独立性,能够将复杂的、不明确的相关信息进行具体化、详细化,并以数据的形式进行代替。并且,计算机制造学是数字化制造中的基本理论。所谓计算机制造学,是指在建立各种设计模型的基础上,采用计算机对其几何数据进行计算,其中包括计算机智能运算的使用。通过计算机计算,将制造所需要的具体信息例如振动、声波以及力学等计算出来,再建立设计模型,对设计模型进行调整和修正。模型中的一系列信息用具体的数字进行表示,从而使模型变成包含大量数据信息的“系统”,实现产品设计制造时的精确性、灵活性和合理性。计算机制造学涉及多方面的理论,其中计算机几何数据融合理论是其最关键的部分。计算机几何和组合几何、代数几何等都是解决制造中的几何问题的重要办法,而且均对产品制造中困难的处理起到了较大的作用。几何模型、空间计算、计算机模拟等都是其理论结构,其中包含了数据和信息融合的过程。信息和数据的融合实际上是对诸多信息进行整理合并,其处理的顺序应由低至高进行,在低层往高层递增的过程中,其信息抽象性也逐步增强。数字化技术中数据融合的办法包括信息互补以及传感器信息的传输。信息互补能够将现有的相关数据进行处理,进行优胜劣汰的选择,最终确定最为合理的产品设计方案。
3数字化技术在汽车设计中的应用
就目前而言,在新产品的开发过程中,逆向工程技术是其中各种先进技术中的关键,在汽车、家用电器、飞机、摩托车等新产品的研发中被广泛应用,其能够将其他技术进行有效结合以及利用。新产品的快速设计及生产离不开逆向工程技术的应用。逆向工程技术被普遍被应用于原有产品的快速改造或者快速仿制中,从而实现产品的快速更新,简单来说,逆向工程技术的设计是反向进行的,其根据该技术获取到的相关数据信息,制作出一张具有抽象性的自由曲面,接着利用曲面反求软件对其进行反求设计,然后把其引入或者等实体化设计软件中,进行相关设计。需要注意的是,逆向工程技术对于激光快速成型制造的影响越来越明显,其起到的作用越来越大。除此之外,在开发新产品时,产品设计师一般会凭借自己的想象及构思来设计汽车产品原型,而且往往采用油泥塑造的方式,制造出理想的汽车模型。之后,利用三坐标测量机,获取汽车模型的三维数据信息。其中,三坐标测量机分为两种,其分别是非接触式及接触式。非接触式相比接触式具有一定的优势,比如其使用范围广、测量的速度快,在汽车模型设计中的应用更为广泛。本文针对的汽车的车身三维数据的获取就是利用非接触式三坐标测量机完成的。因为获取的数据都必定会将噪声点带入,尤其是位于尖角及边沿周边的位置的噪声点比较突出,并且通过激光扫描得到的大量数据信息也会对曲面重建的算法造成严重的影响,于是一定要处理其相关数据。因为大多数测量系统的软件自带对点云进行初步处理的功能,其中包括对异常数据及噪声数据的处理,以及还包括对数据进行整合、补充遗点、使其三角面片化等。所以,为满足设计的需要,可以对获得的数据进行简化处理,然后进行相关操作,比如变换坐标及获取截面等。
4数字化技术在汽车覆盖件模具设计中的应用
数字化技术在汽车覆盖件模具设计中也得到了较为有效的应用。拉延模型的设计,是基于覆盖件产品的三维模型上进行,对其边界进行创造性设计。其凹模圆角、工艺补充面、拉延筋、压料面的设计均可以在数字化软件平台上进行。压料面、工艺补充面、拉延筋和覆盖件产品模型一起,组成了一个完整的拉延模型面几何模型。
4.1拉延模型面的设计设计工艺补充面时,冲压方面的确定是第一步,尽可能保证各个部位具有相似的拉延深度,方便其拉延成形。设计压料面采用了三种方法,其分别是边界法、扫描法和延展法。拉延筋的设计步骤如下所示:第一、制作类似半圆弧的二维特征曲线;第二、通过扫描生成拉延筋曲面;第三、旋转圆角将拉延筋和两边的光滑曲面相连接。按照实际需求选择拉延筋尺寸的大小。进行凹模圆角的设计应按以下步骤进行:在工艺延伸面和压料面的相交线位置进行倒圆角变尺寸的处理,并且应该根据其金属流动性进行圆角大小的取值。
4.2拉延模结构的设计拉延模结构的设计包括凹模、凸模和压边圈三大方面的内容。并且拉延模其三大方面的设计高度需要根据压力机的特点而定。以下是凹模设计的基本步骤:第一、创建凹模二维特征轮廓的曲线;第二、进行拉伸操作制造出实体,利用拉延模型除去多余的部分;第三、在以上基础上,进行布尔计算,对其局部特征进行细致处理,例如建凸台、挖孔、建导柱、增加肋板等;第四、进行倒角操作,制造出凹模、凸模以及压边圈;第五、进行垫块、顶杆、挡料销等零件的设计。
5数字化技术在汽车模具制造中的应用
汽车自动化制造业也普遍采用了数字化技术,其不仅能够对模具进行动态仿真、展示加工的具体步骤,也能马上进行改变,其不但提高了模具设计和制造的效率,而且使复杂曲面的加工精度得到提升。
5.1工件和刀具的设置将上文所提到的汽车覆盖件模具以统一的格式进行保存,并将其引入到数字化设计软件中,对工件毛坯、原材料及原点等进行加工。打开工件设置选项,对工件进行设置,对毛坯尺寸的外形进行设定以及创建加工坐标系,之后调整其刀具号、下刀量以及冷却量等相关参数,还应整理、检查刀具名称以及相关刀具材料。
5.2NC刀具轨迹的生成在数字化设计软件中的走刀模式有许多种。按照模具的特征,适合采用平行切法,其不但能够保证加工的质量,没有较长的代码,而且能缩短加工的时间。完成以上程序后,系统会立刻将刀具轨迹制作出来,接着把刀具以刀位点的形式进行离散,操作完成后进行数控程序的加工。而且,需引起重视的是:假如数控加工采用的球头铣刀的半径比曲面的曲率半径更大,就会造成过切的状况。此外还需注意的是,刀具的半径如果比刀位点到曲面的距离更大,在操作过程中也会造成误差,比如过切,需要重新调整相关参数进行加工。已经产生过切的位置可以采用一些方法进行处理,比如绕行或者抬刀。之后利用程序进行加工,借助坐标变换的方法使模具下模的坐标系与机床的坐标系相吻合,才能实现模具的初步加工。
5.3生成后置处理代码通过软件的公用管理模块进行加工报表的制定,报表的制定需要根据数控系统的换刀指令、坐标系、刀具说明等具体信息来定,在使用前还需做进一步的检查与修改。
6结语采用先进的数字化技术投入到汽车的设计及制造中,能够较大程度上节约汽车的设计、调试、制造等方面的时间,并且也能使汽车的生产成本降低。通过数字化技术,可以使汽车的质量及安全性得到保障,同时提高汽车制造多方面的要素,包括质量、精度和效率,有利于企业及汽车行业的快速发展。
【参考文献】
[1]金艳,胡建军,周全义.数字化技术在汽车设计制造中的应用[J].重庆工学院学报(自然科学版),2008,06:16-18.
[2]王燕萍.数字化制造技术在汽车质量管理中的应用[J].汽车工艺与材料,2012,07:12-16.
[3]季金花,陆剑峰,朱志浩,张浩.数字化工厂技术在汽车制造企业布局规划中的应用研究[J].汽车工程,2009,11:1104-1107+1103.
[4]杨汉,刘安明,祝云.数字化技术在冲压模具设计与制造中的应用[J].航空制造技术,2013,10:48-51.
[5]王大川,刘惊涛.数字化设计技术在汽车新产品开发中的应用[A].中国计量测试学会.企业计量测试与质量管理——中国科协2005年学术年会论文集[C].中国计量测试学会:,2005:11.
[6]舒志强.汽车覆盖件模具数字化设计制造规范的研究[D].昆明理工大学,2011.
篇4
[关键词]MBD;数字化;装配
中图分类号:V262.4 文献标识码:A 文章编号:1009-914X(2017)12-0351-01
国外先进企业在20世纪80年代初开始大规模对飞机总装生产线进行技术改造,并围绕自动化和数字化制造技术和生产模式进行了各项技术的创新和流程再造。目前,自动化测量技术、数字化支撑定位技术、自动化加工技术、在线测量等先进技术,已经渗透到飞机制造和装配的各个环节,为航空制造技术的发展起到了重要作用。[1]
1、MBD技术条件下研究的优势
与传统的工程图纸相比,MBD技术拥有巨大的优势,应用在此基础上发挥最大的作用。主要有点:第一,MBD数据集是生产环节中的单一数据来源,避免出现数据不吻合、成本高的现象;第二,MBD技术可以展现的三维空间动态,直观的表达造型,尤其是一些有曲面的;第三,可以促进研制人员对设计的表达,可以让生产人员更加准确的把握设计的核心技术,更精确的制作;第四,可以更好的实现新型技术和产品的制造和加工;第五,MBD技术真正的实现了产品数字化定义,使产品在加工、装配、测量和检验的过程中实现高度的集成,生产人员即使在脱离图纸的情况下,也能进行产品的顺利制造和检验;第六,MBD技术借助CAD系统具备的隐藏、移动、旋转和缩放等功能,使得产品信息可以更加简洁、有效存取、管理和展示;第七,基于MBD技术的制造技术采用数字化研制体系,可以准确、高效的传递产品信息,可以避免在后期生产过程中生产人员阅读、输入产品信息的流程,减少产品研制过程中由于人为因素导致的操作失误,减少重复性劳动,提高整体生产效率;第八,在MBD技术条件下,应用研究可以给研发人员带来三维模型和二维数据对应,可以促进研发人员更准确的把握产品的信息。[2]
2、优化基于MBD的飞机数字化装配技术的几点建议
2.1、提升测量装配技术
结合MBD技术在航空制造行业的应用现状,数字化装配技术的广泛应用离不开测量监测的发展,在一定程度上提升数字化测量装配技术具有实质性作用。所谓MBD的数字化测量装配技术,即是通过相关检测设备和运行工具对飞机装配构件的面积形状、尺寸大小予以监测,如:电子经纬仪、数字化照相测量设备,按照设计标准试行的特殊装配技术。在飞机装配过程中,利用数字化测量装配技术和相关检测系统,将实际测量数据与MBD模型理论数据统一对比(保障数据的精确度),对不符合要求的进行自动化修改,控制空间装配位置和坐标范围的差异变化。[3]在某飞机装配现场中,通过AO装配指令的标准规划设计,将数字化测量装配技术应用于其中,通过中间协调环节和安装质量等判断依据,在原有基础上缩减产品生产周期和数据采集时间,为工装定检、零件设计等方法提供了更加便捷的条件,将数字化产品定义提升至100%功效,BASE坐标系统检测也发挥了独特优势,是完成实测值的对比分析后的准确度检验。
2.2、增强工艺设计体系
基于MBD三维数字化装配工艺设计过程中,对三维装配指令的监管方式较为严格,并始终连接机设计过程的整体发展中。为此,在制定数字化装配技术的设计方案中,重视工艺设计体系的不同构造阶段,对“装配路径设计、工艺优化模拟程序、制孔设备定位”等相关方面做好装配处理,安排装配内部零构建设计规划,以保障数字化装配仿真自动化系统。在达索公司的DELMIA软件平台开发中,利用三维数字化装配设计系统,通过DPM和DPE为其提供三维可视化操作环境,结合三维装配工艺体系的顶层设计原理,为产品规划设计、装配工艺提供选择路径,将现场制造实际问题发生概率缩减至最小,MBD模型数据的可靠性应用于产品实际制造中,以保障工艺设计和规划处理的可行性,这也是当前三维数字化装配技术的基本表征。
2.3、型材类零件外形
科技的进步带动数字化的进程,航天事业也积极引用数字化技术,提高了产品的质量和生产效率。在飞机零件制造过程中,经常会遇到一些曲面零件的加工,但是由于曲面的尺寸把握的高难度,时间生产中就会出现很多废品,浪费了不少资源。目前对这种曲面零件的制作还很难进行数控加工,因为很难找到零件的原点,定位的时候也比较困难,生产的进度很难掌控。因此在这类零件加工中还是建立传统的平面数模。这种带有曲面零件的外形样板的设计不同于以往的外形样板的设计,是在展开数字模型的基础上进行外形样板的设计。科研技术人员根据工程数据将数字模型展开,得到准确的数据,再进行重新建模的工作,外形样板的模型可以提高曲面零件的精确度。外形样板是加工全面零件的重要依据,各项数据的建立和表达都需要十分的准确和清晰,最大程度的节省飞机制造的周期,提高飞机产品出厂时的质量。
2.4、MBD的数字化测量装配技术
MBD技术的应用使得数字化测量装配检测技术得以广泛应用,就是运用先进的检测设备(如激光跟踪仪、电子经纬仪、数字照相测量设备以及室内 GPS等数字测量系统)对工装或装配件的形状和尺寸进行实时监测,并采取相应措施把工装形状与尺寸控制在设计要求范围内或对装配件进行直接装配的一种先进装配技术。在进行数字化测量装配过程中,激光跟踪仪等数字测量系统采集工装或者产品的形状与尺寸信息,并通过测量数据分析系统对测量数据与MBD数模中的理论数据进行分析比对。如果测量数据不符合理论数据的尺寸公差要求,则通过手动或自动方式调整装配对象空间位置,直到测量数据在理论数据的尺寸公差范围内。
2.5、应用制孔提取方式
据不完全数据统计,对机装配的实际运行过程,大型飞机构造中约有150~200万个连接件,机械链接为主要施行方式。目前,部分飞机产品模型设计采用CATIA模型文件,通过零件对象、模型文件等形式呈现,提升装配制孔孔位信息提取方式的实际应用效益,可完成产品设计过程中的元素对象整合(几何信息、文本信息),对产品设计元素互联技术也具备一定影响,可供相关产品编程工作重屠用。对机部件装配技术,制孔孔位信息提取方式通过内部深度、面积大小、孔口平滑等情况,为MBD数字化装配技术提拱了关键依据,深入到装配技术的实际应用中。
3、结语
总之,我国飞机装配技术起点低,基础薄弱,要最终实现数字化装配技术的发展,必须深入研究计算机控制、测量、在线检查、管理等多领域学科技术,经历从基础技术研究和应用到模块化单元技术研究应用,再到数字化装配技术集成研究应用三个阶段,走自主研发之路。只有这样,才能使我国飞机装配技术研究重点突出、成本可控、易于试验和实现,从而迅速转化成实用的生产技术,支持我国数字化装配和制造技术的发展,提高产品质量和企业竞争力。
参考文献
[1] 梅中义.基于MBD的飞机数字化装配技术[J].航空制造技术,2010,18:42-45.
篇5
关键词 数字化协同设计;PDM;应用
中图分类号 TP3 文献标识码 A 文章编号 2095-6363(2015)09-0036-01
随着计算机和网络技术的发展,在设计领域,数字化协同设计将是发展趋势,也是互联网+的一种实现。PDM则是数字化协同设计的重要实现方法。PDM发展较早,它与现代互联网技术结合,可以作为数字化协同设计的重要实现手段,为数字化协同设计提供有力的技术支持,保证数字化协同设计取得积极效果。基于这一认识,我们应认真分析PDM与数字化协同设计的概念和内容,并深入探讨PDM在数字化协同设计中的应用,重点从构建PDM数据库和构建新的产品开发平台两个方面入手,分析PDM在数字化协同设计中的应用效果,为数字化协同设计提供有力支持。
1 数字化协同设计和PDM的主要概念和内容
数字化协同设计DCD(Digital Cooperative Design)是由计算机图形学、远程会议系统、并行工程、多媒体技术、互联网技术、图形与图形通信和协作信息管理系统等多学科知识集成的系统技术。协同设计从根本上改变了传统单机作业的设计方式,在分布式协同设计环境下,设计人员可以在产品开发的过程中寻找合作,借助于系统提供的功能共同完成设计。
PDM(Product Data Management,产品数据管理)技术出现于八十年代初期,大多是由各CAD供应商推出的配合CAD产品的系统,主要局限在工程图纸的管理,解决了大量工程图纸、技术文档以及CAD文件的计算机管理问题。这是第一代PDM产品。随着PDM技术的发展,目前PDM产品已经发展到了第三代,无论是技术成熟度还是对数字化协同设计的支持,都比第一代产品有明显的优势。因此,正确分析PDM技术,并掌握PDM技术,对推动数字化协同设计发展和提高设计质量具有重要作用。由此可见,正确分析数字化协同设计和PDM技术的概念和内容,对推动PDM在数字化协同设计中的应用具有重要作用。
2 PDM在数字化协同设计中的应用,应构建PDM数据库
PDM作为所有产品知识的唯一数据源,提供了丰富的知识查询手段,特别是对部件和文档的分类管理,使PDM 真正成为了一个能够读解数据含义的业务知识系统,使得PDM远远超出了普通的文档服务器(File Server or FTP)以及VSS这样的协同控制领域,成为最接近知识管理的应用系统。具体应从以下几个方面
入手。
1)将PDM作为搭建数据库的主要技术。考虑到PDM技术的优越性,以及PDM技术对数字化协同设计的作用,在数字化协同设计过程中,积极构建PDM数据库是十分重要的。结合当前数字化协同设计实际,将PDM作为搭建数据库的主要技术,对提高数据库构建质量和满足数字化协同设计需要,具有重要作用。因此,应掌握PDM技术特点,并根据数字化协同设计的实际需要,利用PDM技术,构建数字化协同设计所需的数据库。
2)根据数字化协同设计的现实需要,构建PDM数据库。在了解了PDM技术之后,我们应认真分析数字化协同设计的需求,并根据数字化协同设计的现实特点,利用PDM技术构建数据库,将该数据库作为数字化协同设计过程中的重要数据支撑手段,提高PDM的应用性,为数字化协同设计提供更加完善的数据支撑,最大程度的满足数字化协同设计需要,为数字化协同设计提供有力的支持。
3)把握正确的构建原则,提高数据库的实用性。鉴于PDM技术的优点,以及PDM技术在构建数据库中的作用,在构建数据库过程中,我们应把握正确的构建原则,即把握准确性原则,做好技术选择,把握全面性原则,保证数据库能够起到积极作用,把握有效性原则,保证数据库在实际使用中能够达到预期目的,提高数字化协同设计的整体质量。因此,把握正确的构建原则,并提高数据库的实用性,对PDM技术应用具有重要作用。
3 PDM在数字化协同设计中的应用,应构建新的产品开发平台
PDM建立了一个产品开发的平台,使企业能够运用并行工程(Concurrent Engineering)的原理,使产品在设计阶段就包含产品相关的各个部门,如设计、工艺、制造、采购等,能够让各个部门协同工作。设计人员在初期就可以选用满足要求并且成本低的零部件,产品设计的缺陷(无论是影响产品性能,还是影响产品的可制造性)也可以被及早发现,从而减少了工程变更的次数,缩短厂产品的研发时间。基于PDM的这一优势,PDM在数字化协同设计中的应用,应构建新的产品开发平台。具体应从以下几个方面入手。
1)根据实际需要,构建新的产品开发平台。在PDM技术应用过程中,考虑到PDM对数字化协同设计的促进,构建新的产品开发平台,是解决数字化协同设计现存问题的重要手段。因此,PDM技术在具体应用过程中,应根据实际需要,构建全面新颖的产品开发平台,提高其针对性。
2)在产品开发平台的构建中,以满足数字化协同设计需求为准。为了保证产品开发平台的构建取得实效,在利用PDM技术构建产品开发平台过程中,应正确分析数字化协同设计的需求,并以满足实际需求为准,做好产品开发平台的构建,提供数字化协同设计的整体质量,提高PDM的应用效果。
3)优化设计流程,提高产品设计的合理性。构建新的产品开发平台之后,应将主要精力放在设计流程的优化上,通过对设计流程的优化,使产品设计的合理性得到全面提高,进而满足数字化协同设计的需要,最终达到提高数字化协同设计效果的目的,为数字化协同设计提供有力支持。
4 结论
通过本文的分析可知,PDM技术可以作为数字化协同设计的重要手段,为数字化协同设计提供有力的技术支持,保证数字化协同设计取得积极效果。基于这一认识,我们应认真分析PDM与数字化协同设计的概念和内容,并深入探讨PDM在数字化协同设计中的应用,重点从构建PDM数据库和构建新的产品开发平台两个方面入手,分析PDM在数字化协同设计中的应用效果,为数字化协同设计提供有力支持。
参考文献
[1]张新访.工程数据库系统的版本管理模型[J].华中理工大学学报,2014(2).
[2]曹健,吴瑞珉,张友良.CSCW环境下协同设计的多版本问题及其管理策略[J].计算机工程与应用,2014(11).
[3]于源,卢军敏,王小椿.基于多色图理论的PDM版本管理模型的研究[J].计算机辅助设计与图形学学报,2013(12).
[4]于戈,宋宝燕,田文虎,等.现代集成制造中的工作流管理技术研究[J].计算机集成制造系统-CIMS,2014(6).
篇6
关键词:数字化;制造技术;汽车;质量管理
1数字化制造技术的内容
通常情况下,认为数字化制造技术的技术基础是计算机的虚拟制造,利用虚拟的功能,在没有制作样品的情况下,对产品的设计、制造、安装、质量检测等阶段进行模拟,降低产品从设计到制造之间的不确定性[1]。在计算机的模拟技术中,生产制造的过程在数字空间压缩和提前,并得到检验,能够提前发现在实际的生产制造中可能会出现的问题,并及时改善,使实际的生产过程和生产系统得到优化,在节约研发费用和研发时间的基础上提高设计的成功率。
2数字化制造技术的具体工作流程
数字化工厂系统是数字化制造技术在工艺领域的综合运用,也为汽车的供应商和制造商提供一个共享工艺信息的开放平台,企业在这个平台上能够实现制造各个流程的模拟,并且共享制造的信息,顺利制造产品。数字化制造技术的具体流程包括:①从设计部门获取产品(汽车)的数据;②从工装工具和汽车生产部门获得资源数据;③对制造工艺进行规划;④对制造工艺进行验证和仿真;⑤客户化输出。
3数字化制造技术在汽车制造中的实践
数字化制造技术从汽车的开发到质量检测都能够模拟,能够大幅度提高汽车的开发质量,因而得到在汽车制造中得到应用普及。数字化制造技术在汽车制造流程中的应用包括了质量管理、冲压、白车身、涂装、总装、动力总成。1)在冲压中的应用。仿真冲压生产线能够分析动态力、材料流,检查模具干涉,从而对汽车的设计加以验证。其主要优点是:利用3D在设计阶段就能够更好地沟通,检查早期设计错误、优化运动学、工艺设计同步进行、降低工作时间。2)在白车身中的应用。汽车制造中白车身的制造主要是焊装,通过自动分配焊点、自动选择焊枪、可达性分析、离线编程等工具的使用,优化管理白车身的工艺流程(设计、仿真、优化、方案验证),并将白车身制造过程中的信息及时更新、共享,加强生产线供应商和主机厂的交流合作。3)在涂装中的应用。仿真涂装生产线,利用可达性分析、离线编程、标准工序等工具动态分析涂装流程,并对多种概率分布,比如正态、经验分布做统计分析,输出相关的统计分析图,利用这些分析图优化设计方案。4)在总装中的应用。数字制造技术在总装生产线上主要是对生产工艺进行规划,包括定义装配操作和装配次序,分配需要装配的零部件。在总装中可以利用的技术有三维仿真分析、静动态干涉分析、装配间隙分析、支持生产装配分析、工具可达性分析、装配可视性分析等等,利用仿真人工装配操作优化操作的场地和装配循环的时间,并且制定方案设计和排产计划[2]。5)质量管理。利用数字制造技术对汽车制造的质量进行管理,在设计上优化公差和装配方案,并以定义的质量特征为依据;在离线的状态下生产测量程序,供数控机床或者是坐标测量机使用。对比CAD模型的尺寸信息,分析和优化汽车的质量控制。
4数字化制造技术在汽车质量管理中的应用
车身的质量是汽车质量控制的重点内容,其中包括了钣金连接强度、内外观性能、装配难易性等,而这些又都和制造的精度有着密切关系[3]。控制汽车制造精度技术控制汽车各种尺寸,因此需要控制和管理尺寸偏差。汽车的机构比较复杂,一般只看车身装配就包括了四百个左右薄板冲压零件、一百个左右装配站、两百个左右夹具和四五千个焊点,还包括内外饰件,过多的零件会积累尺寸偏差,必须在汽车质量控制的全过程对尺寸偏差实施管控。1)设计阶段。在数字化制造技术中有一种叫做产品保质设计的设计方法,利用仿真分析工具模拟原型,并将后续的制造问题也考虑在设计当中,优化设计方案和设计工艺。在设计中利用的仿真分析工具是3D尺寸链和仿真产品,在其制造和装配的过程中对产品的尺寸偏差进行预测,并分析导致偏差的原因,判断设计的尺寸能不能够达到要求,如果不能达到要求,就会给出整改方案。2)制造阶段。在加工制造汽车的过程中,对质量进行控制的是CMM和CNC,CMM是指数字化的设置、仿真与模拟三坐标测量仪,而CNC是指数控加工设备,利用这两个设备做到制造阶段的离线编程和在线监测。3)汽车生产阶段。跟踪、分析和从工厂各类测量设备中获取的生产质量信息,利用对数据的深度关联分析找出能够解决问题的方案,在降低成本的同时提高汽车的质量和生产效率。
5结束语
在汽车质量管理中,数字化制造技术是未来汽车行业会普遍应用的技术,也是汽车行业在市场竞争和科技发展下的必然选择。只有融合了高科技技术的汽车制造,才能够满足人们对汽车质量的要求,保持汽车行业的健康可持续发展。
参考文献:
[1]黄川.全面质量管理方法在汽车制造业的运用——以江铃汽车全面质量管理运用为例[J].南方农机,2014(6):9-11.
[2]周会霞,孙会玲.汽车质量管理中数字化制造技术的实践[J].科研,2016(8):82.
篇7
[关键词]汽车质量管理;数字化;制造技术
中图分类号:TV388 文献标识码:A 文章编号:1009-914X(2017)06-0148-01
数字化制造技术可以实现设计、生产和管理等一系列的模拟,对产品生产的各个环节进行数字化的监督和控制,并对其中出现的问题进行反馈,这样可以全面的对产品进行控制,保证产品按照科学的管理流程进行生产,从而提升产品生产的质量。汽车作为机械化水平要求较高的行业,通过数字化的管理流程,可以将各个环节进行更加规范化的处理,提升汽车的整体生产质量。
一、数字化制造技术在汽车质量控制中的流程
在进行汽车质量控制和管理的过程中,采用数字化技术首先从设计部门取得产品设计和生产的各种资料,包括汽车各个结构之间的连接、尺寸和进行组装的过程等,然后自动化系统会对生产的环境进行考察,模拟实际生产环境,做出适当的反映,一旦出现问题及时的进行反馈,防止出现较多的问题。在基本的审核结束之后,数字化系统通过生产车间活动各种组装设备的数据以及相应的工作流程,并通^计算机模拟建立相应的流水线,对实际的生产过程进行模拟,制造出样品报表,得出制造结果。在这项工作结束之后,自动化系统会对产品的质量进行检测,在虚拟的环境下对产品的实际使用情况以及后续的维修保养情况进行分析,形成模拟环境,这样可以更好的对产品的质量进行控制。最后,在这些步骤结束之后,数字化系统还可以对产品的实际使用方式进行培训,并将整体的数据信息输入到分析系统中,对数据进行更加详细的分析,从而制定更加精细化数据分析报告,提升汽车生产制造的质量。
二、汽车质量管理中数字化制造技术的运用
数字化制造技术的出现,使得汽车各个部件的质量得到有效的保障,质量也得到了更好的控制,并且降低了设计和生产的成本,提升了汽车研发的效率,因此数字化制造技术在汽车制造中的应用是非常广泛的,具体包括:
(一)在汽车设计中的应用汽车产品进行设计的过程中各个零件之间需要进行匹配,如果采用传统的管理方式,耗费了大量的时间,而采用数字化技术可以对模具进行仿真处理,这样就可以对冲床进行各种动态分析,并对运动矢量进行控制,将设计的科学性进行验证。工艺部门根据BOM建立各零件的制造工艺和装配件的装配工艺,以及加工制造过程中应使用的工装、模具,然后通过说数字化的制造技术,对据BOM建立各零件的制造工艺和装配件的装配工艺进行检验,发现其中的问题及时进行改进,从而提升汽车在设计中整体质量,将现代化的管理和汽车设计结合起来,促进汽车制造业的进步。
(二)在汽车焊接生产中的应用
汽车生产过程中,焊接车身的工艺是整个汽车生产的关键部分,需要工艺准确,通过数字化技术也可以将这方面的生产过程进行模拟,对整个生产线进行仿真,将所有的焊点、焊枪、机械手进行编号,并输入到系统中,这样就可以在计算机技术下对整体的流水线进行模拟,在计算机环境下对数据进行观察,发现问题及时进行优化,不断的解决流水线中可能出现的问题,从而将整个生产线进行科学的管理,保证生产质量,不会在焊接中出现突发的情况,保证整体的工艺质量水平。
(三)在汽车涂装中的应用
涂装是工艺是汽车加工过程中重要的环节,涂装对前处理、电泳、喷涂、面漆等工序的参数控制要求非常高。在进行涂装的过程中借助数字化技术可以将涂装的整体生产速度进行提升及过程工艺参数有效控制。传统的涂装工艺容易出现在因温度、时间等不足导致油漆质量问题以及油漆喷涂不均等问题发生。因此采用数字化的手段进行模拟可以对喷涂进行更加科学化的处理,提升涂装过程的工艺质量,并且在进行喷涂过程中可以针对不同的车型采用多种喷涂技术进行模拟,提升喷涂技术的科学质量,增加实际的使用效果。
(四)在汽车总装中的应用
汽车总装在编排过程中按照先后顺序,由内到外,进行逐层覆盖性装配。在过程中,对于每个工段装配覆盖件,必须要考虑过程装配质量,如同系统的零部件在同一组装配,对于整车物料传统上会归类为内饰件等,通过数字化技术进行零部件系统细化分组与ERP、MES系统结合。在下单生产任务单后,系统自动根据BOM配备物料清单,将系统零部件安排在同一地点装配,在装配过程中避免错漏装发生,同时对每个零部件进行编号管理,确保整车与零部件追溯性。通过数字化技术的运营可以实现对总装过程质量问题实时监控,对每个工序质量问题实现分类统计及自动形成质量报表,为现场质量改进提供第一手数据。从而全面的将汽车总装的质量进行提升,使得整体的管理更加的优化,保证整车出厂质量。
三、汽车质量管理中数字化制造技术发展前景
目前数字化技术在汽车质量控制中使用逐渐得到普及,并且贯穿到从生产、制造到销售的各个方面,但是具体的使用中还是存在一些技术不成熟的情况,例如虽然在生产过程中仅仅是对零件组成配比进行分析,但是元件组合之后的一些数据对比不清晰。在进行汽车装配的过程中虽然模拟了车门,但是对于前车灯以及挡风板没有进行模拟。因此今后的发展中应该对这方面的问题进行改进,采用数据化技术对汽车生产的各个步骤进行全面的分析。企业在进行数字化发展的过程中也应该充分的重视技术革新的重要性,积极的引进新的技术设备,将其作为企业发展战略,制定适宜的中长期计划和短期计划,将理论和实践紧密的结合起来,由点到面的对技术进行提升,并积极的进行技术创新,从投入人力最多工序最复杂的区域发展,让节省成本起到立竿见影效果,为企业发展数字化树立强心剂。
结束语
汽车质量控制中的数字化制造技术在实际使用中取得较好的成果,提升了汽车各个环节的质量,由此可见数字化技术应用到汽车质量管理中是必然趋势,也是目前应对汽车市场激烈竞争的必然选择。因此企业加快数字化工厂建设,不断的提升自身的科技能力,这样才能在激烈的环境下更好的生存。
参考文献
[1] 刘润雪.汽车质量管理中数字化制造技术的运用分析[J].经营管理者,2015,(12):228-.
[2] 王燕萍.数字化制造技术在汽车质量管理中的应用[J].汽车工艺与材料,2012,(7):12-16.
[3] 刘润雪,薛娅坤.汽车质量管理中数字化制造技术的运用分析[J].经营管理者,2015,12:228.
篇8
国内的飞机数字化装配技术研究和应用目前尚处于探索和预研阶段,以陕西飞机制造公司为代表的飞机制造业仍然沿用传统的装配方法和手段,传统装配设计方法存在如下问题:
(1)飞机装配工艺设计仍然使用传统的二维方式表达
传统的工艺设计是由工艺设计人员在头脑中首先想象出三维装配空间、设计装配顺序,并用平面(二维)方式表述。其设计质量完全取决于工艺设计人员的技术水平和工作经验,其次是装配工人需要根据工艺设计人员编发的文件及二维工程图纸理解装配顺序、装配要求,并在大脑中再次构建三维装配过程,这样易产生理解的二异性,造成装配错误。
(2)无法满足三维数字化条件下装配工艺设计要求
目前存在的工艺设计系统中制造资源采取的传统二维描述,这导致其工艺设计过程对细节设计淡化,对制造资源及装配工艺知识描述比较弱,同时不能充分利用上游三维CAD数据,难以实现工艺设计的继承性、规范性,标准化和最优化。
(3)飞机的装配周期不易保证
工艺设计环境不具备三维工艺验证能力,致使装配中是否干涉,装配顺序是否合理,工艺装备是否满足需要、操作空间是否开敞等一系列问题在生产试制阶段才能暴露出来。任何一个环节出现问题,都会影响飞机研制的进度和质量。
(4)缺少典型示教的三维动态装配过程,不便于装配工人使用及理解。
为了解决上述工艺设计问题,我们选用某型机部件进行三维数字化装配工艺设计与装配仿真、优化分析技术应用研究,为建立飞机数字化制造体系积累技术经验。基于模型的数字产品定义的数字化制造流程
国内飞机设计将采用基于模型的产品数字化定义(griD,ModelBasedDefinition)技术,其特点是:产品设计不再发放传统的二维图纸,而是采用三维数字化模型作为飞机零件制造、部件装配的依据。传统的二维工艺设计模式已经不能适应全三维设计要求。随着现代计算机技术、网络技术、工艺设计与数字化仿真软件技术的发展以及协同平台的建立。为三维数字化装配工艺设计和并行工程奠定了基础。
图1具体描述了飞机研制过程中基于模型的数字产品定义的数字化制造流程:
飞机的研制必须经历产品设计、工艺设计。工装设计、产品制造和检验检测等5个主要环节,并在产品制造和检验检测环节中,由三维设计数模分别派生出三维工艺数模和检验数模。
1)在工艺设计过程中,工艺部门依据设计部门按基线预发放的三维设计数模进行工艺分析,并向设计部门反馈工艺审查意见依据设计部门正式发放的EBOM(产品设计结构)和三维设计数模,建立PBOM(产品工艺结构),制定装配工艺协调方案,划分工艺分离面,进行全机装配工艺仿真,最终形成经过装配仿真验证的MBOM(产品制造结构)顶层结构,将此MBOM发放到下游的工装设计、专业制造和检验检测等部门。
2)在工装设计过程中,工装设计制造部门依据产品制造部门提出的工装订货单,三维工艺数模、产品制造工艺方案和设计部门的三维产品设计数模进行工装设计;依据三维工装设计数模进行AO(Assembly Order)的编制,并进行装配工装的装配仿真和工装数控程序的编制,最终完成工装的制造和自检。
3)在产品制造过程中,产品制造部门依据设计部门正式发放的EBOM和三维设计数模,工艺部门的PBOM建立三维工艺数模,进行零件的材料属性仿真和部件几何仿真,编制AO(装配大纲)和FO(制造大纲),编制数控程序,最终完成零件的加工,部件的装配以及自检。
4)在产品检验检测过程中,检验检测部门依据设计部门正式发放的EBOM,三维设计数模,三维工装设计数模编制检测计划,计算测量数据,完成零部件和工装的检测。
5)工装模型、检验模型以及在数字化装配工艺模拟仿真过程中生成的三维工艺图解和仿真视频数据,通过网络传输到生产现场,为现场工人施工和检验提供三维数字依据。陕飞公司基于DELMIA的某飞机三维数字
化装配工艺流程
DELMIA软件是达索公司的一款可针对飞机装配中的工艺设计及按其设计要求进行装配仿真验证的软件,它给工艺工程师、工装设计师提供了与产品设计师共同的可视化交流和怫同工作平台,使制造部门的工作人员可以及早的参与到产品的研发中去,与设计人员并行的开展工作,从而使得在设计过程中能够充分的考虑零件的工艺特性,部件的可装配性和产品的可维护性等因素,帮助企业实现“面向制造的设计”和“面向维护的设计”。
陕西飞机制造公司自2010年开始在某型飞机上全面使用DELMIA软件进行了的产品定义、组件的划分、全三维工艺规划,装配仿真与优化、人机工程仿真与分析、三维工作指令的发放以及各种报表的输出等功能模块。本文主要就DELMIA技术在陕飞某飞机中具体应用的工作流程进行阐释。
第一步:PBOM的编制及各种数据的准备
(1)在协同平台上根据EBOM进行PBOM的编制;
(2)利用产品及资源的CATLAV5模型生成三维数字化装配工艺设计DELMIA软件所需用到的CGR模型及smgxml模型,并将这些格式的模型存放在指定位置,以备导入数据时读取。
第二步:PBOM数据的导入
将来自数字化协同平台的XML格式的PBOM通过二次开发的接口程序导入到DELMM的DPE软件模块中,构建产品的结构树,同时使得三维数模数据(属性)导入到产品节点下。
第三步:组件、工艺分离面的划分
完成数据导入工作后,在DELMIA软件的DPE模块中,根据生产批量、装配能力进行工艺分离划面,并结合EBOM确定各工艺装配部件、段件需要装配的零、组件项目,构建工艺大部件模型。在工艺分离面划分的基础上,对每个工艺大部件进行初步装配流程设计,划分装配工位,确定在每个工位上装配的零组件项目,在三维数字化设计环境下构建各装配的工艺模型。确定装配工艺基准和装配定位方法,制定整个装配体各工位之间的装配流程图。
第四步:MBOM的编制
根据组件和工艺分离面的划分,完成MBOM的建立,并
将每个零件的三维数模(立体图)与产品的结构树相关联,在工位划分的基础上,依据段件装配工艺模型在三维数字化环境下进一步进行各工位内的装配过程设计,确定每个工位内的段件装配工艺模型零组件的装配顺序,并定义装配过程对应的AO号。并将AO需要装配的零组件项目及工作的内容制定反映工位内各AO关系的装配流程上。
第五步:详细的装配工艺规划
在AO划分基础上,依据段件装配工艺模型进行详细的装配工艺过程设计,定义该过程所需要的标准件,确定该装配工艺过程零组件,标准件、辅助材料等装配顺序,明确装配工艺方法、装配步骤并选定该装配过程所需要的工装、夹具,工具、辅助材料等一系列的制造资源,形成用于指导生产的AO。在这里将零件和工步关联,将工装与工位关联。
第六步:装配仿真验证与优化
在三维数字化虚拟装配环境下,建立厂房、地面、起吊设备等三维制造资源模型,将已经建立的各装配工艺模型和装配型架、工作平台、夹具等制造资源三维模型放入厂房中,按照确定的装配流程进行全面的工艺布局设计,并仿真生产中的物流《如图2)。在DELMIA的DPM软件模块中,依据设计好的装配工艺流程对每个零件、成品和组件进行移动、定位、夹紧和装配操作,在装配的过程中进行零件与零件、零件与工装的干涉检查,当系统发现存在干涉情况时报警,并会显示干涉区域和干涉量,以帮助工艺设计人员查找和分析。
第七步:WKC可视化文件编制
按照优化后的工艺规划设计结果进入DELMM系统的WKC模块中应用Composer软件中进行工步的视图设计,包括装配尺寸标注、制孔信息、定位信息和工装使用信息等装配信息备注,完成工步级装配可视化文档编制(见图3)。
第八步:AO内容及可视化文件输出与管理
通过二次开发的程序将DELMIA中设计完成的AO内容提取到CAPP中的相应模板中,包括AO内容页,辅材配套表、标准件配套表,零件配套表等文档信息,同时输出仿真视频和工步视图,将上述各种配套表和内容页通过协同平台进行审签发放,并通过MES系统实现现场可视化装配(见图4)。
三维数字化装配设计与仿真优势
通过三维数字化虚拟装配工艺设计和装配过程仿真,发现三维数字化装配工艺设计和装配过程仿真系统在数字化制造中有以下优势:
(1)在产品实际(实物)装配之前,通过装配过程仿真,可及时地发现产品设计、工艺设计,工装设计存在的问题,有效地减少装配缺陷和产品的故障率,减少因装配干涉等问题而进行的重新设计和工程更改。因此,保证了产品装配的质量。
(2)装配仿真过程产生的图片,视频录像直观地演示装配仿真,使装配工人更容易理解装配工艺,减少了装配过程反复,减少了人为差错。
(3)装配仿真过程产生的图片、视频录像可用于对维修人员的培训。
(4)对新产品的开发,通过三维数字化装配工艺设计与仿真,减少了技术决策风险,降低了技术协调成本。
(5)通过三维数字化装配工艺设计与仿真,进行工时分析、车间三维工艺布局、资源规划和评估,有利于提高生产计划的准确度。
(6)可提高企业在产品开发研制方面的快速应变能力,以适应激烈的市场竞争和不同的用户需求。
篇9
(一)操作中的“数字化”
Pro/E在产品开发设计时主要通过参数化来实现。通过几何约束和尺寸约束,把握设计对象造型模块的特征与关联,有效地控制了模型修改的一致性和造型风格的统一性。主要有两种操作类型:一是尺寸约束参数化,对形状特征进行尺寸约束;二是定位约束参数化,即对特征进行定位约束。
(二)数字化设计制造
自从数字计算机在20世纪40年代诞生以来,就改变了过去图纸、模型式的制造方式,利用CAD、CAM等技术,实现了无图纸的计算机辅助设计,被称之为数字化设计。随之,信息集成的数字化设计产品与多功能数控机床、机器人化的生产制造设备等信息并联,使设计的产品能被快速加工成型,这个过程被称为数字化制造。数字化制造实际上就是在对制造过程进行数字化的描述中建立数字空间,并在其中完成产品制造的过程。2014年10月8日中国新闻网刊载了一条新闻:据《纽约每日新闻》报道,世界首款3D打印汽车终成现实……它的制作周期为44个小时,并且最高时速可以达到80公里每小时。中国3D打印技术产业联盟执行理事长罗军在青岛第二届世界3D打印技术产业大会会上表示:“近期,教育部正在制订方案,让3D打印机走进学校,促进3D打印教育普及。同时,科技部、工信部也正在探讨3D打印产业化问题。”诸多实例表明,3D打印技术已然进入并应用到了生产制造领域。国务院参事、科技部原副部长刘燕华对相关媒体也表示,3D打印代表了制造业的数字化。综上所述,数字化设计已经是数字化制造中的一个设计环节,在工业制造业的大系统中被称为数字化设计制造技术。Pro/E操作中的“数字化”主导设计经过机床系统的处理后生成程序段,进入机床成型或3D打印快速成型,即完成了数字化设计制造。
二、Pro/E建模与辅助设计
Pro/E作为美国PTC公司推出的软件,目前是最普及的三维CAD/CAM/CAE应用软件之一,经历几十年的发展,现已成为一个全方位的产品开发软件,集合了众多强大的功能,如草绘设计、产品组件设计、产品造型设计等。它将设计造型的特征以全参数化的方式在其三维建模系统之中运算,形成了其特有的全参数化三维建模功能。利用Pro/E进行设计实践时,常见模型利用软件自带的功能即可组合形成,不规则的或造型较复杂的造型则需要用二维草绘的方式来完成,具体是建曲线轮廓,再由曲线轮廓创建曲面,再根据造型旋转曲面,或切割曲面等方式来完成;结构更复杂的造型,则需要进行建模前的结构分析、特征分解等工作,将这些复杂造型解构成为单一的造型,按“零件”来进行造型建模,再分析这些零件间的位置关联关系,进行组装装配完成建模工作,最后转化为实体模型。利用曲线轮廓特征、拉伸、拉伸加厚、实体切除等方式的油壶模型。现代制造企业的竞争,是产品和设计的竞争。企业产品的开发越来越依靠现代化的产品设计方法和技术手段。现代产品设计方法是以电子计算机为手段,运用工程设计的新理论和新方法,使计算结果达到最优化,使设计过程实现高效化和自动化。以此来看,行业发展的现状使产品设计师必须熟练掌握Pro/E等计算机辅助设计的能力,便于提高产品设计开发的周期、节约设计成本等。
三、Pro/E设计创作与案例展示
篇10
关键词:数字化;设计技术;机械设计;应用分析
在这个经济迅速发展的时代,经济效益和社会效益是企业发展的根本目标,企业发展尤为重视效益问题。为创造企业经济利益,机械设计技术是企业降低生产成本、提高现代机械设备的安全性与稳定性方面不可忽视的重要措施。在进行机械设计工作时,适当的采取数字化技术能够实现设计技术的突破性进展,使得机械设备运行的安全性与可靠性得到大大的加强,另一方面也可以提高机械的工作效率,使得企业实现经济效益与社会效益的双收。数字化设计技术是信息科技时代重要的科学技术之一,它目前在机械设计方面的应用受到人们广泛的关注,虽然暂时在于机械设计工作的融合也出现了一些亟待解决的问题,但是随着科技人员工作经验的增加以及研究的深入,相信在未来数字化技术在机械设计方面的应用会达到炉火纯青的地步。
1简要介绍数字化设计技术
在党和政府的政策指导下,我国的科技创新力度不断加大幅度,机械设备在科学技术的支持下发生了翻天覆地的变化,大型化、自动化、高精度化的机械设备不断涌现。数字化设计技术的出现,使得机械设备更加如虎添翼,设备结构复杂化,但是机械的生产规模和运行效率也更加的高效。
1.1数字化设计技术的内涵分析
数字化设计技术是指将计算机技术应用于产品设计领域,属于计算机设计技术的一种辅助。它最开始是以计算机辅助设计,即CAD的形式显现出来的,在科技水平不断提升的带动下,数字化设计技术越来越成熟,它在越来越多的行业受到人们的欢迎,在机械设计方面的优势更为明显。以前设计师在进行机械相关的设计工作时都离不开实物模型的帮助,但是在数字化设计技术出现之后,它可以利用计算机技术建立数字化的模型,从而降低实物模型的使用频率,提高了工作效率。
1.2数字化设计技术特征分析
数字化设计技术最为重要的特征就是产品的定义模型较为统一。任何一个产品都有生命周期,如开发期、成长期、成熟期、衰退期等等,数字化设计技术对于产品的每个生命周期都有相关的设计,都是统一运行的。这种统一的设计模式大大降低了产品设计的繁琐程度,使得产品设计流程更为简单化。因为传统的设计模式会针对处于不同生命周期的产品采取不同的设计方法,使得产品设计变得复杂,而且也容易丢失数据。另外,数字化设计技术可以实现并行设计。传统的产品设计讲究的是设计的切合性,产品的生产制造程序与包装维修程序需要达到高度的一致性,因此同一产品的设计基本上都是由同一设计团队完成。因此,传统的设计方法对于设计师的依赖性较强,一旦设计团队出现分裂问题,则产品的设计链条很容易受到影响,从而产品的质量也难以保证。但是数字化的设计技术可以实现并行设计,简单而言,就是多个设计团队可以在同一时间内,在不同的地方,共同设计某一产品。这样一来,不仅仅是提高了机械的生产效率,另一方面也能够大大的缩短相关产品的生产周期,降低了运行成本。
2数字化设计技术在机械设计中的应用分析
近几年,我国机械制造引进很多的国外先进的技术、管理方式和装备,尤其是进入21世纪以后,对数字化设计技术的充分使用使得机械的装备水平得到很大的改善。这样才能达到提升机械设备的安全性和稳定性、降低生产成本的目的,间接地为企业创造出更多的经济利益。
2.1数字化设计技术在农业机械设计中的应用
我国的农业发展历史悠久,随着经济水平的不断提高,农业种植与收割也不断地由手工化向机械化转变。农机设备朝着一体化、高速化、微电子化的方向发展,设备的操作也越来越容易,同时农业机械的设计也越来越数字化。近年来,数字化设计技术常常应用于农业机械设计工作,农业机械设计人员在进行机械设计工作时,会借助计算机,运用计算机技术来生成部分辅的设计,或者是利用计算机的预测功能来预测产品的性能,经过不断的虚拟运作,不断地调试,从而设计出最优的农业机械。另外,农业机械设计人员还可以根据不同地域的地形、地貌以及农作物特征来模拟出农业机械运作的效果,经过修正与开发阶段,可以设计出符合各地区农业生产特色的农业机械,从而开发出其他的子功能,进而明确各部分子功能之间的关系。
2.2数字化设计技术在汽车控制系统设计中的应用
设计配电时,汽车机械的可靠性和负荷容量的需求是不可以忽视的,在利用数字化设计技术时一定要注意到这两个方面的参数。数字化设计技术的节能设计在各个方面都对人们产生着很大的影响,在设计的过程中,我们也应该考虑到节能减排的因素,要实现最有设计,使得资源的利用达到最大化,要尽可能的避免对环境的污染。因此对自动化技术在汽车机械控制系统中等的节能设计必须进行更加深入地研究,这样不仅为节能环保做出了巨大贡献,还可以为企业带来经济收益,促进技术的发展和创新。
3结语
科学技术的进步造就数字化设计技术,而数字化设计技术在发展与完善的过程当中,也带动科学技术进一步的发展,二者相互影响,相互促进。在实际发展中,工作人员应该不断地提升原有的工作效率,将产品的质量控制到位。数字化设计技术是新发展起来的学科,它与工业方面的生产以及人们的生活都有密切的关系。数字化设计技术无疑是现阶段机械设计工作最得力的助手,企业因该合理的配置资源,积极的引进先进的数字化设计技术。
作者:高刚毅 单位:荆楚理工学院机械工程学院
参考文献:
[1]阎楚良,杨方飞,张书明.数字化设计技术及其在农业机械设计中的应用[J].农业机械学报,2004(06).