农业物联网发展现状范文

时间:2023-07-19 17:38:10

导语:如何才能写好一篇农业物联网发展现状,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

农业物联网发展现状

篇1

关键词:山东省;物联网产业;建议和策略

中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2015)02-0262-02

Abstract:With the development of new and new technology, the Internet of things industry is becoming more and more popular, and has gradually become the hot spots of social research. This combination of Internet of things industry in Shandong Province Development of the actual situation, focusing on analysis of the networking industry development present situation, studies the problems existing in the development of the networking industry in Shandong Province, finally put forward on speeding up the suggestions and strategies to the development of Internet of things industry in Shandong Province.

Key words: shandong province; IOT; strategy

物联网(Internet Of Things, IOT)是利用底层传感设备、射频识别设备、全球定位系统、红外感应技术等,通过短距离无线网络、互联网等技术把现实物品和计算机网络结合起来,以实现远程控制,达到智能化管理的目的。物联网可以说是继计算机和互联网之后的第三次信息革命浪潮,物联网产业发展必将带动通信服务产业、嵌入式系统产业、电子信息产业、软件服务和外包产业等快速发展,对于中国政治、经济、文化等各方面具有重大意义。

物联网知识体系庞大,涉及到的产业也较多,主要包括网络通信产业、电子信息产业、嵌入式产业、智能计算等多技术领域产业。物联网技术主要应用于物流交通运输、农业精细化种植、城市智能化管理、工业精准控制、公共信息服务智能平台等多领域,通过物联网技术可以大幅度提高管理效率,降低劳动成本。目前,全球各国也在纷纷制定物联网发展规划。早在2009年初,美国奥巴马总统就提出“智慧地球”这一概念,总理在无锡提出了“感知中国”,紧接着日本、欧盟等国家也纷纷提出发展物联网产业,并做出具体规划。中国政府非常重视物联网产业发展,在政府工作报告中提出“要大力发展物联网产业,逐步完善物联网技术标准”。山东省作为中国的经济大省也积极投于物联网产业发展,先后出台了《山东省物联网产业发展规划纲要》、《关于加快物联网产业发展的意见》等文件,成立山东省物联网产业联盟、山东省物联网协会、各地市物联网研究院,建立了物联网产业发展示范工程项目等,为物联网产业发展提供了较好的基础条件。

本文结合山东省物联网产业发展实际情况,重点分析了物联网产业发展现状,研究了山东省物联网产业发展存在的问题,最后提出了关于加快山东省物联网产业发展的建议和策略。

1 山东省物联网产业发展现状及问题分析

1.1 山东省物联网产业发展现状

目前,山东省物联网产业还处于发展阶段,中国的长江三角洲(无锡、上海、苏州等地)、珠江三角洲(深圳、广州等地)等地物联网产业发展较快,处于全国物联网行业领先水平,山东省物联网产业发展尚处于发展阶段。结合山东省物联网协会调查数据分析如下:

1)物联网产业分布:山东省物联网产业分布不均匀,东部区域发展较快,以青岛、潍坊、威海等城市为例,分别在RFID、微电子、传感器等关键技术方面有所突破,在智能家居、智能物流、智能农业、智能工业、智慧城市等方面加快发展,进行了应用推广。潍坊市建立省级物联网产业基地、潍坊市物联网研究院,依托高新技术,重点发展了物联网产业。青岛市依托青岛海尔集团、海信等大型企业强大力量带动物联网产业发展。中部地区物联网产业发展较快,而西部地区(德州、聊城等地)相对来说物联网产业发展较为薄弱。

2)物联网销售和利润:整体来说,山东省物联网产业销售和利润实现快速增长,2013年,山东省物联网相关企业实现主业务营业收入达到1600多亿元,2014年,山东省物联网相关企业实现主业务营业收入达到2000亿元,比2013年增长20%,物联网产业销售和利润实现快速增长。

3)物联网产品与服务:山东省物联网企业产品主要以自主研发为主,合作研发为辅。其中自主研发产品主要RFID、条形码和网络通信技术为主,产品主要服务范围在物流仓储管理、工业监控、食品质量安全监管等方面,智能终端制造业约占16%,利润较高的物联网产品主要集中在智慧城市、食品质量安全监管、智能电网等方面。

篇2

近些年来,我国社会经济发展态势迅猛,在现代科学技术与现代通信技术的共同辅助作用下,网络时代已经到来,使得“互联网+”成为了时代的标志,更是互联网升华的必然产物。从“互联网+”的本质来看,其价值主要体现于同经济社会的有效融合,成为经济社会创新发展的主动力。“互联网+”时代背景下,网络的功能已经不再局限于信息化的基础设施应用层面,更多地在于辅助社会实体管理、经营手段的颠覆性变革。本文将以此为出发点,浅谈面向“互联网+”的网络技术发展现状与未来趋势,以期能够为唤起更多学者在此领域研究的进一步深入提供些许有价值的参考。

【关键词】“互联网+” 网络技术 发展现状 未来趋势

近些年来,各类新型信息化技术不断更新,包括云技术、大数据、物联网等等在内的信息技术创新力度不断加强,更新换代的频率不断加速,使得新兴产业的崛起日新月异。从宏观角度来看,市场经济社会也由此实现了产业价值链体系的重组,加之信息技术同经济社会融合深度的不断强化,使我国社会各个行业领域的转型升级速度不断提升,跨界融合已成二十一世纪的新常态。在此之中,互联网凭借着诸多优势得以不断扩大着覆盖范围,在社会众多领域的广泛应用又进一步助推着与经济社会的整合,使互联网得以从消费领域过渡到生产领域,从而更加直接地作用于传统产业与服务业等行业的创新。“互联网+”便是基于互联网发展的更高层次的融合成果,要想进一步实现网络技术的稳定发展,则需要立足于现状并明晰未来趋势以为“互联网+”的网络技术水平不断更新提供持久动力。

1 面向“互联网+”的网络技术概述

“互联网+”,从概念上看就是互联网同社会各个领域融合所达到的一个新的层次,立足于互联网的创新,加速推动着社会进步的步伐,借信息化优势作用于各个领域技术的有效创新,从而辅助提升效率与组织的变革。因此,面向“互联网+”的网络技术就要以互联网作为基础平台,在信息通信技术的作用下使各个传统行业由此更新,整合互联网金融、工业互联网与电子商务等合力构建社会发展的新常态。由此可见,“互联网+”已经成为了一个时代的烙印,核心即在于互联网的应用,并以此形成一个全新的互联互通的、具有最大价值的产业结构,为经济社会的全速发展提供稳定的续航。

2 面向“互联网+”的网络技术发展现状

当前,我国社会的现代化发展已经势不可挡,包括大数据、云计算、物联网等等技术在内的创新应用已经成为了大势所趋。对此,我国政府对互联网技术予以了高度重视,并于2015年7月针对“互联网+”颁布了《国务院关于积极推进“互联网+”行动的指导意见》,由此可见,“互联网+”已经成为了我国发展战略的重要组成部分,该指导意见颁布的目的亦在于为了能够为互联网的发展创设良好的空间,并引领互联网从消费领域过渡到生产领域,以作用于促进产业的升级与发展,为各个行业领带去更为强大的创新动力,从而有效构建我国经济社会发展的全新动力。具体来看,“互联网+”网络技术的发展,已经被定位在协同制造、智慧能源、现代农业、惠普金融、电子商务、物流创新、服务益民、绿色生态、智能交通以及人工智能等等层面,更为可靠的在于,面向“互联网+”的网络技术也已由此而获得了更多的保障,要求将更多创新驱动倾注在促进网络技术的发展当中,并为此创设更为宽松的环境,以智能化建设与政策、组织的支持争取网络技术的进一步发展。另外,面向“互联网+”的网络技术发展,也已将短期目标定位在制造业的现代化水平提高到一个全新的层次,CPS(信息物理系统)也将成为新的智能化基础设施,为国家的信息化发展奠定坚实的基础,更为新一代信息技术产业体系技术的创新提供新的动力。由此可见,我国面向“互联网+”的网络技术发展现状已趋于良好。

3 面向“互联网+”的网络技术未来趋势

在新形势下,面向“互联网+”的网络技术的未来拥有着无限良好的前景,但亦需要明确几方面的重大挑战。

(1)在“互联网+”时代背景下,互联网在各个行业领域中的深入普及致使业务类型的更新频率不断加快,网络的荷载量不断增大,可伸缩性能也就被提出了更高的要求。人机物的互联已成大势所趋,用户规模的扩张与需求量的急剧增加必然将网络推向超大规模化发展,因此有必要借数据化与智能化的进一步创新最大程度优化网络资源,以此保证网络服务质量的有效提升。

(2)现代社会各个行业领域对互联网的依赖程度均在不断提高,鉴于行业发展的特定需要,网络技术的更新也将永无止境。尤为重要的一方面在于,很多特殊行业对于互联网的要求较高,这样的形势也就对网络技术提出了更高的要求,如此对于网络技术的促进作用也就在于需要网络具有超高性能。对此,有必要构建“泛在宽带”的基础设施,将网络协议和传输机制进行必要创新,依据网络用户将传输路径合理化,,为用户提供有针对性的选择。

(3)“互联网+”时代最需要高度重视的一大问题即在于网络安全问题,从互联网发展至今的整个历程能够看出,计算机安全问题始终是网络的“天敌”,在互联网当中,网络形态各异,明显的多样化特征不仅体现在此,更体现在互联网的应用领域,简单地讲,不同领域的互联网需要面临不同类型的风险,唯有根据互联网的差异化环境切实对行业知识领域进行创新,才能确保安全方式机制能够最大程度保证用户行为信息的安全。

4 总结

综上所述,在社会现代化发展的新时期,在“互联网+”的作用下,已经转型进入到了一个全新的阶段。在网络技术的支撑作用下,我国社会的现代化进程不断加速,“互联网+”由此受到了国家的高度重视。既然面向“互联网+”的网络技术发展已成大势所趋,则必须要明确面向“互联网+”的网络技术发展现状与未来需要面临的挑战,以为网络技术的稳定发展提供更加强大的支撑。

参考文献

[1]尹浩,詹同宇,林闯.多媒体网络:从内容分发网络到未来互联网[J].计算机学报,2012(06):1120-1130.

[2]刘登云.网络安全技术的发展现状和未来发展趋势探讨[J].电子技术与软件工程,2014(13):246.

[3]高冲.互联网+时代下计算机网络技术专业应用型转型发展的探索研究[J].信息与电脑(理论版),2016(03):247-248.

作者简介

王金强(1974-),男,江西省安福县人。硕士学位。现为江西应用工程职业学院副教授。研究方向为计算机应用。

胡晓敏(1979-),女,江西省萍乡市人。大学本科学历。现为江西应用工程职业学院讲师。研究方向为计算机应用。

篇3

关键词 物联网;发展现状及存在问题;智能交通系统;应用

中图分类号:TN929 文献标识码:A 文章编号:1671—7597(2013)041-106-01

目前,我国的信息化技术不断发展,物联网技术也受到国家政府以及企业越来越多的支持和重视。作为走在国际最前沿的一项新技术,它被誉为:“技术的第四次产业革命”,在国家五大战略性新兴产业中,已被国务院上升到第二位。介于物联网关系到信息资源以及未来网络的应用,物联网将在推动世界迅速发展中占主导地位。

1 物联网概述

随着计算机、互联网以及移动通信网的广泛应用,物联网产业已经成为继它们之后的第三次世界信息产业发展浪潮。物联网概念第一次被提出是美国麻省理工大学Auto.ID实验室在1999年提出的,当时被称为EPC系统。它是通过信息传感设备,包括:RFID技术、红外感应、激光扫描器、各类传感设备装置、全球定位系统以及视频识别技术等,依照约定的协议,根据实际需要来完成物品互相联通的网络连接,然后进行通信以及交换信息,以至达到智能识别、定位、跟踪、监控以及管理的智能系统。

2 物联网发展现状及存在的问题

物联网技术的发展在我国起步比较早,所以现阶段在技术与标准等方面也存在一定的优势。在1991年,施乐公司的首席科学家Mark Weiser在《科学美国》这本权威杂志上对于计算机的发展前景作出了大胆的预测,也就是物联网最早时候的萌芽状态。而中国在1999年有了传感网定义,并且开始了传感网的研究与开发,因此逐渐有了物联网的雏形。

感知、传输、处理、实现、及时、精确、全面地获取和处理信息是物联网技术发展的重要环节。根据相关不完全统计,我国物联网市场规模在2010年几乎达到两千亿元。在标准研制与技术研发中也取得了重大突破,我国在多领域实施了技术攻关措施达到了较好的效果,其中包括:通信协议、芯片、智能计算机、协同处理以及网络管理等。现阶段,我国在诸多领域应用了物联网技术,如:环保、物流、医疗、农业、电力、交通、安防等,并且这些物联网应用模式逐渐走向成熟。

虽然我国在物联网应用及发展中取得了一些进步,但应该清楚我国在物联网发展中还存在很多不足。主要表现为:带头精英企业少,信息安全方面不完善,技术产品差,规模化应用不多,应用水平不够高,高端综合集成服务能力弱等。

3 智能交通系统的概述

随着城市化建设的不断发展,交通越来越阻塞,交通事故也随之频繁发生,然而传统的应对措施根本无法彻底解决交通问题,智能交通系统应运而生。

智能交通系统是把多种技术有效集成应用在交通领域的综合管理体系,其中包括:通信技术、传感技术、微处理技术以及信息技术。其目的在于改善交通情况,建立交通工具、驾乘人员以及道路三者互相的动态联系,使驾驶员能在有效时间内清楚道路交通和车辆情况,使行车路线得到优化,降低了交通事故的发生率,保证了环境质量。智能交通系统是物联网技术在交通系统中的高效应用,它将信息高速公路与实体高速公路恰到好处的融合在一起,现阶段智能交通系统还没有得到普及,但已经有很多国家包括我国在内都已经在进行进一步的研究。

4 发展智能交通系统的必要性

城市交通问题多,主要体现在以下几个方面:

1)没有快速路走廊,道路比例失衡。

2)车辆的发展速度过快。虽然城市的道路一直在进行不断的完善,在长度和面积上都有很大的增长,但与车辆的增长速度相比较还是处于落后状态,因此也导致了交通状况的不断恶化。如此看来,目前的交通设施已经达不到交通路况的需要。所以,只是纯粹的依靠道路建设,很难彻底解决交通问题。只有在进行道路建设的同时加快智能交通系统的建设,才能彻底有效的改善交通状况。

3)交通政策不完善,管理技术不够强,导致交通堵塞,交通效率不高。

5 智能交通系统的总体架构

早期的智能交通系统被称为智能车辆道路系统,简称:IVHS。因为各个地方的国土面积、人口数量、密度和分布情况、汽车拥有量以及人均道路拥有量等都不一样,所以通常由政府组织开展智能交通系统的规划。鉴于如今的交通发展趋势,智能交通系统可分为以下几个支撑系统:

1)动态路线引导系统,简称:DRGS。

2)车辆运行管理系统,简称:MOCS。

3)安全驾驶支持系统,简称:DSSS。

4)智能图像处理系统,简称:IIIS。

5)紧急救援与公众安全系统,简称:HELP。

6)公交优先系统,简称:PTPS。

7)先进车辆信息系统,简称:AMIS。

8)环境保护管理系统,简称:EPMS。

6 物联网在智能交通系统中的应用

6.1 Telematics通信服务系统

Telematics车联网系统具有通信控制功能以及强大的计算功能,由专业公司提供相关服务需要。首次开展此项业务的是QnStar公司以及美国通用汽车公司。迄今为止,全世界已经有六百多万辆汽车在使用,其中我国也已经开通了这项服务。紧急救援、导航系统、碰撞自动求助以及车辆防盗等服务都是OnStar公司提供的。

6.2 互动式公交车站

互动式公交车站EyeShop系统的初始构想是实现人与自然的互动,在不受限制的空间内提供不收费的服务,使得公众在等车的时候也能实现查询多种信息、规划旅游线路以及进行阅读和娱乐等。并且该系统提供娱乐互动空间,如:互动式地图、公告栏、个性分类广告、电子涂鸦以及路线规划等。

6.3 V2V汽车防碰撞预警系统

V2V汽车防碰撞预警系统是由美国通用汽车公司最早发行的防碰撞与防追尾的预警系统,它的原理是当两车在距离比较近时,便会发出提示的警报,警示两车的驾驶员要提前进行防范。

7 结束语

本文对物联网的概念、发展现状与问题以及智能系统的总体架构和应用进行了完整的表述,通过结合我国交通的实际情况作出了物联网在智能交通系统中应用的初步分析。综合上述可以看出,物联网为中国的信息化产业的发展提供了一个难得的机会,并且已经受到国家的重视以及支持。随着物联网在智能交通系统中的应用,信息革命将再度被引领,使我国信息化产业走向更强。

篇4

关键词:数字湖南;高职教育;物联网产业

中图分类号:TP393 文献标志码:B 文章编号:1673-8454(2013)21-0018-04

物联网已经被公认为继计算机和互联网之后信息产业的一次浪潮,代表了下一代信息技术发展趋势。2010年10月18日,《国务院关于加快培育和发展战略性新兴产业的决定》正式出台,物联网被确认为我国七大新兴国家战略产业之一。湖南省委、省政府高度重视培育和发展战略性新兴产业,明确提出:以“四化两型”引领湖南科学发展、建设“四个湖南”,作为湖南“十二五”经济社会发展的主线。2010年8月底,湖南省委、省政府正式对外《关于加快培育发展战略性新兴产业的决定》,重点发展先进装备制造业、新材料产业、电子信息、新能源产业、生物产业、节能环保产业以及文化创意产业等。2011年12月底,湖南省委省政府印发了《数字湖南建设纲要》,明确提出“加快推进下一代互联网、物联网、云计算、智能终端、三网融合等领域技术研发与应用,实现一百项信息技术重大成果的产业化”,并在政务领域、社会领域、数字文化等方面大力推进信息化。这一系列的政策导向,有力助推了湖南的物联网产业发展。

一、湖南物联网产业发展现状

湖南省物联网产业发展已经具备了一定的基础。信息产业的高速增长,带动了相关产业发展,对湖南省社会经济发展的带动作用日益明显,已经成为湖南区域经济发展的一个重要增长点。

1.湖南发展物联网产业具备先进的技术优势

湖南在物联网发展方面起步较早,已经具备了一定的技术优势和产学研基础。在传感器方面,已有一批有实力的传感器相关产品制造企业,具有一定的科研生产基础。南车时代在智能传感器、点式应答器、电子标签、高速智能列车信息化系统等方面展开了深入研发;湖南电信在Ipv6商用网络建设方面处于行业领先;国防科大、湖南大学、中南大学共同承担了国家863传感器网络专项研究课题,对传感网技术进行了实验性的应用研究;湖南大学成立了物联网研究中心等专门研究机构并建立超级计算机中心;湖南伊爱卫星监控科技有限公司等企业在全球定位系统应用产品的研发、制造、销售、服务和网络运营方面已有不少成功的案例。[1]

2.湖南发展物联网产业具备先发的产业基础

湖南省委、省政府高度重视物联网产业的培育和发展,大力扶持建设物联网应用示范重点项目。目前,湖南从事物联网研发、生产和服务的企业达200多家,涉及传感器、芯片设计、电子标签与读写器具、智能终端、应用软件、系统集成、运营服务等物联网产业链的多数环节。在智能高速列车控制、手机移动支付、金融税控设备、中小型水电站远程控制等领域,湖南省部分企业技术创新和市场在国内占有优势地位。

3.湖南发展物联网产业具备先行的应用示范

湖南省作为移动电子商务试点示范省,建成了中国移动全网手机支付平台,作为国家“三网融合”试点城省群,拥有长株潭国家级“两化融合”实验区和十一个省级“两化融合”实验区,建成了湘潭九华物联网示范基地、长沙百果园现代农业示范基地、郴州IPv6物联网示范基地、湘西物联网云计算平台等一批产业示范基地,并在智能水利、智能农业、智能工业、智能交通等多领域率先应用物联网技术。

二、湖南高职教育与物联网产业发展实现对接的可行性

湖南省大力培育和发展物联网产业,在物联网领域将继续加大科技创新支持力度,加快技术研发与成果转化应用的同时,也存在着产业物联网核心关键技术缺失、物联网标准规范体系不完善、物联网地址资源匮乏、物联网规模化应用不足、物联网产业链构成不完善、物联网技术与应用人才缺乏等一系列问题,在一定程度上制约了物联网产业持续发展。在关于如何发展战略性新兴产业的讨论与研究中,国务院发展研究中心副研究员张永新认为,发展战略性新兴产业的关键是掌握核心技术。掌握核心技术的主体在于“人”,如何培养掌握与发展核心技术的“人”成为解决问题的关键所在。[2]

篇5

关键词 物联网 感知校园 建设

中图分类号:TP393 文献标识码:A

作为第三次信息技术革命的代表,物联网为人们提供了感知世界的能力,为技术创新和社会发展提供了一个前所未有的机遇。目前,物联网在交通、安防、物流、工业、农业、电网、医疗、教育、环保等领域得到了广泛应用。其中,基于物联网技术建设的“感知校园”,将是未来院校教育管理发展与改革的方向。

1 物联网发展现状

物联网是在互联网、移动通信网基础上,利用各种感知设备或手段自动获取物理世界各种物体的属性及状态信息,将所有能够独立寻址的物理对象互联起来,实现全面感知、可靠传输、智能处理,构建人与物、物与物互联的智能信息服务体系。从2009年起,美、欧、日、韩等国相继投入巨资深入研究探索物联网,并启动了以物联网为基础的“智慧地球”、“物联网行动计划”、“U-Japan”、“U-Korea”等国家性区域战略规划。我国也高度重视物联网的发展,目前,已经成功将RFID、M2M、传感器等物联网技术应用于物流、建筑、电力、城市交通、工业生产、食品追溯、移动支付等方面。可以预见,未来十年物联网在全球将实现大规模的普及与发展,形成万亿美元级的信息技术产业。

2 基于物联网技术的“感知校园”建设分析

目前,大多数校园已经建立了成熟的网络环境,配发和安装了各种教学信息系统、管理信息系统,校园可视化管理和信息化建设有了长足的进步。但仍存在着不足,比如,监控系统由于感知手段单一,存在监控死角多、人工参与多等问题,离智能化相差甚远;各种管理信息系统一定程度上提高了工作和生活效率,但也存在信息重复采集、一人多卡使用不便等问题。

“感知校园”是物联网技术应用于校园信息化建设的重要方向,是校园现代化管理的标志,可以有效解决上述存在的问题。其基本原理是:综合利用二维码、RFID、无线传感器等技术,对校园内的人员、车辆、仪器设备等对象进行标识;利用安装在教室、实验室、图书馆、食堂、供水系统等基础设施上的信息识别设备读取上述对象标签中的信息,并通过有线、无线网络传送到信息处理中心进行处理;处理结果再通过网络反馈给被标识的对象以及校园管理、安保等部门。通过这个过程来实现师生身份识别、图书借阅管理、教学管理、校内消费、安全防护等多重功能。对于“感知校园”的功能分析,具体如下:

(1)智能人员管理。为校园所属人员配备“一卡通”,通过遍布校园的感应点,可以实现对所属人员24小时不间断、不留死角、全自动实时感知与定位。管理人员可以通过感知校园管理平台实时了解所辖人员在位情况,对学生、职工的出勤、外出情况进行有效管控,实现电子点名、智能查岗等可视化管理。

(2)智能安防。使用智能门禁系统,智能识别所属人员、车辆特征,有效防止不法分子潜入;通过遍布校园的智能摄像头,能够对进入重要区域的可疑人员进行识别和报警,确保校园安全;为重要资产嵌入射频卡,可以实时感知其所在位置,防止丢失带来的经济损失。

(3)智能图书馆。为馆藏图书安装被动式射频标签,取代原来的条形码,通过使用书架感应器或手持智能终端,可以实现对图书资料所在的书架进行快速定位,方便借阅和管理。

(4)智能车辆管理。通过为校园车辆安装电子标签、卫星定位装置等,实现对公务用车、私家车、自行车等的准确定位和实时跟踪,公务用车还可通过嵌入的各类智能传感器,监控其工作状态、完好情况等,从而实现对其精细化管理。

(5)智能绿化。通过传感器技术,可以对校园的空气湿度、污染指数等进行实时监控,保障校园环境质量;可以根据当天的温度、湿度,实现自动调节教室灯光强弱,智能灌溉校园绿地等;可以根据昼夜环境,自动关闭或开启路灯。

3“感知校园”建设需注意的问题

3.1 统一数据标准

目前,物联网用到的各类传感器、射频标签制造标准各异、互不兼容,造成感知信息的数据格式千差万别,难以高效管理和集中控制。应加强这方面的统一,制定规范的数据标准,使用兼容的信息系统管理软件,使得校园资源能够统一管理,感知到的数据能够共享和合并处理,以提高管控水平。

3.2 注重系统集成

目前,校园已经安装视频监控系统或其他信息处理系统,“感知校园”建设应着重考虑新建校园管理平台与原有信息系统的兼容性,从而减少重复建设,最大程度确保与已有系统的兼容性和衔接性。

3.3 控制建设成本

“感知校园”建设牵涉的感知对象种类多,各对象所需感知的信息复杂程度差别也较大,如果统一使用某种感知技术,不仅会造成大量信息冗余,而且会提高感知成本。应根据各感知对象不同特点,综合采用不同感知技术,从而有效节约建设成本。

参考文献

篇6

【关键词】物联网 传感器 U-Korea 轨道交通防恐系统

1 物联网全球市场发展现状

1.1 全球物联网市场发展概况

在2012年第三届中国国际物联网博览上,航天信息董事长于滨曾表示,全球物联网市场规模将保持接近25%的年增长率,到2015年市场规模将接近3 500亿美元。近来,美国市场研究公司Forrester预测,到2020年,世界上“物物互连”的业务,跟人与人通信的业务相比,将达到30:1,仅在智能电网和机场防入侵系统方面的市场就有上千亿美元。因此,物联网被称为是下一个万亿美元级的信息技术产业。

未来十年物联网将实现大规模的普及与发展。其中,微加速度计、压力传感器、微镜、气体传感器、微陀螺等器件已在汽车、手机、电子游戏、生物、传感网络等消费领域得到广泛应用,大量成熟技术和产品为物联网的大规模应用奠定了基础。对于欧美等西方发达国家而言,发展物联网应用被视为巩固综合国力,促生经济动力的重要手段。据思科最新报告称,未来10年,物联网的将带来一个价值14.4万亿美元的巨大市场。思科预计,未来1/3的物联网市场机会在美国,30%在欧洲,而中国和日本将分别占据12%和5%。

1.2 中国物联网市场发展概况

从2009年以来,中国中央和地方政府对物联网行业在资金和政策上均给予了大量的支持。2011年工信部制定了《物联网“十二五”发展规划》,重点培养物联网产业10个聚集区和100个骨干企业,实现产业链上下游企业的汇集和产业资源整合。在政策的培育下,物联网产业在近几年处于高速发展期,2010年我国物联网的总产值约1 900亿元;2011年的产业规模超过2 600亿元;2012年已经超过3 600亿元,年增速接近40%。赛迪顾问预测,2013年中国物联网整体市场规模有望达到近5 000亿元,是2010年1 933亿元的2.59倍;至2015年,中国物联网整体市场规模将达到7 500亿元;至十二五末,年复合增长率将超过30%;2017年将超过万亿元级。而未来3至5年物联网核心细分产业(如传感器等)将会维持35%以上的年复合增长率。

据“物联中国”网站报道,传感器产业已直接从中受益。2010年,我国传感器制造业规模以上企业(年销售收入500万元以上)实现销售收入440.27亿元。在物联网市场规模大幅增长的带动下,2015年中国传感器市场规模有望达到1 200亿元以上。据中国电子信息产业发展研究院预测,从2010年至2015年之间中国传感器市场年复合增长率将达31%。

2 主要发达国家物联网产业的发展概况

目前世界各国的物联网基本都处于技术研究与试验阶段:美、欧、日、韩等都正投入巨资深入研究探索物联网,并启动了以物联网为基础的“智慧地球”、“物联网行动计划”、“U-Japan”、“U-Korea”等国家性区域战略规划。

2.1 美国

美国政府高度重视物联网的发展。2008年IBM提出“智慧地球”理念后,迅速得到了奥巴马政府的响应,《2009年美国恢复和再投资法案》提出要在电网、教育、医疗卫生等领域加大政府投资力度带动物联网技术的研发应用,发展物联网已经成为美国推动经济复苏和重塑其国家竞争力的重点。美国国家情报委员会(NIC)发表的《2025年对美国利益潜在影响的关键技术报告》中,把物联网列为六种关键技术之一。此间,国防部的“智能微尘”(Smart Dust)、国家科学基金会的“全球网络研究环境”(GENI)等项目也都把物联网作为提升美国创新能力的重要举措。与此同时,以思科、德州仪器(TI)、英特尔、高通、IBM、微软等企业为代表的产业界也在强化核心技术,抢占标准建设制高点,纷纷加大投入用于物联网软硬件技术的研发及产业化。

在2013年开幕的CES展上,美国电信企业再次将物联网推向了。美国高通已于2013年1月7日推出物联网(IoE)开发平台,全面支持开发者在美国运营商AT&T的无线网络上进行相关应用的开发,双方预计,该物联网开发平台将在2013年二季度提供给开发者。与此同时,思科与AT&T合作,建立无线家庭安全控制面板。思科还获得“2012年度物联网行业突出贡献奖”的提名,2012年思科了一款物联网路由器ISR819,同时借2012年的伦敦奥运会,思科大力地推广了其物联网技术。

市场研究公司IDC预计,到2016年,仅在美国,为计算机和手机之外设备提供无线连接服务将为一些公司带来近10亿美元的收入。

2.2 欧盟

2009年6月,欧盟委员会递交了《欧盟物联网行动计划通告》,以确保欧洲在构建物联网的过程中起主导作用。通告提出了14项物联网行动计划,了《欧盟物联网战略研究路线图》,提出欧盟在2010年、2015年、2020年三个阶段物联网研发路线图,并提出物联网在航空航天、汽车、医药、能源等18个主要应用领域,以及识别、数据处理、物联网架构等12个方面需要突破的关键技术。目前,除了进行大规模的研发外,作为欧盟经济刺激计划的一部分,物联网技术已经在智能汽车、智能建筑等领域得到普遍应用。

2009年11月,欧盟委员会以政策文件的形式对外了物联网战略,提出要让欧洲在基于互联网的智能基础设施发展上领先全球。除了通过ICT研发计划投资4亿欧元、启动90多个研发项目提高网络智能化水平外,欧盟委员会还将于2011—2013年间每年新增2亿欧元以进一步加强研发力度,同时拿出3亿欧元专款,支持物联网相关公司合作短期项目建设。

为了加强政府对物联网的管理,消除物联网发展的障碍,欧盟制定了一系列物联网的管理规则,并建立了一个有效的分布式管理架构,使全球管理机构可以公开、公平、尽责地履行管理职能。为了完善隐私和个人数据保护,欧盟提出持续监测隐私和个人数据保护问题,修订相关立法,加强相关方对话等;执委会将针对个人可以随时断开联网环境开展技术、法律层面的辩论。此外,为了提高物联网的可信度、接受度及安全性,欧盟积极推广标准化,执委会将评估现有物联网相关标准并推动制定新的标准,确保物联网标准的制定是在各相关方的积极参与下,以一种开放、透明、协商一致的方式达成。

2.3 日本

日本是世界上第一个提出“泛在网”战略的国家,2004年日本政府在两期“E-Japan”战略目标均提前完成的基础上,提出了“U-Japan”战略,其战略目标是实现无论何时、何地、何物、何人都可受益于计算机通信技术(ICT)的社会。物联网包含在泛在网的概念之中,并服务于U-Japan及后续的信息化战略。通过这些战略,日本开始推广物联网在电网、远程监测、智能家居、汽车联网和灾难应对等方面的应用。2009年3月,日本总务省(MIC)通过了面向未来三年的“数字日本创新计划”,物联网广泛应用于“泛在城镇”、“泛在绿色ICT”、“不撞车的下一代智能交通系统”等项目中。2009年7月,日本IT战略本部发表了《I-Japan战略2015》,作为U-Japan战略的后续战略,目标是“实现以国民为中心的数字安心、活力社会”,强化物联网在交通、医疗、教育、环境监测等领域的应用。

2012年全日本总计发展了317万多物联网用户(放号量),其中NTT DoCoMo现有超过150万物联网用户,主要分布在交通、监控、远程支付(包括自动贩卖机)、物流辅助、抄表等九个领域;KDDI虽然起步较晚,但一开始就追求高速大容量的物联网通信,通过推出可车载、小型、轻量、廉价的物联网通信服务,在交通、物流行业发展了超过100万用户;而Softbank因为最迟涉足物联网行业,目前仅25万多用户,大部分是数码相框等个人电子消费品,还有少量的电梯监控和自动贩卖机业务。

从日本物联网业务发展现状来看,最热门的业务无疑是自动贩卖机、交通运输管理、监控及电子钱包业务。日本通信行业对物联网发展寄予厚望,预计将来会在遥测、交通运输管理、电子支付、安全监控、数字标牌、数据备份等行业大力发展物联网,以此突破日本市场业已饱和的手机放号,从而带来新的巨大商机。

2.4 韩国

与日本类似,韩国也将物联网这一技术的发展纳入了信息产业的范畴。从1997年推动互联网普及的“Cyber-Korea 21”计划到2011年对RFID、云计算等技术发展的明确规划部署,14年来,韩国政府先后出台了多达8项的国家信息化建设计划,其中,“U-Korea”战略是推动物联网普及应用的主要策略。自2010年之后,韩国政府从订立综合型的战略计划转向重点扶持特定的物联网技术——致力于通过发展无线射频技术、云计算等,使其成为促进国家经济发展的新推动力。

2004年,韩国提出为期十年的U-Korea战略,目标是“在全球最优的泛在基础设施上,将韩国建设成全球第一个泛在社会”。2006年,韩国《U-IT839计划》提出要建设全国性宽带(BcN)和IPv6网络,建设泛在的传感器网(USN),打造强大的手机软件公司;把发展包括RFID/USN在内的8项业务和研发宽带数字家庭、网络等9方面的关键设备作为经济增长的驱动力。为推动USN在现实世界的应用并进行商业化,韩国在食品和药品管理、航空行李管理、军火管理、道路设施管理等方面进行了试点应用。

2009年,韩国通过了《基于IP的泛在传感器网基础设施构建基本规划》,将传感器网确定为新增长动力,确立了到2012年“通过构建世界最先进的传感器网基础设施,打造未来广播通信融合领域超一流ICT强国”的目标,并确定了构建基础设施、应用、技术研发、营造可扩散环境等四大领域的12项课题。韩国通信委员会(KCC)决定促进“未来物体通信网络”建设,实现人与物、物与物之间的智能通信,由首尔市政府、济州岛特别自治省、春川市江原道三地组成试点联盟,建设物体通信基础设施。其中首尔市的建设重点是与日常生活相关的业务,济州岛聚焦于建设基于无线通信技术的环境测量智能基础设施,春川市江原道则致力于打造智能化娱乐化城市。韩国已将物联网市场确定为新增增长动力,据估算至2013年底物联网产业规模将达50万亿韩元。

3 中国物联网产业发展现状

在标准方面,据工信部透露,我国传感网标准体系已形成初步框架,向国际标准化组织提交的多项标准提案已被采纳。我国已成为国际传感网标准化的四大主导国(中国、美国、韩国、德国)之一,在制定国际标准中享有重要话语权。由中国提交的“物联网概述”标准草案,于2012年3月30日经国际电信联盟审议通过,成为了全球第一个物联网总体性标准。上海已经制定了国内第一个物联网应用地方标准,即首个轨道交通防恐系统。

在技术领域,早在1999年,中科院就启动了传感网研究,分别在无线智能传感器网络通信技术、微型传感器、传感器终端机、移动基站等方面取得重大进展。我国的技术研发水平目前处于世界前列,并拥有多项专利。2009年10月24日,在第四届中国民营科技企业博览会上,西安优势微电子公司宣布:中国的第一颗物联网的中国芯——“唐芯一号”芯片研制成功,中国已经攻克了物联网的核心技术。“唐芯一号”芯片是一颗2.4G超低功耗射频可编程片上系统PSoC,可以满足各种条件下无线传感网、无线个域网、有源RFID等物联网应用的特殊需要,为我国的物联网产业的发展奠定了基础。

自2009年8月总理提出“感知中国”以来,物联网被正式列为国家五大新兴战略性产业之一,并写入“政府工作报告”,中央和地方政府对物联网行业在资金和政策上均给予了大量的支持。2011年底工信部制定了《物联网“十二五”发展规划》,重点培养物联网产业10个聚集区和100个骨干企业,实现产业链上下游企业的汇集和产业资源整合。2013年2月17日,国务院正式公布《关于推进物联网有序健康发展的指导意见》,指导意见提出,到2015年,实现物联网在经济社会重要领域的规模示范应用,突破一批核心技术,初步形成物联网产业体系,明显提高安全保障能力。此次政策将有相关财税、金融、投资等政策配合。行业内纷纷预期,我国的物联网产业将进入新一轮的提速发展阶段。

在国家高层的推动下,各级地方政府部门也扬鞭奋起,北京等28省市开始制定物联网产业的规划政策,努力打造无线城市、发展物联网示范工程、培育物联网产业、攻坚物联网核心技术、举办物联网主题展会,积极抢占物联网发展的制高点。产业分布上,国内物联网产业已初步形成环渤海、长三角、珠三角以及中西部地区等四大区域集聚发展的总体产业空间格局。其中,长三角地区产业规模位列四大区域之首。

在应用发展方面,目前占据中国物联网市场主要份额的应用领域为智能工业、智能物流、智能交通、智能电网、智能医疗、智能农业和智能环保。其中智能工业占比最大,为20.0%。中国移动物联网基地自建成以来,投资金额已达到10亿元。其主要用于云端产品的开发,包括智能交通、智能家居、教育、金融、市政管理、城市安防等领域。不仅如此,中国联通和中国电信都已将物联网业务提升到战略层面,并均申请了物联网专用号段。

4 结束语

当前全球各主要经济体都在积极的推动物联网产业的发展,以期在未来的智能化建设中占据高地。中国物联网产业不是在技术成熟条件下催生的,也不是在强大应用拉动下水到渠成地发展起来的,而是在全球主要国家的物联网产业迅速发展的背景下“跟进”的结果。

中国作为发展物联网产业的积极响应者,有自己独特的驱动因素与阻碍因素,有自己独有的产业特点,并已经形成一定的细分市场。但在我国物联网发展的过程中,在进行物联网关键技术攻关、创新物联网应用模式、建设自身的标准和规范、打造中国物联网自身核心能力的同时,仍需注重引进和吸收国外物联网技术发展和社会应用的先进经验,注重与国外厂商合作。只有不断地引进、学习、消化、吸收,才能逐渐形成具有中国特色的物联网产业发展道路。

参考文献:

[1] 井志强,李文龙. 物联网与移动核心网融合的网络架构研究[J]. 移动通信, 2013(1).

[2] 蒲竹君. 基于物联网的家庭智能控制系统[J]. 移动通信, 2012(17).

[3] 王滨,李方正,李志国. 基于TD-SCDMA与物联网融合的研究[J]. 移动通信, 2011(19).

篇7

关键词:互联网农业;重要性;意义;现状及问题;措施

进入 21 世纪以来,我国社会生活的方方面面都发生了巨大的变革, 并呈现出焕然一新的面貌,经济增长速度加快,人们生活水平、生活质量不断提高,社会主义社会向着更加和谐的方向发展。 同时, 新形势下互联网技术不断更新并得到广泛的应用, 也给社会发展提供了强劲的动力。

一、互联网农业发展的重要性分析

互联网技术作为我国经济发展的重要手段之一,在现代农业发展过程中的应用越来越广泛,更是极大地促进了我国现代农业的发展, 提高了农业生产效率,改善了农民的生活,加快了我国新型城镇化建设的进程。

1.促进农业资源的合理配置

互联网最大的特点,就是它能够将所有的信息在网络上,并使同一信息在同一时间内被更多的需求者共享。相关人员将与农业有关的信息在网络上后,互联网就会对各类信息进行自动地整合处理。 这样一来,广大农业信息用户就可以通过互联网快速地查询到自己需求的信息。 由此可见,互联网的应用极大地提高了农业资源的整合效率,有利于农业的健康发展。

2.促进农产品销售模式升级

互联网的出现为我国农产品销售提供了新的技术手段,极大地降低了农产品销售的成本,提高了农民的纯收入。 通过建立网上农贸市场、建设农产品经营网上连锁店,农民可以通过多渠道宣传并成功销售出自己的产品。 目前,农村电子商务发展如火如荼,这是一项富民利民的项目建设,能够解决农产品销售过程中信息缺乏、物流困难等问题,对于发展现代农业、加快我国社会主义新农村建设意义重大。

3.提高农业生产标准化水平

由于各地自然条件、 生产技术水平的不同, 我国农业生产一直没有达到标准化,这也是制约我国农业发展的重要因素之一,而互联网技术的应用恰好解决了这一问题。通过各种无线传感器,互联网技术可以对农业生产现场的光照、温度等信息进行自动记录,并将整合后的信息反馈到互联网核心系统, 该核心系统就会根据农作物的生长情况,开启或者关闭农业生产设备。 在这个过程中, 农业生产都按照严格的标准进行,使得农作物生长速度得到明显提高。

二、互联网农业的发展现状与问题分析

1.互联网农业信息平台缺乏

农业信息平台是农业从业用户和获取信息的重要工具之一,其完善与否会对农业发展产生巨大影响。但就我国目前情况来看,农业信息平台的建设并不完善,网络上农业信息不全面,并不能满足农业从业人员的信息需求。 因此,部分农业从业人员的难题不能得到及时解决,阻碍了农业生产经营活动的顺利进行。

2.互联网农业基建设施不足

与其他发达国家相比, 我国的农业基础建设水平较低, 互联网技术并没有在农业生产中得到广泛应用。 由于地区经济发展水平的差异, 部分地区的农业从业人员并没有用上互联网技术, 甚至不了解互联网技术的意义和作用。另外,由于我国农业信息技术水平较低, 各种智能设备并没有完全投产使用,农业现代化发展水平较低。

3.网络农业营销物流平台滞后

我国农业物流信息不完善,很多农产品找不到合适的物流途径,影响了产品的销售,导致产品因出售不及时而贬值。 现有农业物流平台硬件设施缺乏,使各种物流信息不能在更广的范围内被更多的人共享。各个物流公司与网络农业营销物流平台衔接不到位,产品运送不及时,给客户带来不必要的麻烦,同时也给农产品经销商的经营活动造成一定的负面影响。

三、加强互联网农业发展的措施探讨

通过分析不难发现,当前我国互联网农业发展并不顺利,其发展过程中仍然存在不少问题。本文将对加强我国互联网农业发展这一问题提出相关措施。

1.强力推进网络农业平台建设

农业发展网络平台的建设是加快实现我国农业现代化最重要的举措之一。首先, 国家农业发展部门必须加大资金投入,完善农业网络体系,为农业从业者提供信息获得渠道。 其次,相关部门必须进一步优化网络环境, 减少网络使用的障碍,使更多的人能够参与到农业信息平台的建设过程中来;要加强农业网络体系建设的宣传力度, 提高网络信息的安全性,使各个农业从业者能够主动参与平台建设,积极农业发展相关信息。

2.着力加强网络农业基础设施建设

首先,我国农业从业人员必须加大网络农业基础设施建设的资金投入,在农业生产、发展的过程中引进各种先进的技术设备,如各种智能控制系统等,提高农业生产的现代化水平。 其次,必须加强我国农业科技创新工作,研发各种农业生产的新技术, 普及应用各种新的智能设备,为农业现代化建设奠定基础。

3.努力培养网络农业技术人才

首先,必须加强学校教育。 国家要鼓励更多大学开设相关专业,增办职业教育学校,在教学过程中,不但要讲授农业发展的基础知识和原理,还要向学生们展示一些农业发展的最新成果,倡导学生努力学习互联网技术,并将其运用于未来的农业生产和发展中,必须努力培养各种网络农业技术人才。 其次,国家相关部门应该加强对农业从业人员的教育培训工作,向其灌输最新的互联网农业生产理念,并倡导他们向其它农业发展较为先进的国家或地区学习,借鉴其经验并用于本地农业发展过程中。

四、结语

通过以上分析不难发现,由于各种主客观因素的限制,我国互联网农业发展仍待完善,农业现代化水平亦有待进一步提高。因此,为了扭转这一局面,国家农业部门、各地区农业发展部门、农业从业人员都必须从当地实际情况出发,担负起发展责任,采取各种积极的发展措施解决存在的问题。 须知互联网农业的发展,不仅有利于提高我国的农业现代化水平,还对于加快我国社会主义新农村建设、建设社会主义和谐社会都具有十分重要的意义。

参考文献:

[1]柏振忠.我国现代农业发展模式建设与完善的路径分析[J].科学管理研究,2012(10).

篇8

关键词 智慧农业;物联网;物联网架构;发展现状;问题

中图分类号 F49 文献标识码 A 文章编号 1007-5739(2016)14-0338-03

Discussion Development of Internet of Things and Wisdom Agriculture

DONG Miao HUANG Rong-rong ZHENG Yong ZHAO Shi-jing CHEN Jie *

(Tongji University,Shanghai 201800)

Abstract With the development of internet,wisdom agriculture is a trend of agriculture in our country,and the internet of things is the key technology of wisdom agriculture. This paper mainly introduced the connotation of internet of things and wisdom agriculture,architecture of internet of things,mainly including perception layer,network layer and application layer.At the same time,the paper concretely introduced the internet of things in wisdom agriculture development situation and existing problems.

Key words internet of things;wisdom agriculture;framework of internet of things;development situation; problems

智慧农业是我国近几年根据农业的发展而新产生的一个概念,就是在传统农业的基础上应用物联网技术,充分利用传感器和其他平台软件对农业生产生活进行监测和控制。由于我国农业已经步入由传统农业向现代化农业发展的阶段,越来越多的现代化智能技术融入到农业中,而物联网技术则是智慧农业的主要支撑技术,我们越来越多地感受到智慧农业给我们带来的便捷、高产和优质,这是我国未来农业发展的一个主要趋势。

1 物联网与智慧农业

1.1 物联网

物联网[1](internet of things)定义的核心和基础仍然是互联网,主要是将物品与物品之间用互联网进行连接,所使用的技术包括智能感知识别技术、普适计算等通信感知技术,简而言之,就是利用互联网等通信技术实现远程管理控制的智能化网络,从而更好地将物与物、人与物进行连接,可以说物联网是互联网的延伸,在兼容了互联网所有的应用后,同时又具有自己的私有化和个性化。农业物联网是将物联网技术与农业相结合,是将其具体应用在农产品生产、经营、管理、服务的整个产业链当中,即将农产品与农产品之间的信息应用现代智能感知技术进行采集测定,然后将收集到的信息数据进行识别处理,再传到操作终端,实现智能化控制[2]。物联网在农业生产中的具体应用就是通过在农业生产中安装各类传感器,如温度传感器、湿度传感器等,通过数据连接,将无线传感网络、电信网、互联网进行集成,实现农业生产信息在各个环节的传输,最后将大量农业生产信息进行整理融合,由操作终端实现对农业生产的过程监控,进而实现现代化农业生产高产、高效、集约的目标。

1.2 智慧农业

智慧农业即在传统农业的基础上应用物联网技术,充分利用传感器和其他平台软件对农业生产生活进行监测和控制,使农业系统不再像传统农业一样封闭,而是具有“智慧”,智慧农业不仅可以进行基本的感知、控制和管理,更是扩展到了电子商务、食品溯源防伪、农业休闲旅游、农业信息服务等方面的内容,物联网技术可以说是智慧农业的基础[3]。

2 智慧农业物联网架构

2.1 信息感知层

顾名思义,感知层相对于物联网而言,类似于人类的感觉器官,主要是用于识别物体并进行信息采集。信息感知层通过采用先进的传感技术,即利用温度、湿度、光照、风速等各种传感器,得到农业生产过程中的精细化信息,如设施内温度、湿度、光照情况、CO2浓度、土壤湿度、营养液浓度等信息,是对植物生长状况进行判定的基础[4]。

2.2 信息传输层

信息传输层由互联网、云计算平台、移动通信网、无线传感器网络等组成,主要负责传递和处理感知层获取的信息,也是物联网的中枢环节。信息传输层主要作用就是将信息感知层获取的数据以多种通信协议向局域网或广域网。其中应用较多的为无线传感网络。无线传感器网络[5]通过无线通信方式自行组网,对网络覆盖区域中的对象的动态信息进行采集,并进一步计算处理。由于其监控效率高,且具有成本低的有点,因而在农业领域的信息采集工作中应用广泛。

2.3 信息应用层

信息应用层通过对数据进行科学处理而制定相应的管理决策,从而实现对农业生产过程的控制。例如利用无线传感器网络获取作物生长环境的温湿度、光照强度等信息,并对各类信息进行分析,依据制定的管理策略,与传动机构进行通讯,控制传动机构,进行自动灌溉、施肥、加温、控光等,同时对异常信息自动报警[6]。

3 智慧农业物联网技术分析

3.1 信息感知技术

物联网技术是智慧农业的基础,而信息感知技术又是物联网技术的基础,信息感知技术是整个智慧农业中最基础的环节。该技术包括射频识别技术、全球定位系统技术、农业传感器技术、遥感技术等。

3.1.1 射频识别技术。射频识别技术是一种利用射频通信实现的非接触式自动识别技术,该技术与互联网、通讯等技术相结合,可实现全球范围内的物品跟踪与信息共享。射频识别技术在食品行业中主要应用于食品的跟踪和溯源。应用射频识别技术系统可确保食品供应链的高质量数据交流,可确保食品源的清晰,实现产品追踪,从而实现质量监控和追溯[7]。同时,射频识别技术与传感器技术相结合,可以感知食品加工和储藏过程中环境的状态信息,因为环境因素对食品品质影响很大,记录分析这些因素就显得十分重要。利用无线通信技术可以方便地把这些状态信息及其变化传递出来。

3.1.2 全球定位系统技术。全球定位系统(global positioning system,GPS)是美国从20世纪70年代开始研制,在1994年全面建成,可以在海陆空的三维空间中进行全方位的导航和定位。全球定位系统技术的定位定时功能能够实现对农田具体生产状况的跟踪与描述,同时辅助农业机械将农作物肥料等定点运送并喷洒到准确的位置[8]。

3.1.3 农业传感器技术。农业传感器技术是农业物联网的核心,主要用于采集各类农业信息,包括空气温度、湿度等环境指标参数,畜禽养殖业中的有害气体含量,种植业中的光、温、水、肥、气等参数,以及水产养殖业中的酸碱度、氨氮、溶解氧、浊度、电导率等参数。

3.1.4 遥感技术。遥感技术从不同高度的平台上,使用不同的传感器,对地球表层各类地物的电磁波谱信息进行收集,并进行分析处理。遥感技术利用地面目标反射或辐射电磁波的固有特性,通过观察目标的电磁波信息以达到获取目标的几何信息和物理属性的目的。在智慧农业采集地面空间分布的地物光谱反射或辐射信息,实施全面监测,同时根据光谱信息,进行空间的定性与定位分析,从而提供大量的田间时空变化信息[9]。

3.2 信息传输技术

农业信息感知技术在智慧农业中运用最广泛的是无线传感网络。无线传感网络[10]采用无线通信方式,由部署在监测区域内大量的传感器节点组成,负责感知、采集和处理网络覆盖区域中被感知对象的信息。蓝牙(bluetooth)[11]是一种短距离无线通信技术规范 ,能够实现数据和语音通信,蓝牙通信带宽为lMb/s,一个“蓝牙”主设备最多同时与7个其他的“蓝牙”设备通信,支持点对点和点对多的连接,使用灵活的无基站组网方式。目前主要的应用场景有数码相机图像传输,计算机、手机等的交互会议,耳机、游戏机等的电子娱乐产品等,汽车产品等。Wi-Fi(wireless fidelity)是IEEE定义的无线网络通信的工业标准(IEEE802.11),主要特点是可靠性高、速度快,在开放的环境通信距离达到300 m以上,在相对封闭的环境里通信距离在100 m。组网灵活、成本低、可移动性好,与现有的有线以太网络非常容易整合。但是其明显的缺点是信号强度影响其稳定性,抗干扰性不好,且设备的功耗非常高。目前,Wi-Fi应用在如手机、PAD等的便携式电子产品中,有效解决校园网或办公室无线局域网的无线接入问题[12]。

3.3 信息应用技术

信息处理技术是物联网技术的最后环节,也是智慧农业实现自动控制的基础,应用的技术有云计算、决策支持系统、专家系统、地理信息系统、智能控制技术等技术。

3.3.1 云计算。云计算指将计算任务分布在资源池上,使应用系统实现根据需要获取存储空间及软件服务。面对智慧农业中的大量数据,云计算可以实现信息存储资源和计算能力的分布式共享,超级强大的信息处理能力同时也为大量信息提供支撑[13]。

我国近年来开展云计算对于农业生产的应用,在农业相关领域的应用都有研究。目前农业云体验平台包括农业信息智能搜索与服务平台和绿云格平台,通过这2个平台能够实现农业市场信息和实用技术的准确获取与分析,为农业主管部门、企业及农户个人提供个性化检索,同时提供全方位的农业生产环境远程管理服务[14-18]。

3.3.2 决策支持系统。决策支持系统以人机交互方式进行半结构化或非结构化决策。农业决策支持系统在农业节水灌溉优化、大型养鸡厂管理、小麦栽培、饲料配方优化设计、农机化信息管理、土壤信息系统管理上进行了广泛应用研究[19]。农业决策支持系统可对地方农业生产过程进行分析和模拟,预测不同决策方案的效果与效益, 从而优化农业生产决策。目前决策支持系统技术在农业结构优化、产量预测及潜力分析、确定农业投资规模等方面得到广泛应用[20]。

3.3.3 专家系统。专家系统模拟人类专家解决各种复杂的实际问题,具有与专家水平解决问题的能力。该系统在利用农业专家多年积累的知识与经验的基础上,对需要解决的农业问题进行分析判断,提出决策,使计算机在农业生产中起到人类农业专家的作用[17]。例如专家系统在榨菜病虫害防治中的应用,为农户和科技人员提供了病虫害信息交流平台,为菜农提供了病虫害防治的科学指导,现实意义显著[18]。

3.3.4 地理信息系统。地理信息系统主要用于建立自然条件、生产条件、土壤数据、作物病虫草害发展趋势、作物产量等的空间信息数据库,为分析差异性和实施调控提供处方决策方案[15]。利用地理信息系统进行土壤适宜性评价就是将土壤质地、类型、氮磷钾含量、有机质含量等土地数据进行整合,并赋予权重,再进行分析运算,生成土壤适宜性评价图,也可建立数学模型,实现土地适宜性的分级[16]。

3.3.5 智能控制技术。智能控制技术主要用来解决用传统方法无法顺利解决的复杂问题。目前智能控制技术的主要研究方向包括神经网络控制、模糊控制、综合智能控制技术,并在设施园艺、大田种植、畜禽养殖等方面得到初步应用[20]。比如,用神经网络分析甜瓜质量的物理测量指标与人们感官对甜瓜香味、甜度、酸度、组织结构、水分等质量指标的相关关系,来预测甜瓜质量。将实测物理标与人的感官分类联系起来,对食品质量进行预测,在食品工业中有很重要的意义。

4 智慧农业物联网技术应用现状

4.1 传感器在温室中的应用

为了提高农作物的产量和质量,优化作物品种,使作物的生长不受或少受季节的影响,现代化设施农业快速发展,它的主要发展形势是温室大棚,相配套的温室栽培技术也得到了广泛的关注和应用。该种技术主要是利用对温度、湿度、光照、喷灌量、通风等影响因素的测量和控制,实现对作物生长的精准控制。

在此过程中,对各类参数的测定采集尤为重要。主要是采用温度、湿度、光照、CO2、土壤湿度、土壤养分等各类传感器检测农业环境中的各项物理量参数,并根据生产控制策略,实现生产自动控制,保证农作物有一个良好的、适宜的生长环境[21]。

4.2 传感器在自动化农业机械中的应用

由于农业现代化的快速发展,对农业机械精度的要求也越来越高,对于机械各部分强度的测量也就尤为重要。例如,应用传感器技术测定农机的性能指标及零部件的结构强度;用应变式传感器测定犁体的阻力,为犁体曲面设计提供科学依据;播种机上安装的光电传感器可随时监测机器是否堵塞,保证农作物出苗率;自动灌溉装置中土壤温度、湿度传感器的使用,在保证农作物灌溉用水的同时实现节约用水[22]。

4.3 遥感技术在农业中的应用

遥感技术是一种现代测量技术,它是通过非接触、少破坏的方法对农林业等方面信息进行测定获取,它可以测定农作物品种的分布区域、植物品种的分类、土地肥沃程度、植物生长情况、植物受灾情况等,然后通过遥感所获得的信息来确定最合适的种植和最适度的施肥,这也就在一定程度上控制了农药化肥的不合理使用,防止了环境污染,从而获得更高的效益[23]。

5 智慧农业物联网技术存在的问题

农业物联网是一项创新型现代化信息集成技术,正在不断改变着我国传统农业的面貌,即便如此,农业物联网也遇到了一定的问题[24]。

5.1 物联网设备概念性产品多于实际应用性产品

我国农业物联网设备主要产自高校院所的实验室,很多都是学生们研究出的概念性产品,实际应用推广并不高,且实验室理论研究与农业实际应用差异较大。

5.2 不计成本的示范对农业物联网的推广并没有实际价值

物联网技术虽然说是在农业中要进行普遍推广,但更多的注重试点示范而不看重经济指标,尚无法实现大规模商业化应用,实际价值不大。由于我国农业仍处于弱势地位,物联网在我国农业领域的应用受限,发展初期同时受到资金的限制。

5.3 资金投入回报周期长,不利于物联网推广

农业物联网基础设施建设具有一次性投入大、回报周期长的特点。在农业整体比较效益低、以小农户分散经营为主的情况下,很多物联网设备因价格偏高很难大面积推广。

5.4 传感器的缺乏

目前我国农用传感器种类较少,主要集中在温度和湿度监测方面,对其他农业生产环境因子的监测传感器严重不足,对生物本体的感知传感器则更少。同时,国产传感器性能不稳定,监测数据的准确性不足,且器材寿命较短[25]。

6 结语

智慧农业是我国未来农业发展的主要趋势,是未来农业的发展方向,随着信息技术的进一步发展,物联网技术会得到更大范围的应用。现在,已经可以看到物联网技术为智慧农业带来更多智能化和信息化,而现在要做的就是提升农业物联网的自主创新能力,加快低成本、高可靠性、使用期限长的传感器开发,加强 Zig-Bee技术等新型无线传输技术在农业上的应用研究,提升专家系统等智能决策系统的实用性和可靠性,通过单项技术突破与多项技术集成应用并举,加快技术研发应用步伐,使基于物联网的智慧农业可以在农村地区大范围使用,这是我国未来农业的趋势和目标。

7 参考文献

[1] 范珊珊,李忠,柴荣.物联网在智慧农业中的应用研究[J].计算机光盘软件与应用,2013(13):41-42

[2] 彭程.基于物联网技术的智慧农业发展策略研究[J].西安邮电学院学报,2012(2):94-98.

[3] 李道亮.物联网与智慧农业[J].农业工程,2012(1):1-7.

[4] 施连敏,陈志峰,盖之华.物联网在智慧农业中的应用[J].农机化研究,2013(6):250-252.

[5] 段益群,刘国彦.基于物联网的智慧农业大棚系统设计[J].软件工程师,2013(12):35.

[6] 顿文涛,赵玉成,袁帅,等.基于物联网的智慧农业发展与应用[J].农业网络信息,2014(12):9-12.

[7]王文洋.基于RFID技术的物联网探析[J].科技信息,2009(26):587.

[8] LAN Bin.The establishment of agriculture information system based on GIS and GPS[J].ICS REI,2013(2):506-511.

[9] 刘晓明.信息技术打造“精准农业”[N].中国电子报,2004-09-10.

[10] YAN Ji-Feng,ZHANG Jian-Gang,DONG Fei-You.Wireless Sensor Traceability Algorithm Based on Internet of Things in the Area of Agri-culture[J].Sensors & Transducers,2013(15):14.

[11] 杨宝祝.我国农业信息技术与农业信息化发展战略研究[J].农业网络信息,2007(9):4-8.

[12] XIAO Yan,AI Dong-Sheng,XU Feng,ct al. Ag-riculture Intelligent Control System Algorithm for Wireless Sensor Networks Based on Internet of Things[J].Sensors & Transducers,2013(15):811.

[13] 赵丽.浅议物联网在农业领域的应用及关键技术要求[J].电信科学,2011(增刊1):71-74.

[14] 云计算在农业上的应用[J].黑龙江粮食,2014(4):25.

[15] 赵赏,钟凯文,孙彩歌.GIS技术在农业领域的应用[J]. 农机化研究,2014(4):234-237.

[16] 王璐,翟义欣,王菲.地理信息系统(GIS)的发展及在农业领域的应用现状与展望[J].农业环境科学学报,2005(增刊1):362-366.

[17] 刘卫华,张顺,许家来,等.农业专家系统应用现状与前景展望[J].农业灾害研究,2015(2):52-54.

[18] 石琳,陈帝伊,马孝义.专家系统在农业上的应用概况及前景[J].农机化研究,2011(1):215-218.

[19] 章牧,陈飞香,刘文玺,等.农业决策支持系统的概念设计与应用[J].地球信息科学,2005(2):58-64.

[20] 张波,罗锡文.ICT在精细农业中的应用与展望[C]//中国农业工程学会(CSAE).中国农业工程学会2011年学术年会论文集,2011:5.

[21] BIGGS P,SRIVASTAVA L.ITU Internet reports 2005:the internet of things[M].Geverna:International Telecommunication Union,2005.

[22] HE Yong,NI Peng-cheng,LIU Fei.Advancement and trend of internet of things in agriculture and sensing instrument[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(10):216-226.

[23] 刘歆.遥感技术在农业中的应用与发展[J].科技创新导报,2011(27):144-145.

篇9

关键词:物联网技术;智能农业;应用

随着社会的飞速发展和科技水平的不断提高,信息化产业在继计算机、互联网以及移动通信后出现了第三次改革的浪潮----物联网技术。物联网技术从字面意思理解为两个物体相互连接的互联网,就是将任意的两个物体通过物联网技术连接在一起,以达到传递信息的目的。智能农业的物联网技术就是指在现代农业中,通过物联网技术中的各种传感器构成传感器网络系统,通过这个系统对农作物科学监测、科学种植、科学管理,农户足不出户的就可以对农田进行管理,这样既可以解放劳动力,又利于提高农作物的产量,推动农业现代化的发展。

一、物联网技术在智能农业中发展现状

随着物联网技术的不断深入发展,一些发达国家已经在农业的生产、流通领域和养殖业方面逐步推广这项技术。智能农业的物联网技术主要包括信息感知、信息传输、信息应用三个结构层面。信息感知技术就是通过把各种传感器的节点相互连接来获取农田的基本数据,及时掌握农田的信息变化。信息传输技术就是通过各种方式利用传感器接收信息,或者通过通信协议信息,使接收信息的范围进一步扩大。信息应用技术就是把获取的数据进行整理汇总,归纳出科学管理方法,用于指导农田管理。

二、物联网技术在智能农业中的应用

随着中国经济近30年来的快速发展,农业生产资源紧缺和农业对资源消耗过大的问题对农业发展的制约愈发明显。农业物联网将先进的传感、通信和数据处理等物联网技术应用于农业领域,构建智能农业系统,是解决农业发展滞后问题的有效方法。

1.在农业资源利用方面的应用。近年来,随着物联网技术的发展,我国充分利用GPS定位技术对土壤含水量、土壤温度、光照进行采集,对农作物施肥、病虫害的防治、农田管理以及农业环境污染状态进行监测以获取更准确的信息。通过这些信息的分析,可以归纳总结出解决方法,用于指导农业生产管理。

2.在农业生态环境方面的应用。我国在重视农业发展的同时,也非常注重对农业生态环境的保护。我国在建立了农业环境网络监测系统,对各地的农业生态环境进行全天候的监测,并建立了对大气和水环境的监测系统,实时监测一氧化碳、二氧化碳和二氧化硫等有害气体和水温、水质等参数。

3.在农业生产管理方面的应用。我国把农业管理经验与高新技术紧密相结合,以实现农业生产精细化管理。我国在水产养殖方面已经建立了智能环境监测系统,能实时动态的监测水产品生长情况,及时发现问题,快速找到解决方法。同时我国设施农业方面也取得进展,研制出了合理分配农机资源的调度系统,尤其在秋收时期,能合理调度各地区的农机具,使农机具得到最大限度的利用。

4.在农产品安全溯源方面的应用。随着人们生活水平和质量的提高,人们对食品安全的关注度越来越高。为了保证人们能吃上放心的食品,国家建立了农产品安全溯源系统。这个系统主要是通过条码、IC卡等技术,对农产品从源头开始直到到消费者手中都进行全程监测,消费者可以随时随地的查看农产品每个流程的基本情况。

三、物联网技术在智能农业中的发展趋势

现在物联网技术只是应用在农作物的育秧方面,即通过电脑对田间设备实行远程控制,及时了解田间的温度、湿度、光照等数据,当出现警戒值时,自动调控设备进行智能调节。在不久的将来,我们还可以通过更精密的传感器和更严密的控制系统,对各个阶段获得的数据进行科学分析,以期得到更好的结果。未来几年,在农作物的灌溉阶段,我们可以利用物联网技术,并结合水库的水位、天气和农田干旱情况,进行合理灌溉。在农作物的收割阶段,可以利用农机资源的调度系统,及时掌握农机具的工作情况和具置,对农机具进行合理调度和实时监控,以实现农机具工作效率最大化。在农作物运输阶段,利用车辆的定位系统,及时了解车辆的行进路线和运行状态,通过实时画面和传回的数据了解车厢内的情况,及时调整车厢的温度,并安装防盗系统。在农作物的存储阶段,通过全球眼或电脑进行远程控制,及时了解粮库内温湿度的变化情况,并通过自动调节系统以达到室内温湿度的平衡,为把粮食安全送到消费者手中保驾护航。在农产品加工阶段,继续加大对食品溯源系统的开发力度,使其广泛应用到对绿色食品的加工检测上,用于乳制品生产的追溯源头上,用于出口农产品的生产及贸易上。当然,未来物联网技术在智能农业发展中的应用还很多,还会朝着更加智能化、现代化的方向发展。

四、结语

物联网技术属于一种新型的技术,属于智能技术的核心,也是新型网络技术的典型使用,但是,就现阶段我国的实际情况来看,物联网技术还未形成系统的技术体系。本文从实用性角度出发,针对物联网技术在我国农业中的应用进行了深入的分析,结果显示,物联网技术在农业中有着巨大的应用前景,相信在不久的将来,物联网技术定可以成为辅助我国农业技术水平发展的核心技术。

参考文献:

[1]耿军涛,周小佳,张冰洁.基于无线传感器网络的大气环境监测系统设计[J].西华大学学报(自然科学版).2007(04)

[2]周志德,刘全胜,陈玉平,蔡建军.为无锡新兴产业——物联网培养高技能人才并提供技术服务[J].无锡职业技术学院学报.2010(04)

[3]田义海.物联网技术在铁路运输中的运用研究[J].科协论坛(下半月).2013(02)

篇10

关键词:物联网技术;设施农业;应用

中图分类号:S126 文献标识码:A 文章编号:1001-3547(2016)20-0041-03

近年来,随着农业物联网技术的不断发展,其应用已经涉及农、林、牧、副、渔及农产品加工、运输与流通等多个领域。其中以设施农业的发展最为迅速,这是因为设施农业是在人为可控环境下进行的农业生产,更有利于物联网技术发挥其精准高效的特性,因此设施农业物联网技术的推广应用成效最为显著,前景十分广阔。笔者从事设施农业生产多年,致力于研究物联网技术在设施农业中的应用,通过查阅资料、走访调查,从多个角度阐述物联网技术在设施农业中的发展、应用情况,以期为我国农业的发展贡献自己的绵薄之力。

1 物联网的概念

物联网(Internet of things)一词是美国麻省理工学院的Kevin Ash-ton教授在20世纪90年代研究无线射频技术时提出来的,通俗的讲,其是指在“互联网概念”基础上,物与物之间进行信息交换和通讯的一种网络概念。其中射频识别(RFID)是能让物品“说话”的一种技术,通过无线数据通信网络把物品信息集中到处理系统实现分析和处理,并且能通过开放性的计算机网络实现信息的交换和共享。2005年国际电信联盟(ITU)的《ITU互联网报告物联网》中,物联网的定义和范围进一步扩大,是指由RFID、红外感应器、全球定位系统、激光扫描器等信息传感设备按协议把任何物品互相连接,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络概念[1]。

所谓农业物联网是指物联网技术在农业中的应用,具体有农作物生产、农产品经营、设施管理和信息服务等,它利用各类传感设备,采集相关信息,通过无线网络、移动通信无线网和互联网传输,在智能化操作终端显示,实现了农业产前、产中、产后的全过程监控,以利于我们科学决策[2]。

2 物联网技术在国外设施农业中的应用现状

物联网技术诞生在国外,因此国外设施农业物联网发展较快,20世纪90年代后期就有较多报道,如英国研发的禁止外来人员非法进入设施的警报系统和温室内温度调节系统、远程灌溉系统等;日本研究名为“Open Plannet,OP”的监控系统,实现了温室环境和视频的实时动态监控[3];荷兰研究的花卉植物生长控制系统;美国加州研发的草莓培育物联网系统,能够实时监测草莓生长情况及土壤、环境空气的温湿度变化,自动控制施肥与浇水。

在体会到物联网技术的优势后,一些发达国家大面积推广这一技术,除对农作物的生长环境进行监测外,还对使用农业机械、后续的加工、物流进行监控,使物联网技术的应用更加完善[4]。应用成熟的有英国的农业管理与决策系统、美国的作物决策系统等[2]。其中,尤其值得我们学习的是这些国家将农业知识与应用系统有效结合,采集大量第一线数据,为育种、土壤水肥管理、病虫害防治、农产品采收加工、物流等全过程提供信息化的服务。

3 我国物联网的研究

我国物联网的研究晚于国外发达国家。2011年,国家农业部了《全国农业农村信息化发展“十二五”规划》,标志着国家级物联网应用示范工程立项并开始启动,2013年,上海、天津、安徽成为我国农业物联网区域试点[5],标志着我国农业物联网发展驶入快车道。

3.1 我国物联网技术发展情况

据统计,全国已有8个省(区、市)承担了国家级物联网应用示范工程和农业物联网区域工程,通过实施取得了阶段性成果,也带动了周边地区农业物联网的发展。其中有代表性的如北京市开展了农业物联网在农业用水管理、环境调控、设施农业等方面的应用示范[6];江苏省开发了基于物联网的智能农业管理平台,侧重对设施农业、猪的养殖环境监控,实现了自动化,并开始推广[7];天津市建设了总面积逾667 hm2的核心试验基地,开展了约

1 000栋节能温室的示范应用,建成了农业物联网平台,研究了设施环境信息监督、智能化控制与管理等物联网技术。此外,国内许多企业也参与到农业物联网的研发中,如北京紫藤连线科技有限公司、大唐移动通信设备有限公司等在开发硬件的同时,还提出了整体解决方案,以适应客户的生产需要[8]。上述系统的基本结构类似,如图1所示,即在温室中安装传感器,通过无线网络与手机网络、互联网相连,使用户可以通过手机或电脑访问该网络,实时监控温室的情况,如温度、湿度、作物生长等,也可以与专家在线交流。

3.2 物联网技术在设施农业中的应用

物联网技术是以传感器为基础,设施农业物联网常用传感器包括光照传感器、湿度传感器、压敏(流体)传感器以及生物生长特性传感器等。另外,CMOS图像传感器(摄像头)也可用于监控作物的生长。在设施内安装探测温度、湿度、光照、CO2浓度等的无线传感器、摄像头,将若干传感器与控制器链接,可实时查看温室内的温度、湿度、光照、CO2浓度等信息。

传感器采集数据后,通过数据采集传输技术、电子标签技术、云计算等,将数据反馈给控制系统和执行系统,由计算机控制温室的施肥、灌溉、门窗开闭、温度升降等。园区管理者可以通过手机或电脑了解温室的情况,并远程控制调节温度、湿度、光照、CO2浓度的设备,提高工作效率[9]。

采用传统种植方式,温室内用工多、工作繁重。而现在,工作人员通过物联网收集数据,可实时监控温室作物的生长参数,了解作物不同生长阶段应采取的栽培措施,及如何提高产品的营养品质、风味品质和外观品质、降低农药残留量等,实现栽培技术的精确控制。如遇到解决不了的问题,用户可以登录农业物联网信息平台,将相关农业生产现场参数上传到云计算中心,中心经过选择后,筛选出对应的专家进行指导,并将相关信息发送到用户的手机上,用户就可以与专家进行远程交流了。

4 设施农业物联网面临的问题及应对举措

从总体上看,设施农业物联网是一项复杂的系统工程,目前主要在设施农业示范园区中应用,距离大规模应用还有很长的路要走。笔者经过分析发现我国设施农业物联网存在以下3个方面的问题。

4.1 专用传感器的缺乏

如前所述,传感器是物联网技术的基础,但国内生产的农用传感器质量参差不齐,性能差、监测数据不准确且没有合适的标准,因此,传感器只得依赖进口。正如农业部信息中心主任李昌健所说:“我国农用传感器种类不到世界的10%,市场上主要为进口设备,应在覆盖面、适用性上下功夫[4]。”

我国相关企业、科研单位应加大传感器的研发力度,研制具有我国自主产权的农业传感器。

4.2 资金的缺乏

设施农业物联网要求有配套的基础设施,而这一建设需要的资金较多,维护更新的资金也较多,投资回报周期长。目前,我国的设施生产多以小农户为主,对于一家一户的经营来讲,物联网设施所需资金偏高[5],大面积推广仍有一定的难度,只有等经营达到一定的规模才有可能应用。

针对建设资金缺乏的情况,建议以政府投入为主,采取政府补贴的形式,据报道,有关部门正在准备建立农业信息补贴制度,以加快农业物联网的推广[5];同时应积极引入社会资金,使投资多元化。

4.3 软件产品研发的缺乏

目前国内设施农业生产中已有的物联网主要停留在数据监测与初步分析上,对数据进行二次加工的很少,没有实现真正意义上的智能控制,这实质上是缺乏相应的软件产品。

建议科研人员借鉴国外的经验,认真分析,结合我国农业物联网发展情况,开发相应的软件,对搜集的数据进行充分加工利用。

5 未来研究的方向

未来设施农业物联网的研究可以从以下5个方面入手。

5.1 打造一批农业物联网关键技术和设备

着力研制运行稳定、寿命长的传感器,开展农业物联网技术系统的自主研发,加强动植物生长过程的数字化监测。

5.2 注重数据的分析

通过分析各类型数据发现农作物生长规律,建立设施作物生长管理模式、病虫害防治模式等[10,11]。

5.3 研究和制定一批农业物联网行业标准

联合各单位,研究和编制农业领域专用条形码(一维码、二维码)、电子标签等的使用规范。

5.4 形成可推广的技术模式

针对设施农业、农产品质量安全、农产品电子商务等的监测监控,开发相应的全过程管理系统,构建全程技术服务体系。

5.5 培育农业物联网产业

按照引进、消化、吸收、再创新的模式,积极推进农业物联网设备制造、软件开发及相关服务,培育产业化研究基地、中试基地和生产基地,积极推广这一技术,促进其发展。

参考文献

[1] 姚世凤,冯春贵,贺圆圆,等.物联网在农业领域的应用[J].农机化研究,2011(7):190-192.

[2] 余欣荣.物联网改变农业、农民、农村的新力量农业物联网知识读本[M].合肥:安徽科学技术出版社,2012:63-64.

[3] 张唯,刘婧.设施农业种植下物联网技术的应用及发展趋势[J].科技广场,2012(1):238-241.

[4] 唐珂.国外农业物联网技术发展及对我国的启示[J].中国科学院院刊,2013,28(6):700-707.

[5] 乔金亮.物联网如何和农业更好结合[N].经济日报,2013-11-5(13).

[6] 许世卫.我国农业物联网发展现状及对策[J].中国科学院院刊,2013,28(6):686-692.

[7] 刘家玉,周林杰,荀广连,等.基于物联网的智能农业管理系统研究与设计――以江苏省农业物联网平台为例[J].江苏农业科学,2013,41(5):377-380.

[8] 李作伟.物联网技术在设施农业中应用的调查研究[D].郑州:河南科技大学,2012.

[9] 李作伟,丁捷,毛鹏军.设施农业物联网关键技术及工程化应用探讨[J].农业工程,2012(2):35-38.