欧姆定律规律总结范文

时间:2023-07-18 17:36:08

导语:如何才能写好一篇欧姆定律规律总结,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

欧姆定律规律总结

篇1

关键词:物理定律;教学方法;多种多样

关键词:是对物理规律的一种表达形式。通过大量的观察、实验归纳而成的结论。反映物理现象在一定条件下发生变化过程的必然关系。物理定律的教学应注意:首先要明确、掌握有关物理概念,再通过实验归纳出结论,或在实验的基础上进行逻辑推理(如牛顿第一定律)。有些物理量的定义式与定律的表式相同,就必须加以区别(如电阻的定义式与欧姆定律的表式可具有同一形式R=U/I),且要弄清相关的物理定律之间的关系,还要明确定律的适用条件和范围。

(1)牛顿第一定律采用边讲、边讨论、边实验的教法,回顾“运动和力”的历史。消除学生对力的作用效果的错误认识;培养学生科学研究的一种方法——理想实验加外推法。教学时应明确:牛顿第一定律所描述的是一种理想化的状态,不能简单地按字面意义用实验直接加以验证。但大量客观事实证实了它的正确性。第一定律确定了力的涵义,引入了惯性的概念,是研究整个力学的出发点,不能把它当作第二定律的特例;惯性质量不是状态量,也不是过程量,更不是一种力。惯性是物体的属性,不因物体的运动状态和运动过程而改变。在应用牛顿第一定律解决实际问题时,应使学生理解和使用常用的措词:“物体因惯性要保持原来的运动状态,所以……”。教师还应该明确,牛顿第一定律相对于惯性系才成立。地球不是精确的惯性系,但当我们在一段较短的时间内研究力学问题时,常常可以把地球看成近似程度相当好的惯性系。

(2)牛顿第二定律在第一定律的基础上,从物体在外力作用下,它的加速度跟外力与本身的质量存在什么关系引入课题。然后用控制变量的实验方法归纳出物体在单个力作用下的牛顿第二定律。再用推理分析法把结论推广为一般的表达:物体的加速度跟所受外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。教学时还应请注意:公式F=Kma中,比例系数K不是在任何情况下都等于1;a随F改变存在着瞬时关系;牛顿第二定律与第一定律、第三定律的关系,以及与运动学、动量、功和能等知识的联系。教师应明确牛顿定律的适用范围。

(3)万有引力定律教学时应注意:①要充分利用牛顿总结万有引力定律的过程,卡文迪许测定万有引力恒量的实验,海王星、冥王星的发现等物理学史料,对学生进行科学方法的教育。②要强调万有引力跟质点间的距离的平方成反比(平方反比定律),减少学生在解题中漏平方的错误。③明确是万有引力基本的、简单的表式,只适用于计算质点的万有引力。万有引力定律是自然界最普遍的定律之一。但在天文研究上,也发现了它的局限性。

(4)机械能守恒定律这个定律一般不用实验总结出来,因为实验误差太大。实验可作为验证。一般是根据功能原理,在外力和非保守内力都不作功或所作的总功为零的条件下推导出来。高中教材是用实例总结出来再加以推广。若不同形式的机械能之间不发生相互转化,就没有守恒问题。机械能守恒定律表式中各项都是状态量,用它来解决问题时,就可以不涉及状态变化的复杂过程(过程量被消去),使问题大大地简化。要特别注意定律的适用条件(只有系统内部的重力和弹力做功)。这个定律不适用的问题,可以利用动能定理或功能原理解决。(5)动量守恒定律历史上,牛顿第二定律是以F=dP/dt的形式提出来的。所以有人认为动量守恒定律不能从牛顿运动定律推导出来,主张从实验直接总结。但是实验要用到气垫导轨和闪光照相,就目前中学的实验条件来说,多数难以做到。即使做得到,要在课堂里准确完成实验并总结出规律也非易事。故一般教材还是从牛顿运动定律导出,再安排一节“动量和牛顿运动定律”。这样既符合教学规律,也不违反科学规律。中学阶段有关动量的问题,相互作用的物体的所有动量都在一条直线上,所以可以用代数式替代矢量式。学生在解题时最容易发生符号的错误,应该使他们明确,在同一个式子中必须规定统一的正方向。动量守恒定律反映的是物体相互作用过程的状态变化,表式中各项是过程始、末的动量。用它来解决问题可以不过程物理量,使问题大大地简化。若物体不发生相互作用,就没有守恒问题。在解决实际问题时,如果质点系内部的相互作用力远比它们所受的外力大,就可略去外力的作用而用动量守恒定律来处理。动量守恒定律是自然界最重要、最普遍的规律之一。无论是宏观系统或微观粒子的相互作用,系统中有多少物体在相互作用,相互作用的形式如何,只要系统不受外力的作用(或某一方向上不受外力的作用),动量守恒定律都是适用的。

篇2

本节内容前承电路、电压、电阻及电流表、电压表的使用,是前面电学知识的聚焦;后启电功、电功率,并为高中阶段学习闭合电路的欧姆定律、电磁感应定律、交流电等内容做了铺垫。甚至于对学生将来参加生产劳动也有指导作用,即使在电工技术电子专业等学习中,欧姆定律同样是必不可少的基础知识,其研究方法──控制变量法是学习关于电阻大小影响因素的研究方法的延续,是物理问题研究思想的再次体现。

二、学习任务分析

本节重点是欧姆定律的内容和公式。通过实验探究,归纳总结出欧姆定律,让学生领悟科学探究的方法,体验科学探究的乐趣,形成尊重事实、探究真理的科学态度,培养学生分析解决问题的能力;理解欧姆定律中电流I、电压U、电阻R的同一性是本节难点,在探究过程中通过适时引导、恰当点拨,利用实物电路使学生达到理解欧姆定律的目的。

三、学习者分析

学习了电路基础知识,学生产生了浓厚的兴趣,多数学生能正确连接电路元件,正确使用电流表、电压表和滑动变阻器,对于控制变量的研究方法也有所了解。学生有较强的好奇心和求知欲,他们渴望自己动手进行科学探究,体验成功的乐趣,但对于U、I、R三者关系知之甚少,规律性知识的概括往往以偏概全。他们的思维方式逐步由形象思维向抽象思维过渡,教学中让学生自主设计研究问题的方案,是发展学生思维的有效途径。

四、教学目标

⑴知识与技能

会用实验的方法探究电流与电压、电阻的关系;

理解欧姆定律的内容、公式;

培养学生的观察、实验能力和分析概括能力。

⑵过程与方法

通过实验探究学习研究物理问题常用的方法──控制变量法。

⑶情感、态度与价值观

通过探究过程,激发学生的学习兴趣。培养学生实事求是的科学态度;认真谨慎的学习习惯。

重点:欧姆定律的内容和公式;

通过实验使学生知道导体中电流与电压、电阻的关系。

难点:理解欧姆定律的内容;

弄清变形公式的含义。

五、教法设计

依据本节课的知识特点、教学目标和学生实际,确定本节主要采用实验探究法。把学生视为学习的主人,教师当好学习的组织者和引导者。探究式学习可以激活学生已有的知识,在探究新问题时使知识活化、重组,形成知识结构并向能力转化;让学生体会科学发现的全过程,从中感悟科学思想和科学方法。

六、教学准备

篇3

有效的教学应该是有序的,何为有序?对于具体的一节课而言,“起、承、转、合”几个环节环环相扣,相得益彰,那么概念图用于探究式教学的策略如何呢?

1教师精心准备

备课是上好一节课的前提,运用概念图组织探究式教学,首先就要求我们教师对教学内容需要的资源进行二次开发,尤其注重收集生活中的现象,借助于多媒体将这些资源呈现出来,既引出了探究课题,也激发了学生学习兴趣,多个有联系的资源同时呈现,这体现了构建概念图的意识和思想.同时,教学目标也可以借助于概念图完整地呈现.例如,探究欧姆定律,可以设置教学目标如图2所示.

2学生预习,初建概念图

课前预习对于一节课的学习效果而言,是至关重要的,学生通过自主预习对学习内容有一个大致的了解,那么这些内容之间及内容与原有知识之间存在怎样的联系呢?可以自己尝试着画概念图,将自己能够同化的概念课前消化一部分,同时将疑问暴露出来。例如,探究欧姆定律这节课,围绕中心概念“电流”,学生自主预习后可以构成如图3所示的概念图.

3新课引入,资源可视化

物理概念都理性化,为了便于学生内化和掌握知识,笔者认为我们课堂上给学生的学习资源一定要可视化,引入新课,可以用图片、录像、动画等媒体手段引入,也可以将自己收集到的资源以概念图的形式引入,展现给学生,帮助学生将新旧知识联系到一起.

4讲授新课,进行科学探究

探究式物理课学生的探究活动是主要内容,这个过程也是可以实现可视化的,可视化的思维过程让学生的实验方法有效地迁移到规律探究中来,当然这个过程要让学生自己来完成,切忌由教师越俎代庖,给学生留足思维的时间和空间,在学生思维出现困难时,给予必要的帮助或提示,将方法迁移过来,促使学生能够完成探究.例如,探究欧姆定律这节课,探究时涉及到控制变量法,那么如何探究呢?能够和前期哪些规律探究构成联系呢?引导学生边思考边构建概念图(图4).

5归纳总结,完善概念图

篇4

关键词:故事;欧姆定律;探究课堂;学习兴趣

亚里士多德说:“古往今来人们开始探索,都应起源于对自然万物的惊异。”对学生而言,这种惊异无疑会带动兴趣的产生,从而引发认知活动的展开。故事对学生而言,有着不可抵挡的吸引力,若将故事与物理相结合,引入课堂当中,不但能激发学生的学习兴趣,也能让学生在阅读故事、解决故事所包含的物理情境问题中,培养学生的分析、归纳能力与解决问题的能力等等。

新课程强调的探究学习要求学生在主动参与的前提下,根据自己的猜想或假设,在科学理论指导下,运用科学的方法对问题进行研究,在研究过程中获得创新实践能力、获得思维发展,自主构建知识体系。如何将探究过程渗透到课堂教学中,是众多教师亟待考虑的问题。笔者就将一则《如果你是柯南》的破案故事,引入初二下学期“欧姆定律及其应用”的学习中,以激发学生的学习兴趣,将物理问题插入故事情节中,经由学生的独立思考与分组讨论,体会物理问题的探究过程,促进学生对欧姆定律的理解与掌握,培养学生的问题解决能力,并借此开展了一节探究课堂。

一、抛出故事,引发学生的学习兴趣

欧姆定律,是学生在学习了电流、电压和电阻的概念之后所接触的第一条物理规律,也是初中阶段学生第一次应用物理公式通过计算来解决问题。欧姆定律是电学的基础,很多学生因为不能掌握欧姆定律的物理意义、灵活运用公式进行计算,而导致在后期的学习当中越来越困难。理解与灵活应用欧姆定律,是本节课的一个教学重点。

笔者所引入的故事情节中有四个人同时入住旅馆的晚上,店主的钻石不见了,警察介入此事并展开调查,四个人分别提供了不在场的证明,依次是在用电烙铁修收音机、用电热水炉烧水、电炉取暖和电饭锅煮饭,问:如果你是柯南,你能找出谁是小偷吗?

柯南作为一个卡通角色,学生对他追崇源自于柯南通过自己的智慧成功破获了众多案件,让学生为之着迷。本则故事则可以轻而易举打开学生的兴趣大门,吸引学生迫不及待地阅读故事情节,以柯南的角色投入破案,并思考如何解决故事结尾所提出的问题。

二、针对故事情节,提出问题,引发学生的思考

对柯南的故事,学生展现出了极大的兴趣,个别学生会在没读完之前,便迫不及待地说出自己所认为的那个凶手。

学生甲:熊仔是小偷,因为没有人会在旅馆里用电烙铁修收音机。

教师:这只是你自己的感觉而已,如果熊仔是一个修电器的师傅,就可以用电烙铁修收音机。

学生乙:小美是小偷。

教师:为什么?

学生乙:不知道,感觉像是小偷。

对初中生来说,他们的思维已经发展得较为完善,但是对于客观事实的判断,依靠的还是主观判断。对于学生众多的讨论结果,也有细心的学生会发现故事中还存在隐含的条件。此时,引导全体学生再次阅读故事,并告知他们:在故事或者是物理题当中,题目往往会包含隐含的条件,要通过细心的阅读才能发现。适当地引导学生可以让学生体会物理解题的过程及培养学生严谨的科学态度,鼓励学生针对自己的想法与周边的同学进行讨论。

讨论的过程可以更好地发挥学生的主动性、积极性,有利于培养学生的独立思维能力、口头表达能力,促进学生灵活地运用知识。

三、根据欧姆定律,解决问题、验证猜想,归纳并得出结论

学生经过再次阅读之后,在警察观察现场时发现了一个问

题:“家庭旅馆使用220 V的家庭电压,每个房间的电闸都标示房间规定最大电流是5 A。”

教师:房间的最大规定电流是5 A,这是什么意思呢?

不断地给学生提出问题,引发学生的思考。找到5 A所代表的物理意义,那学生就逐渐明白,如果四个人的房间中,谁的电流超过5 A,那么他就是小偷。接下来的问题就是如何计算房间的电流。学生会轻而易举地想到通过欧姆定律可以计算得出房间的电流值。经过一番讨论之后,将全班同学就近分组,引导学生在前面所学过的知识中找到不同电器的电阻值,给予小组适当的时间进行分组讨论与计算,带动小组间的交流与沟通,培养学生合作学习的能力。在讨论完毕后,让每个小组派代表来公布结论与理由,间接锻炼学生的总结归纳能力与语言表达能力。

在整个探究过程中,学生不仅找出了故事中的小偷,并且进一步巩固、应用了欧姆定律,更将其与生活实际紧密结合起来。此时,学生依然保持高涨的学习热情,表现出意犹未尽的感觉,更有学生认为如果多些类似的故事,物理就会变得更有趣,觉得学习物理并不是一件很难的事情。这个时候把握机会,引入关于欧姆定律应用的具体实例,以进一步强化对欧姆定律的运用。

在物理教学中,恰当地引入情景故事,不仅可以激发与提高学生的学习兴趣,还能够在故事中渗透科学的教育思想,引导学生探究并解决问题,锻炼学生的思维能力与自主建构知识的能力,进行有意义的学习。创设教学情境,引入包含物理知识的趣味故事,让学生从物理走向生活,并在生活中学习物理,加深对物理知识的理解与掌握,这也是新课标对物理教学的要求。

参考文献:

[1]褚国庆.在故事中学习物理:基于情境认知与学习理论的初中物理选修课的实践[D].南京师范大学,2007.

[2]林龙源.物理教学中故事式演绎[J].中学物理,2012(4):31-32.

[3]张凤英.利用物理故事进行物理教学的探讨[J].中学教学参考,2009(4):78-79.

篇5

一、教学目标

1、知识与技能

(1)能说出欧姆定律的内容、公式及其涉及的单位;

(2)理解欧姆定律,能进行欧姆定律公式的变形,理解应用公式时要注意“同体性”和“同时性”,会在新的问题情境中,应用欧姆定律进行解释、推断和计算。

2、过程与方法

(1)经历探究通过导体的电流与电压、电阻的关系的实验研究过程,从而能较熟练地运用图像处理实验数据,了解电流与电压、电阻间的正比、反比关系。

(2)初步学会在实验探究的基础上交流讨论,互相合作。

(3)学习用数学公式来表达物理规律的方法,体会这样做的优势。

3、情感态度与价值观:

结合欧姆当年研究电流、电压和电阻三者关系的简史,培养学生刻苦钻研、大胆探索的科学精神,同时让学生在自我实现中增强成功体会。

二、教学重点:

欧姆定律所揭示的物理意义及其数学表达式;

三、教学难点:

欧姆定律的实验设计及学生对实验数据的分析、归纳以及结论的得出。

四、教学器材:

调光灯、小灯泡、电池组、滑动变阻器、电流表、电压表、阻值分别为5Ω、10Ω、15Ω的电阻各一个、导线数根等。

五、教学过程

(一)设置物理情境进行讨论,提出问题。

如图的电路,你有哪些方法可以改变小灯泡的亮度?小组内讨论,然后进行交流。

学生的方法:①改变电源的电压,②改变定值电阻的阻值③串联一个滑动变阻器等。

实验验证,学生观察灯的亮度的变化

师:灯时亮时暗说明什么?

生:电路中的电流有大有小。

师:电路中电流的大小由哪些因素决定?

(二)大胆猜想,激活思维

鼓励学生大胆猜测:你猜电流的大小究竟由哪些因素决定呢?

学生分组讨论,教师适当提示。学生联系已学内容以及刚才的实验现象,猜想:电流与电压的大小有关,因为电压是形成电流的原因;电流与导体的电阻有关,因为电阻对电流有阻碍作用——教师针对学生的回答,给予肯定:最后,根据猜想师生共同得出结论:电路中的电流与电压、电阻两者有关:

过渡:到底有怎样的关系呢?

“创设情景——提出问题——猜想”这两步引起学生极大的兴趣,学生注意力高度集中,急切盼望问题的解决,产生主动探索的动机,

(三)设计实验

1、课件出示思考题

(1)根据研究电阻大小影响因素的方法,这个问题应采用什么方法研究?

(2)选择使用哪些器材?

(3)该实验应分几步,具体步骤怎样?

2、学生激烈讨论,明确本问题的研究方法:必须设法控制其中一个量不变,才能研究另外两个物理量之间的变化关系,即控制变量法。

学生讨论,提出本实验必须分两步来完成:第一步,保持R不变(确定应该用定值电阻而不用灯泡),研究I与U的关系;第二步,保持U不变,研究I与R的关系。对于第一步,改变U(用电压表测),观察I(用电流表测量),且电压的调节可通过:改变电池节数来实现(阻值为R的电阻直接接在电源两端),或者通过电阻与滑动变阻器串联,移动变阻器滑片来实现。

师生共同讨论:通过改变滑动变阻器的滑片改变电阻两端的电压比通过改变电池节数方案要好。

(四)分组合作,深入探究

在此环节中,学生以小组为单位,像科学家那样兴趣盎然地开始按拟定的方案实验,边做边想边记。教师巡视,注意他们的设计是否合理,仪器使用是否得当,数据记录是否正确,作个别辅导。

学生在教师的指导下,自觉、主动地和教师、教材、同学、教具相互作用,进行信息交流,自我调节,形成了一种和谐亲密、积极参与的教学气氛和一个思维活跃、鼓励创新的环境。学生的思维在开放、发散中涨落,在求异、探索中又趋于有序,这培养了学生的独立操作能力,发展了学生的思维能力、创造能力:

(五)综合分析,归纳总结

例2、家庭中使用的是交流电,当人体通过交流电的电流达到50mA时,就会导致人体呼吸麻痹、心室颤动。假定某人身体的电阻为2kΩ,算一算,当通过50mA电流时的电压是多大?

初次应用欧姆定律进行计算的计算题,规范解题的要求。

(七)课堂教学小结与延展:

(1)让学生回顾本课的探究过程:发现问题——进行猜想——探索研究——得出结论——指导实践,指明这是研究物理的基本思路;物理教学中应注意渗透科学研究方法,同时也进行学法指导和辩证唯物主义教育。

篇6

【关键词】物理 电路 电学

【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2013)30-0133-02

动态电路是指滑动变阻器滑片的移动或开关的闭合与断开引起电路的变化,通常考查电压表或电流表示数的变化情况。动态电路分析一直是电学主流题型之一,中考一般出现在选择、填空或实验题中。主要是考查学生对欧姆定律、电能、电功率的把握及其运用电学知识解决实际电路问题的能力。

一 如何解决此类问题

首先要分析电路是串联还是并联,各个电表分别测哪个用电器的哪个物理量。(1)若是通过移动滑片来改变电路,先分析电阻如何变化。若是串联电路,电阻的变化会引起电流的变化,再根据串联电路分压的规律(分压与电阻成正比)判断电压表的示数变化。(2)若是并联电路,根据并联电路中各支路两端电压相等,通过电压表的位置判断,一般情况下,此时电压表示数不变;再根据各支路工作互不影响,判断电流表的示数是否变化,最后再判断如何变化。(3)若是通过开关改变电路,需分别分析开关断开时和开关闭合时电路的连接情况,以及各个电表分别测什么,再对比电表示数的变化。

二 典型例题

下面例举两种典型例题以供参考。

1.滑动变阻器的滑片P的位置的变化引起电路中电学物理量的变化

第一,串联电路中滑动变阻器的滑片P的位置的变化引起的变化。

例1:如图1,是典型的伏安法测电阻的实验电路图,当滑片P向右移动时,请你判断电流表和电压表的变化。

分析:(先确定电路,再看电阻的变化,再根据欧姆定律判断电流的变化,最后根据欧姆定律的变形公式判断电压的变化。)此电路是串联电路,电流表测的是总电流,电压表测的是R1两端的电压。当滑动变阻器的滑片向右移动时,滑动变阻器的电阻增大,电路的总电阻增大,从而使电路中的总电流减小。因此,电流表的读数减小。根据欧姆定律U1=I总R1,R1两端的电压减小,因此,电压表的读数减小。

针对练习:

[练习一]在如图2所示电路中,当闭合开关后,滑动变阻器的滑动片P向右移动时( )。

A.电流表示数变大,灯变暗;

B.电流表示数变小,灯变亮;

C.电压表示数不变,灯变亮;

D.电压表示数不变,灯变暗。

[练]在如图3所示电路中,当闭合开关后,滑动变阻器的滑动片P向右移动时( )。

A.电压表示数变大,灯变暗;

B.电压表示数变小,灯变亮;

C.电流表示数变小,灯变亮;

D.电流表示数不变,灯变暗。

第二,并联电路中滑动变阻器的滑片P的位置的变化引起的变化。

例2:如图4,当滑片P向右移动时,A1表、A2表和V表将如何变化。

分析:(先确定电路,然后看准每个电表分别测的电压和电流值,再根据欧姆定律判断变化,欧姆定律无法判断的再用电路的电流、电压、和电阻的关系判断。)此电路是并联电路,电压表测的是电源电压,电流表A1测的是支路上通过R1的电流,电流表A2测的是总电流。当滑动变阻器的滑片向右移动时,滑动变阻器的电阻增大,导致并联电路的总电阻增大,因此电路中的总电流减小,电流表A2的读数减小。由于定值电阻R1的阻值和它两端的电压保持不变,根据欧姆定律通过R1的电流不变,因此,电流表A1的读数不变。由于电压表测的是电源电压,所以电压表的读数也不变。

针对练习:

[练习三]如图5,当滑片P向右移动时,A1表、A2表和V表将如何变化?

[练习四]如图6所示的电路中,电源电压保持不变,闭合开关S,当滑动变阻器的滑片P向右移动时,电流表A1的示数如何变化?电压表V与电流表A示数的乘积将如何变化?

2.开关的断开或闭合引起电路中电学物理量的变化

例3:在如图7所示的电路中,开关K由断开到闭合时,电流表的示数将 ,电压表的示数将 (选填“变大”、“变小”或“不变”)。

分析:(先画出开关断开和闭合时的等效电路,然后再根据欧姆定律判断。)

如图8所示,开关断开时电阻R1和R2构成串联电路,电流表测的是总电流,电压表测得是R1两端的电压。开关

闭合时,整个电路只有一个电阻R1,电流表测的是总电流,电压表测的是R1两端的电压,也是电源电压。

如图9所示,当开关由断开到闭合时电路中的总电阻减小,所以电路中的总电流增大,电流表的读数增大。由于串联电路是分压电路,所以电压表的读数增大。

针对练习:

[练习五]在图10中,灯泡L1和灯泡L2是 联连接的。当开关K由闭合到断开时,电压表的示数将 ;电流表的示数将 (选填“增大”、“不变”或“减小”)。

[练习六]如图11所示,电源电压不变,R1、R2为定值电阻,开关S1、S2都闭合时,电流表A与电压表V1、V2均有示数。当开关S2由闭合到断开时,下列说法正确的是( )。

A.电压表V1示数不变;

B.电流表A示数不变;

篇7

沪科版第十四章探究电路第四节电阻的串联和并联。

2 教材分析

《电阻的串联和并联》是九年级第十四章《探究电路》第四节的内容。本章内容充分体现了课标提出的从生活走向物理,从物理走向社会,注重多元探究等基本理念。本节教学内容不仅是对前面所学的串联电路和并联电路的电流、电压特点以及欧姆定律的重要应用,同时也是今后学好电功、电功率的重要基础,更是培养学生“等效替代”思想和实验探究与理论推导相结合思想的重要载体。

3 教学目标

3.1 知识与技能。①通过实验和理论推导理解串联和并联电路的等效电阻的计算公式。②会利用串联、并联电路总电阻的知识,解答和计算简单的电路问题。③通过实验探究,认识总电阻与分电阻的“等效替代”关系。

3.2 过程与方法。①培养学生积极参与科学探究活动,主动进行交流与讨论的学习方法。②能用等效替代的思想学习物理知识。③能把物理概念与生活、生产实际相结合。

3.3 情感态度价值观。激发学生对科学的求知欲,通过经历基本的科学探究过程,学习科学探究方法,发展初步的科学探究能力,形成实事求事、尊重自然规律、乐于参与科学实践的科学态度和科学精神,同时认识交流和合作的重要性。

4 教学重点

通过实验法和理论推导法并举掌握串联电路和并联电路总电阻的计算方法。

5 教学难点

借助等效替代的思想分析串联、并联电路的电阻特点。

6 教学准备

学生电源、演示电流表、20欧定值电阻二个、5欧定值电阻二个、10欧定值电阻一个、导线、开关等。

7 教学流程

事例引入——趣味探究——小组讨论——实质升华——总结反馈。

8 教学过程

8.1 事例引入。师:同学们,你们喜欢足球吗?(停顿)现假设你们正在看一场精彩的足球比赛,突然电视机坏了,经检查里边一个10欧定值电阻出现了问题,而身边现在只有20欧的电阻和5欧的电阻若干,你有办法立即解决问题吗?(最好设计一个多媒体动画调动学生学习热情)

生:(讨论并结合前面电路的串联、并联知识回答)把电阻串联,把电阻并联。

师:把电阻串联、并联后能行吗?电阻串联、并联后他们对电路的控制作用难道不会发生改变吗?

8.2 趣味探究。

师:下面我们就用一个有趣的实验来验证一下大家的想法是否能够实现。

演示实验(实验设计如图1,电阻装在一个密封的盒子里面)

图1

分别接通A、B、C以及所对应接线柱,让同学们观察电流表的读数。

师:同学们,刚才你们观察到电流表的读数有什么样的特点?

生:三次实验电流表读数相等。

师:那里面的电阻是怎样的呢,也相同吗?

打开盒子让学生观察里面电阻的结构,并通过里面实物讲解相关概念:

电阻串联:两个(几个)电阻首尾相连

电阻并联:两个(几个)电阻首首相连

师:我们刚才经过实验发现两个电阻并联或两个电阻串联以后对电路的控制作用可能与单独一个电阻对电路的控制作用是相同的,在实际生活中我们就可以用这两个并联或串联后的电阻去替代那一个电阻,这时我们就可以说这一个电阻是那两个(几个)电阻的总电阻。

师:同学们再仔细观察,两个电阻串联后总电阻如何变化;两个电阻并联后总电阻如何变化?

生:通过观察讨论得出初步结论:

两个电阻并联后总电阻小于其中任何一个分电阻;两个电阻串联后总电阻大于其中任何一个分电阻。

8.3 小组探讨。

师:同学们,通过刚才的分析我们已经得到了电阻串联、并联之后总电阻大小的一个定性结论,那么电阻串联、并联之后总电阻的大小应如何计算呢?下面就请大家通过小组合作的方式结合前面所学的欧姆定律以及串、并联电路的电流、电压特点解决这一问题。

8.3.1 串联电路的总电阻。

师:请结合欧姆定律以及串联电路的电压特点用下图的字母表示出总电压与各电阻两端电压的关系。

图2

生:运用欧姆定律表示出:U1=IR1 U2=IR2 U=IR、

运用串联电路电压特点得出:IR=IR1+IR2

结论:电阻串联,其总电阻等于各个分电阻之和,即:R总=R1+R2+……

8.3.2 并联电路的总电阻。

师:请结合欧姆定律以及并联电路的电流特点用下图的字母表示出总电流与各支路电流的关系。

图3

生:运用欧姆定律表示出:I=U/R,I1=U/R1,I2=U/R2

运用并联电路电流特点得出:1/R=1/R1+1/R2

结论:电阻并联,其总电阻的倒数等于各个分电阻倒数之和,即:1/R总=1/R1+1/R2+……

8.4 实质升华。

师:刚才我们已经通过实验和理论推导两种途径得出了电阻串联和并联之后总电阻的变化规律。同学们,你们知道这是为什么吗?

教师引导学生进一步观察串联、并联后的电阻的长度和横截面积的变化情况并结合前面所学影响电阻大小的因素的相关知识得出结论。

生:电阻串联相当与增加了导体长度,所以阻值会增加;电阻并联相当于增加了电阻的横截面积,所以阻值会减小。

8.5 总结反馈。①请同学们设计出两种方案解决课题引入时提出的问题。②小组讨论本堂课的收获,及时解决新生成的问题。

附板书设计:

§14.4电阻的串联和并联

①串联电路的总电阻等于各个分电阻之和,R总=R1+R2+……

②并联电路的总电阻的倒数等于各个分电阻倒数之和,1/R总=1/R1+1/R2+……

③实质 串联:增加导体长度

并联:增加导体横截面积

篇8

一、物理规律教学的重要性

物理规律是物理学知识体系的核心构件,物理规律教学也是中学物理教学成功的关键环节。

1.物理规律是物理学知识体系的核心

物理学的知识体系是以一系列的物理规律凝聚而成的。在物理学发展史上,人们正是以一系列的物理规律为中心而建立了物理学的各个分支体系。例如光的反射定律和折射定律是光学知识的中心,欧姆定律、串并联电路的规律和焦耳定律是电学知识的中心等等。

2.使学生掌握物理规律是物理知识教学的中心任务

学习和研究自然科学,中心任务是掌握自然规律并用来为人类服务。物理学是自然科学中的一门重要学科,学习物理知识的中心任务应该是掌握物理规律并应用于实际。

在物理教学中,要使学生建立概念和掌握规律之间存在着不可分割的、辩证的联系。一方面,形成清晰、准确的概念是掌握规律的基础,如果概念模糊不清,就谈不上准确地掌握规律;另一方面,掌握了物理规律又可以深刻而全面地理解概念。例如,只有理解力的三要素概念(大小、方向、作用点),才能理解同一直线上或互成角度的二力合成的规律(如图1)和二力平衡条件(如2)等;反之,通过掌握力的合成规律和二力平衡条件,又能更深刻地理解力的三要素概念。所以,物理规律的应用比物理概念的应用更为广泛,理解和掌握物理规律才能更有效地利用物理知识去解决实际问题。由此可见,使学生掌握好物理规律是物理知识教学的中心任务。

二、物理规律的特点及其分类

1.物理规律的特点

物理规律反映了在一定条件下某些物理量之间内在的必然联系,它是客观存在的,不以人的主观意志而转移。它具有以下特点:

(1)物理规律只能发现,不能创生。

任何客观规律都只是被发现,而不能被“创生”,但不同学科的规律被认识与发现的途径又是不尽相同的。物理学规律揭示的是物质的结构和物质运动所遵循的规律,因此必然与人们认识物理世界的途径有关,即都与观察、实验、抽象、思维、数学推理等有着密不可分的联系。

(2)物理规律反映了有关物理概念之间的必然联系。

任何一个物理规律,都是由一些概念组成的,这些概念常常表现为物理量,可以用一些数字和测量联系起来,物理规律则把概念之间的一定关系用语言逻辑或数学逻辑表达出来。

例如,欧姆定律是由导体、电流(I)、电压(U)、电阻(R)等概念组成的,研究对象是导体,电流(I)、电压(U)、电阻(R)是3个可测量的物理量。它表明了通过研究对象(导体)的电流与研究对象(导体)的电阻(R是反映研究对象本身的量)和加在研究对象(导体)两端的电压(U)之间的定量关系。

2.物理规律的分类

在大千世界里,物理现象千姿百态,物理运动各有不同的形式,有宏观的、微观的,有机械运动现象、热现象、光现象、电磁现象等,所以物理规律就有多种多样,物理规律也就有不同的表述形式。中学物理规律主要包括以下类型:

(1)物理定律

一般是直接从观察实验的结果中概括总结出来的物理规律,如牛顿运动定律、能量转化与守恒定律、欧姆定律、光的反射定律、焦耳定律等。

(2)定理、原理

定律和原理一般是从已知的物理规律或理论出发,对某特定事物或现象进行演绎、推理,从而得出在一定范围内有关物理量之间的函数关系或新的论断,并经得起实践检验的物理规律。

如阿基米德原理(F浮=G排=ρ液gV)、功的原理等。

(3)方程、公式

这是利用数学式子来描述物理量之间关系的物理规律。

如串联和并联电阻的计算公式:R=R1+R2+…+Rn;

1/R=1/R1+1/R2+…+1/Rn。

(4)法则、定则

即利用特定方法表示的物理规律,如矢量合成的平行四边形法则、右手定则和左手定则等。

(5)其他

如力(包括二力、共点力)的平衡条件、串联电路的分压规律、并联电路的分流规律、平面镜和透镜成像规律、晶体融化和凝固规律、液体压强规律等。

三、物理规律教学的一般过程

人类在研究和探索物理规律的过程中逐步形成了物理学研究的基本方法。学生认识物理规律的过程也相当于一个探索与研究的过程,因此,物理规律的教学方法与物理学的研究方法大体上是一致的。

1.提出问题,创设便于发现规律的物理环境

作为新授课的物理规律的教学,首先要按照导入新课的方法,以提出问题的形式导入学习物理规律的课题。教师要有意识地提供一个便于探索规律、发现规律的物理环境。创设物理环境常用的方法有实验法和举例法。

(1)实验法

教师借助于演示实验或学生实验,使物理现象或过程展示出来,让学生观察。例如讲授牛顿第一定律时所做的小车分别通过毛巾、棉布、木板表面所滑动距离大小的实验(图3)。

(2)举例法

即列举出学生在日常生活中熟悉的、能引导发现规律的物理现象。例如,讲授影响蒸发快慢的因素时,举出以下例子:“同样湿的衣服,晾在树荫下干得慢”;“同样多的水,倒在碟子里干得快,装在瓶子里干得慢”。

2.探索物理事实的内在联系,形成规律

这一教学过程主要是把第一步骤所摆出来的物理事实进行抽象思维,探讨物理规律现象的内在联系,提供建立规律的科学依据。根据不同的物理规律,可以采用下列具体方法:

(1)实验归纳法

例如,用一般水做实验得到“浮力等于物体所排开的水重”,再改用煤油或酒精做实验也得到了同样的结果,而且把物体全部浸入水中或部分浸入水中做实验都得到了同样的结论,最后归纳得到了阿基米德原理。

(2)单因子实验法

对于多因子的物理过程,可运用单因子实验,先分别固定几个物理量而研究其中两个量之间的关系,最后综合为一个完整的物理规律。例如,研究电流与电压、电阻之间的关系,可以先保持电阻不变而改变电压,观察分析电流随电压的改变情况,得到电流与电压之间的关系;再保持电压不变而改变电阻,观察分析电流随电阻的改变情况,得到电流与电阻之间的关系。最后综合成为一条物理规律,即欧姆定律。

(3)先定性后定量推演法

限于中学实验条件,精确测定数据有困难,有些定量的实验不易成功,因此,可以在观察定性实验现象的基础上进行定量推演或分析介绍,最后形成规律。例如焦耳定律,实验时观察通电后煤油温度的高低来定性说明电流产生热量的多少。实验表明,电阻越大,电流强度越大,通电时间越长,电流产生的热量越多。然后介绍科学家焦耳的研究成果,进而得出定量描述,形成焦耳定律:电流通过导体产生的热量跟电流强度的平方成正比,跟导体的电阻成正比,跟通电时间成正比,Q=I2Rt。

3.下定论并对规律进行讨论,加深理解规律

经过第二步的探讨和思维加工,初步形成规律后,要整理成文,用科学而又简明的语言文字或数学工具来表述物理规律。

(1)规律的物理意义

解释规律的内容,说明它表示什么样的物理含义,必要时还要与相近规律进行比较。用数学公式或图像表述规律的,在教学中要引导学生讨论如何根据规律的内容得出公式或图像;反之,又如何从公式或图像来理解其物理意义。例如焦耳定律,其内容是电流通过导体时产生的热量与电流强度的平方、导体的电阻、通电时间有关,这个关系是正比关系,由此得到焦耳定律的数学表达式为Q=I2Rt。

(2)规律表述中的关键词语和公式中各字母的意义

例如,阿基米德原理的公式F浮=G排=ρ液gV,公式中字母F浮代表物体所受的浮力,G排表示排开液体的重力,ρ液是液体的密度,g是重力加速度,V表示排开液体的体积。这个公式中各字母代表的物理意义,学生必须十分清楚,运用过程中才不至于出现差错。

(3)公式中各物理量的单位

中学阶段,物理单位的教学也不容忽视。

例如公式Q=I2Rt,式中I、R、t的单位分别是安培、欧姆、秒,Q的单位必须是焦耳。

物理规律的公式中各物理量的单位都是确定的,不能随便乱用。

(4)规律的成立条件和适用范围

物理规律本身是反映在一定条件下物理事物内在的必然联系,并且物理规律是在一定条件下和一定范围内总结出来的,因此,也只能在这个条件下、这个范围内才成立。学生学习物理规律时,往往只知道死背条文而忽视了成立条件和适用范围,在实际应用中乱套,在遇到情况变化时就难以下手,所以,在教学中要重视讲清规律的成立条件和适用范围。

在一般物理规律的表述中,前语是成立条件或适用范围,后语是结果,即因果关系基本连结成一个完整的句子。通过分析规律的语句结构,从字里行间就可以知道规律的成立条件和适用范围。例如牛顿第一定律,它的适用范围是“一切物体”,条件是“没有受到外力作用”(原因),结果是“保持静止或匀速直线运动状态”。

有些规律在叙述中只提出成立条件,必要时可以补充说明适用范围。例如阿基米德原理,要指出也适用于气体。有些规律限于学生的基础和认识水平,只强调成立条件,而暂不提适用范围。例如,欧姆定律、焦耳定律,不提及只适用于纯电阻电路。

四、学生学习物理规律中的常见问题

为了有效地引导学生学好物理规律,我们还必须研究和认清学生学习物理规律中的常见问题和心理障碍。在中学阶段,主要存在以下几个方面的问题:

1.感性知识不足

中学物理规律的教学,许多是从事实出发经过分析归纳总结出来的。中学生抽象思维能力不强,他们理解物理规律特别需要有充分的感性材料作基础。如果没有足够的、能够把有关的现象与现象之间的联系鲜明地展示出来的实验或学生日常生活中所熟悉的曾亲身感受过的事例作基础,势必造成学生学习上的困难。

例如,研究电磁感应和自感的有关规律,如果没有足够的、能够逐步揭示现象间本质联系的实验作基础,学生对这些规律就很难理解。

2.学生在日常生活中形成的错误观念的干扰

学生在日常生活中积累了一定的生活经验,对一些问题形成了某些观念。这些观念中,有的比较正确,但往往有一定的表面性和片面性,甚至是错误的观念。这些先入为主的错误观念对学生正确理解物理规律往往起着严重的干扰作用。如:学生在运动和力的关系上往往有“物体受力才能运动,不受外力,物体根本不会运动”的观念,这就给学生正确理解运动和力的关系带来了很大的困难。

3.抽象逻辑思维能力不强

在物理规律的研究和运用中,有时要进行严格的逻辑推理和科学的想象等抽象思维活动;在运用物理规律解决某些问题时,要想取得正确而全面的解答,学生要具有较高水平的思维品质。然而,中学生在心理发展上正处在思维发展过渡期,对于不同年级的学生和不同的学生个体,这个发展在迟早快慢上有差异,有些学生由于没有形成逻辑思维的习惯,抽象思维能力不强,这就使他们在学习和运用物理规律时遇到了较大的困难。

4.不会运用物理规律说明、解释现象和分析解决实际问题

中学阶段,学生在理解物理规律上,经过努力并不会感到很困难,但是运用起来常常会束手无策。形成的原因,除了知识上的欠缺和思维习惯、思维定势的干扰等因素外,最主要的是学生还未掌握运用物理知识去分析、处理、解决问题的思路和方法,因此,学生在完成认识的第二个“飞跃”上困难较大。

物理规律的教学要有阶段性,要有一个逐步深化、提高的过程。对于同一物理规律,初中、高中有不同层次的要求,因此,我们应遵循学生的认知规律,由浅入深,一步步地通过一系列的教学活动,来提高物理规律的教学水平。

参考文献

[1]阎金锋 田世昆 中学物理教学概论[M]。

[2]阎金锋 田世昆 中学物理教学概论(第二版)[M]。

篇9

[关键词]物理教学 电磁学 电磁场 电路

物理教材中所阐述的内容主要是经典物理学的基础知识,这些理论是建立在牛顿时空观的基础上,以力学、电磁学为重点。本文就电磁学部分的教学谈谈自己的观点。

一、电磁学的知识体系

电磁运动是物质的一种基本运动形式。电磁学的研究范围是电磁现象的规律及其应用,其具体内容包括静电现象、电流现象、磁现象、电磁辐射和电磁场等。为了便于研究,把电现象和磁现象分开处理,实际上,这两种现象总是紧密联系而不可分割的。透彻分析电磁学的基本概念、原理和规律以及它们的相互联系,才能使孤立的、分散的教学变成系统化、结构化的教学。对此,应从以下三个方面来认真分析教材。

1.电磁学的两种研究方式

整个电磁学的研究可分为以“场”和“路”两个途径进行。只有明确它们各自的特征及相互联系,才能有计划、有目的地提高学生的思维品质,培养学生的思维能力。

场是物质的相互作用的特殊方式。电磁学部分完全可用场的概念统一起来,静电场、恒定电场、静磁场、恒定磁场、电磁场等,组成一个关于场的体系。

“路”是“场”的一种特殊情况。物理教材以“路”为线的框架可理顺为:静电路、直流电路、磁路、交流电路、振荡电路等。

“场”和“路”之间存在着内在的联系。麦克斯韦方程是电磁场的普遍规律,是以“场”为基础的,“场”是电磁运动的实质,因此可以说“场”是实质,“路”是方法。

2.认识物理规律

规律体现在一系列物理基本概念、定律、原理以及它们的相互联系中。

物理定律是在对物理现象做了反复观察和多次实验,掌握了充分可靠的事实之后,进行分析和比较,找出它们相互之间存在的关系,并把这些关系用定律的形式表达出来。物理定律的形成,也是在物理概念的基础上进行的。

“恒定电流”一章中重要的物理规律有欧姆定律、电阻定律和焦耳定律。欧姆定律是在金属导电的基础上总结出来的,对金属导电、电解液导电适用,但对气体导电是不适用的。欧姆定律的运用有对应关系,电阻是电路的物理性质,适用于温度不变时的金属导体。

“磁场”这一章阐明了磁与电现象的统一性,用研究电场的方法进行类比,可以较好地解决磁场和磁感应强度的概念。

“电磁感应”这一章,重要的物理规律是法拉第电磁感应定律和楞次定律。在这部分知识中,能的转化和守恒定律是将各知识点串起来的主线。本章以电流、磁场为基础,它揭示了电与磁相互联系和转化的重要方面,是进一步研究交流电、电磁振荡和电磁波的基础。电磁感应的重点和核心是感应电动势。运用楞次定律不仅可判断感应电流的方向,更重要的是它揭示了能量是守恒的。

“电磁振荡和电磁波”一章是在电场和磁场的基础上结合电磁感应的理论和实践,进一步提出电磁振荡形成统一的电磁场,对场的认识又上升了一步。麦克斯韦的电磁场理论总结了电磁场的规律,同时也把波动理论从机械波推进到电磁波而对物质的波动性的认识提高了一步。

3.通过电磁场所表现的物质属性,使学生建立“世界是物质的”的观点

电现象和磁现象总是紧密联系而不可分割的。大量实验证明,在电荷的周围存在电场,每个带电粒子都被电场包围着。电场的基本特性就是对位于场中的其它电荷有力的作用,运动电荷的周围除了电场外还存在着磁场。磁体的周围也存在着磁场,磁场也是一种客观存在的物质。磁场的基本特性就是对处于其中的电流有磁场力的作用。科学实验证明电磁场可以脱离电荷和电流而独立存在,电磁场是物质的一种形态。

运动的电荷(电流)产生磁场,磁场对其它运动的电荷(电流)有磁场力的作用,所有磁现象都可以归结为运动电荷(电流)之间是通过磁场而发生作用的。麦克斯韦用场的观点分析了电磁现象,得出结论:任何变化的磁场能够在周围空间产生电场,任何变化的电场能够在周围空间产生磁场。按照这个理论,变化的电场和变化的磁场总是相互联系的,形成一个不可分割的统一场,这就是电磁场。电磁场由近及远的传播就形成电磁波。转贴于

从场的观点来阐述路。电荷的定向运动形成电流,产生电流的条件有两个:一是存在可自由移动的电荷;二是存在电场。导体中电流的方向总是沿着电场的方向,从高电势处指向低电势处。导体中的电流是带电粒子在电场中运动的特例,即导体中形成电流时,它的本身要形成电场又要提供自由电荷,当导体中电势差不存在时,电流也随之而终止。

二、以知识体系贯穿始终,使理论学习与技能训练相融合

1.场的客观存在及其物质性是电学教学中一个极为重要的问题。电场部分是学好电磁学的基础和关键。电场强度、电势、磁感应强度是反映电、磁场是物质的实质性概念。电场线、磁感应线是形象地描述场分布的一种手段。

2.电磁场的重要特性是对在其中的电荷、运动的电荷、电流有力的作用。在教学中要使学生认识场和受场作用这两类问题的联系与区别,比如,场不是力,电势不是能等。场中不同位置场的强弱不同,可用受场力者受场力的大小(方向)跟其特征物理量的比值来描述场的强弱程度。在电场中用电场力做功,说明场具有能量。通常说“电荷的电势能”是指电荷与电场共同具有的电势能,离开了电场就谈不上电荷的电势能了。

篇10

下面就本人在教学中遇到的问题举例分析.

一、动态电路问题

例1图1所示电路,电源电压不变.在滑动变阻器的滑片P移动的过程中,电压表的示数变化范围是0~5 V,电流表的示数相应的变化范围是1.0~1.5A,求:(1)R2的阻值;(2)电源电压是多少伏?

解析第一问,求R2的阻值.R2是滑动变阻器,所以第一问就是求滑动变阻器的最大阻值,那应该怎么办呢?知道了滑动变阻器两端的电压,再知道通过它的电流,就可以求出来了.可是已知条件并不没有给出,“在滑动变阻器的滑片P移动的过程中,电压表的示数变化范围是0~5 V,电流表的示数相应的变化范围是1.0 A~1.5 A”,那么电压表什么情况下是0 V,什么情况下是5 V呢?接下来我们首先要弄清楚这个电路是什么连接方式,通过判断,这是一个串联电路(R1与R2串联),电流表测电路中的电流,电压表测的是R2两端的电压.说到这,仔细的同学可能有疑问了,这个滑动变阻器连了3个接线柱呀,反复看电路后发现黑色部分被局部短路(即滑片P右边的电阻被短路了),这里考查局部短路的连接,因此更准确的应该说电压表测的是R2接入电路部分电阻的电压U2.

既然是串联电路,电路的总电阻就等于各个用电器电阻之和.当滑片P滑至最左端时,滑动变阻器接入电路中的电阻为0,所以此时的电流是最大的,即I=1.5 A;当滑片P滑至最右端时,滑动变阻器接入电路中的电阻为最大阻值,此时总电阻也增加了,电源电压不变的情况下,根据欧姆定律,电路中的电流是最小的,即I′=1.0 A,又根据分压规律可知,滑动变阻器两端的电压为最大U2=5 V,接下来根据欧姆定律可得出

R2max=U2 I′=5 V1.0 A=5 Ω.

第二问,求电源电压U.根据上面的分析可知道,在滑片P滑至最左端时,电路中只有R1连入电路,所以电源电压U=I・R1,因为R1未知,所以无法求解;在滑片P滑至最右端时,滑动变阻器是最大阻值,此时R总=R1+R2max,所以电源电压U=I′R总= I′(R1+R2max),R1还是未知,还是没法得出答案.所以只要求出R1就能得出.从上面的分类讨论情况,我们可以知道I・R1= I′(R1++R2max),只有R1是未知,其他都是已知的,可以求出来R1=10 Ω,然后再代入任何一个求电源电压的式子,就可以求出U=15 V.

二、串并联电路的特点

例2如图2所示,电源电压12 V,R2=20 Ω,当S1、S2合上时,电流表示数为0.8 A,当S1、S2断开时,电流表示数为0.2 A,求R1和Rs的阻值分别是多少?

解析电路题目首先第一步要做的就是分析电路的连接方式,即是串联还是并联.

第一问求R1的阻值

当S1、S2合上时,Rs被短路,此时R1和R2并联,电流表测的是干路的电流,即I=0.8 A.

根据并联电路电压的规律,并联电路中,各支路两端的电压相等.所以U=U1=U2=12 V,接着根据欧姆定律可得,通过R2的电流I2=U2R2=12 V20 Ω=0.6 A.

又根据并联电路电流的规律,并联电路干路中的电流等于各并联支路中的电流之和,因此通过R1的电流

I1=I-I2=0.8 A-0.6 A=0.2 A.

最后根据欧姆定律的变形公式R=UI可得,

R1=U1I1=12 V0.2 A=60 Ω.

第二问求Rs的阻值

当S1、S2断开时,R2和Rs串联连接,电流表测电路中的电流,即I′=0.2 A.因为要求Rs的阻值,这里已知条件给出了电源电压U,还通过分类分析,知道此时的电流I′,根据欧姆定律的变形公式R=UI可得出串联电路的总电阻

R总=U I′=12 V0.2 A=60 Ω.

从串联电路的电阻规律,我们知道

Rs=R总-R2=60 Ω-20 Ω=40 Ω.

三、物体的浮沉条件及应用

例3把一个小球轻轻放入盛满水的容器中,溢出100 g水,则小球质量

A.一定等于100 gB.大于或等于100 g

C.小于或等于100 gD.一定大于100 g

解析很显然这是一道考查阿基米德原理和物体浮沉条件的综合应用题,从“盛满”、“溢出”关键词可以判断出溢出的水就是排开的水,有阿基米德原理可知F浮=G排,但试题给出的提干中没有说明小球的沉浮情况.