欧姆定律变化量范文
时间:2023-07-10 17:20:40
导语:如何才能写好一篇欧姆定律变化量,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
【关键词】欧姆定律 应用 初中科学 教学策略 探索
“欧姆定律及其应用”的教学目标是让学生理解欧姆定律,并应用欧姆定律进行简单计算;能根据欧姆定律及其电路的特点,更深刻理解串、并联电路的特点;通过计算,学会解答电学计算题的一般方法,培养学生逻辑思维能力,观察、实验能力以及分析问题、概括问题、解决问题的能力,并养成学生解答电学问题的良好习惯。通过实验探究等学习方法,激发和培养学生学习科学的兴趣,培养学生实事求是的科学态度以及认真谨慎的学习习惯。
近几年,中考对“欧姆定律及其应用”的考查非常多,归纳一下,主要是从这么几方面进行考查的。
1、以欧姆定律为基础,结合串、并联电路的电压、电流、电阻特点,解决一些简单的计算。
例1、如图3所示, ,A的示数为2.5A,V的示数为6V;若R1,R2串联在同一电源上,通过R1的电流为0.6A,求R1和R2的电阻值。
图3
解析:此题考查了学生对并联电路特点的掌握和对欧姆定律公式的理解。在解物理题中,数学工具的应用很重要。本题可先根据并联电路的特点,找出R1、R2和总电阻的关系。
2、结合伏安法测电阻的相关知识,更深刻的理解欧姆定律的生成,强化电学实验操作技能的考查。
例2、给出下列器材:电流表(0~0.6A,0~3A)一只,电压表(0~3V,0~15V)一只,滑动变阻器(0~10 )一只,电源(4V)一个,待测电阻的小灯泡(额定电压2.5V,电阻约10 )一个,开关一只,导线若干,要求用伏安法测定正常发光时小灯泡灯丝的电阻,测量时,两表的指针要求偏过表面刻度的中线。
(1)画出电路图;
(2)电流表的量程选 ,电压表的量程选 ;
(3)下列必要的实验步骤中,合理顺序是 。
A. 闭合开关 B. 将测出的数据填入表格中
C. 计算被测小灯泡的灯丝电阻 D. 读出电压表,电流表的数值
E. 断开开关 F. 将滑动变阻器的阻值调到最大
G. 对照电路图连好电路 H. 调节滑动变阻器,使电压表的示数为2.5V
解析:欧姆定律的得出是根据伏安法测电阻的电路图来进行探究的,而伏安法测电阻同时也是欧姆定律的一个应用。所以伏安法测电阻与欧姆定律的应用其实是相辅相成的。对伏安法测电阻的相关知识的考查,其实更能帮助学生理解欧姆定律的生成。并且通过自己画电路图的过程,考查了学生对电路连接的作图能力和实验设计能力。
3、应用“欧姆定律”判断电路中各电表的示数变化
例3、如图1所示,电源电压保持不变,当滑动变阻器滑片P由左端向右移到中点的过程中,下列判断正确的是( )
A. 电压表和电压表A1,A2和示数变大
B. 电流表A1示数变大,电流表A2和电压表示数不变
C. 电流表A2示数变大,电流表A1,电压表示数不变
D. 条件不足,无法判断
解析:本题考查了利用欧姆定中电压、电流、电阻的关系来判断电流表、电压表示数变化的同时,也考查了学生对复杂电路的判断能力,电表测哪个用电器的电压,测通过哪个用电器的电流等。R1和R2是并联关系, 测电源电压; 测干路电流, 测R2的电流。
答案: B
4、通过解方程的方法结合欧姆定律,解决由于电阻变化而引起电压、电流变化的题。
例4、 如图2所示,变阻器R0的滑片P在移动过程中电压表的示数变化范围是0~4V,电流表的示数变化范围是1A~0.5A,求电阻器R的阻值、变阻器R0的最大阻值和电源电压U。
图2
解析:在电路中由于电阻发生变化引起的电流、电压变化的题,如不能直接用欧姆定律和串、并联电路特点直接求解,可考虑用方程解题。在设未知数时,尽量设电源电压、定值电阻等电路中不会变化的量。首先分析一下电路图,弄清电流表测量对象,同时可看出电压表示数为0V时,电流表示数最大为1A,电压表示数为4V时,电流表示数最小为0.5A。但根据已知,用欧姆定律和串联电路的特点能直接求出的量只有R0的最大电阻值,别的再无法直接求出,因此这里必须要列方程来解。
5、“欧姆定律”和生活实际的结合,提高学生观察生活的能力和解决实际问题的能力。
例5、下图是新型节能应急台灯电路示意图,台灯充好电后,使用时可通过调节滑动变阻器接入电路的阻值R改变灯泡的亮度,假定电源电压、灯泡电阻不变,则灯泡两端电压U随R变化的图象是( )
解析:灯L和滑动变阻器串联,电源电压U、灯泡电阻 不变。当滑片向左移动时,滑动变阻器的电阻变大,即电路中的总电阻变大,由 知,电路中的电流I会变小,则灯泡两端电压 也会变小。
答案:选C。
结论:授之以鱼不如授之以渔,以上总结的题目类型可能并不完全,但只要学生能掌握并真正理解欧姆定律的内涵,就能很好的应用它来解决生活实际中真正出现的问题,把理论转化为实践才是学习的真正目的。
参考文献
[1] 谢妮.欧姆定律教学的优化设计[J]. 职业
[2] 邹冠男.欧姆定律知识梳理[J]. 中学生数理化(八年级物理)(人教版)
篇2
关键词:欧姆定律;教学思考;教学研究
一、在欧姆定律教学过程当中,学生经常会遇到的问题
物理学科作为一门科学类学科,其教学内容通常比较枯燥,部分学生表示学习比较费劲,如何能让学生彻底明白和消化欧姆定律,是教师需要考虑的问题。教师可制订相关学习计划,针对不同层次的学生制订适合的学习计划。教学中的重点:电流、电压、电阻等相关知识点,一定要重点讲解以便学生掌握,将理论知识与动手实践结合起来,让学生在实践中加强对实验中的仪器和知识点的把握。
二、让学生明白欧姆定律的主要内容即电流、电压、电阻三者之间的关系
欧姆定律作为初中物理电学的基础,在初中教学之中只涉及部分电路,只有充分掌握了欧姆定律才能进一步学习电学部分的相关理论分析和计算。欧姆定律即阐述电流、电压、电阻三者之间相互关联的关系,教师在实验当中引导学生自己推算出电压、电阻、电流三者之间的关系,从而引出欧姆定律,让学生的记忆更加清楚。演示实验完成后要让学生自己动手,加深理解。
掌握基础定律知识后,教师则应当引导学生分析三者之间变化的问题,即电流是随着电阻与电压的变化而改变。在欧姆定律例题分析中比较常见的问题是多个变量的问题分析,教师要引导学生分析,运用一不变二变的方法来进行问题分析。由于初中学生的理解水平有限,且电压、电流、电阻的概念比较抽象,教师可借助多媒体教学工具,利用相关教学短片帮助学生理解。将电阻比喻成“阻碍电流通行的路障,电阻越大路越不好走,电阻越小通过速度则快”,并且引导学生明白电阻是导体自身的特有属性,电阻的大小是受到温度、导体的材料、长度等各方面因素影响的,与其两端的电压跟电流的大小无关,电阻不会随着电流或者电压的大小改变而改变,只是运用电压和通过的电流比例数值表达起来比较方便。
很多学生在学习欧姆定律之后,错误地以为电阻是受电流与电压影响的。相关教师一定要及时纠正学生的错误理解,教师在做演示实验时,需要让学生明白研究方法。运用控制变量法来研究,如电阻不变,研究电流与电压之间的数量关系;电压不变,来分析电阻与电流之间的量变关系,并且要直接将实验方法演示给学生看,从而加深学生的理解。
三、让学生一带一,提高学生掌握程度
不同的学生对欧姆定律的掌握程度不尽相同,教师可将成绩优秀的学生与成绩较差的学生进行分组,形成学习氛围较好的学习小组。采取团体合作的方式来帮助学生学习,有些学生面对老师和面对同学学习效果也不同。学生相互之间的沟通比较方便,理解能力也大体相同,进步速度也相对较快,教师从一旁进行指导。让学生在掌握了基础的相关知识以后,教师再进行分析,让学生充分掌握后再进行巩固提高,能提高举一反三采取多方面思维的能力。学生之间相互讨论,也能形成良性的竞争式学习,另外树立学习的榜样,也能从心理上鼓励学生主动学习,帮助学生产生学习兴趣和学习积极性。并且让学生不定期进行交换学习,以促进学生的整体学习水平。这样既能促进学生相互之间学习进步,又能培养学生团结合作的精神。
总之,欧姆定律作为电学的基础,学生必须真正掌握该定律,教师在实际教学过程当中,应该对物理教学内容进行细化和具体化,让不同层次的学生群体都能充分掌握。此外,还要引导学生在思维方面和动手实践方面进行改进,并且从中归纳出一些行之有效的教学方法,从而让学生更好地掌握欧姆定律的基础理论,为以后的学习做好铺垫,提高相关教学任务的质量,在实际教学过程当中,注重培养学生的动手实践能力、案例分析和其他方面解决问题的能力,让学生能够掌握控制变量法。同时要培养学生积极探索事物本质的科学精神,切实提高学生的物理综合素质。
参考文献:
[1]宣小东.对现行教材中欧姆定律教学设计的一些思考[J].物理教学探讨,2005(3).
[2]许忠林.初中物理欧姆定律教学中常见的问题及对策研究[J].成才之路,2015(9).
[3]符东生.关于初中“欧姆定律”教学的思考[J].物理教学,2014(8).
[4]王存香.《欧姆定律》教学思考[J].数理化解题研究,2014(5).
篇3
1、“闭合电路的欧姆定律”是人教版新课标高二物理选修3-1《恒定电流》第七节的内容。本节课是在学习了部分电路欧姆定律、焦耳定律以及电动势等概念的基础上进行的,是分析各种电路的基础,既是电学的重要规律之一,也是本章的教学重点。
2、从教材结构看,教材采用传统的处理方法:先利用能量守恒导出闭合电路的欧姆定律,进而得出路端电压随着外电阻变化的规律。这样的程序,数学演绎推理的味道很浓,加之没有令人信服的实验,缺少了对物理规律的感性认识的过程,学生难以形成比较深刻的理解。
二、学情分析
1、从学生的认识结构和能力水平来看,学生不知道电源的内阻对闭合电路的影响,因此,常常把路端电压看成是不随外电路变化的。这种先入为主的错误观念,容易形成思维定势,仅通过几次讲解是难以逆转的。
2、学生已学习了电动势、内电阻、外电阻等概念,知道部分电路的欧姆定律。
三、教学目标
1、基础知识技能方面:
(1)导出闭合电路的欧姆定律
(2)研究路端电压的变化规律,掌握闭合电路中的
(3)学会运用闭合电路的欧姆定律解决简单电路的问题,知道闭合电路中能量的转化。
2、能力方面:
(1)通过实验,让学生积极主动的探求科学结论,成为知识的探索者和“发现者”,在获得知识的同时发展能力。
(2)通过分组随堂实验,培养学生利用实验研究,得出结论的探究物理规律的科学思路和方法,加强对学生科学素质的培养。
(3)通过利用闭合电路欧姆定律解决一些简单的实际问题,培养学生运用物理知识解决实际问题的能力。
3、思想及情感方面:
A.通过外电阻改变引起电流、电压的变化,树立学生“事物普遍联系”的观点。
B.通过分析外电压变化的原因,了解内因与外因关系。
C.通过短路电流的模拟实验,加强学生的安全用电意识。
D.通过先猜想再验证的教学模式,培养学生“大胆猜想,小心求证”的科学研究态度以及合作实验的意识。
四、重点难点
1.重点:闭合电路的欧姆定律的导出
2.难点:路端电压的变化规律,
应用闭合电路的欧姆定律解决简单的实际问题
五、突破重难点的教学设计思想
1、营造能引起学生认知冲突的问题情景
设计一个如图1所示的电路,让学生先猜测再观察实
验现象。(小灯接电动势为3v电源时较亮)让学生产生强烈的认知冲突,激发了他们的探求新知的动机,为突破重难点提供了良好的开端。
2、让学生积极主动地去归纳物理规律、构建自己的正确理解
教师演示实验, 让学生在实验数据中探索出“新”的物理规律,使学生在探研过程中分析、归纳、推理的能力得到提高,同时也突破了教学难点。
六、课前准备
【教学用具】
自制演示实验电路板、干电池、安培表、伏特表、滑动变阻器、电键、导线、课件等。
七、教学过程
(一)创设情景引入新课
演示实验一:电源电动势增大时小灯泡的亮度变化
教师出示电路板,小灯泡与两节干电池串联,闭合开关,小灯泡发光。在原电源的基础上,再串上4节干电池,让学生猜想:闭合开关后,小灯泡可能会发生什么现象?
教师演示:发现小灯泡变暗了。
留下疑问:是什么原因导致小灯泡没有变得更亮,也没有烧坏,而是变暗了呢?
(二)新课教学
1、闭合电路的欧姆定律的推导
设问:我们已经学习了电动势,知道电动势是反映电源将其他形式的能量转化为电能本领的物理量,在数值上等于电源没有接入电路时两极间的电压,那如果电源接入了电路,电动势与内电压、外电压之间又有怎样的关系呢?
演示实验二:E与U内、U外的关系
教师向学生介绍可变内阻电源装置。让同学们仔细观察两个电表的读数并记录五组数据。教师边演示边让学生记录数据。
2、路端电压与负载的关系
探究活动二:路端电压与负载的关系
老师引导学生设计电路图。让学生分组实验探究路端电压与负载的关系,注意短路、断路两种特例的分析,记录实验现象。
演示实验三:低压电源短路
电路短路时,电路当中的电流非常大,会造成很严重的后果,生活中一定要避免短路的发生。教师演示模拟电源短路的小实验(为了安全起见,只用10V的学生电源),加强学生安全用电意识。
教师:通过实验我们研究了路端电压和负载的关系,在实验过程中我们发现当外电阻变化时,电流会变,路端电压也会变,那路端电压和电流之间会不会有直接的关系呢?
探究活动三:路端电压与电流的关系(推理法与图象法相结合)
引导学生利用闭合电路的欧姆定律推导路端电压与电流关系的数学表达式:教师:大家利用所学的数学知识推断一下:若以电流为自变量,路端电压为因变量,那么
函数图象应该是怎样的?
教师利用幻灯片展示一张U-I图像,让学生观察这张图像,思考直线与Y轴、X轴的交点分别代表什么物理意义,引导学生深刻理解图像。
探究活动四:闭合电路中的功率关系
教师:引导学生推导得到有关功率的相关结论:
教师:学习了有关闭合电路的欧姆定律相关的知识后,我们一起来看看在刚上课时所留下疑问:电源电动势由3V变成9V,为什么小灯泡会变暗呢?
学生自己分析,推测小灯泡变暗的原因。
演示实验四:多个小灯泡并联时的亮度变化
例题:当开关逐渐闭合时,小灯泡的亮度会发生怎样的变化,电压表的读数呢?
教师展示电路板,先让学生自己分析,再用实物演示讲解。
篇4
此类题目的特点往往是:题目给出电路图,电路中一般含有一个或两个电阻(或灯泡),滑动变阻器一个,电压表、电流表若干。当滑动变阻器滑片移动时,让学生去判断电流表、电压表的示数如何改变。
根据电路元器件连接方式,把此类问题归为简单电路和复合电路两类进行分析。
一、简单电路(用电器与滑动变阻器纯串联或纯并联)
1.纯串联
如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?
[分析]:在此题中,电阻、滑动变阻器三者串联,I=I1=I2,R=R1+R2。。当滑片向左移动时,R2变大,R1不变,R变大,根据欧姆定律I=■,电源电压U不变,I应减小,I1、I2均减小,再根据欧姆定律U1=I1R1可知U1减小,最后根据U=U1+U2知道U2增大。
[结果]:安培表示数减小,伏特表1示数减小,伏特表2示数增大。
2.纯并联
如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?
[分析]:由于电阻和滑动变阻器并联,故U=U1=U2,伏特表示数为电源电压保持不变,当滑片向左移动时,R2变大,R1不变,根据■=■+■,则R变大,根据欧姆定律I=■知I应减小。而R1电阻、电压均不变,故I1不变。再根据I=I1+I2知I2应减小。
[结果]:安培表示数减小,伏特表示数不变,安培表1示数不变,安培表2示数减小。
二、复合电路(滑动变阻器与用电器串并联混联)
1.滑动变阻器在干路中,两电阻并联
如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?
[分析]:此种情况由于R1、R2电阻都不变,可将两电阻并视为一个电阻,它们两端的电压相同,故它们电流变化方向是相同的。这样此题思路就同纯串联电路一样。
[结果]:安培表示数减小,伏特表1示数减小,伏特表2示数增大,安培表1示数减小,安培表2示数减小。
2.滑动变阻器在支路中
如图,当滑动变阻器滑片向左滑动时,各表示数如何变化?
[分析]:此种情况较为复杂。由于R1、R2并联,所以它们两端电压相等为U1,且U=U1+U3,I=I1+I2。当滑片向左移动时,R2变大,导致电路总电阻R增大,根据欧姆定律I=■,电源电压U不变,I应减小,对于R3,再根据欧姆定律U3=IR3可知U3减小,再根据U=U1+U3知道U1增大,从而得到I1增大,最后根据I=I1+I2知道I2减小。
[结果]:安培表示数减小,伏特表1示数增大,伏特表3示数减小,安培表1示数增大,安培表2示数减小。
篇5
【关键词】物理 电路 电学
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2013)30-0133-02
动态电路是指滑动变阻器滑片的移动或开关的闭合与断开引起电路的变化,通常考查电压表或电流表示数的变化情况。动态电路分析一直是电学主流题型之一,中考一般出现在选择、填空或实验题中。主要是考查学生对欧姆定律、电能、电功率的把握及其运用电学知识解决实际电路问题的能力。
一 如何解决此类问题
首先要分析电路是串联还是并联,各个电表分别测哪个用电器的哪个物理量。(1)若是通过移动滑片来改变电路,先分析电阻如何变化。若是串联电路,电阻的变化会引起电流的变化,再根据串联电路分压的规律(分压与电阻成正比)判断电压表的示数变化。(2)若是并联电路,根据并联电路中各支路两端电压相等,通过电压表的位置判断,一般情况下,此时电压表示数不变;再根据各支路工作互不影响,判断电流表的示数是否变化,最后再判断如何变化。(3)若是通过开关改变电路,需分别分析开关断开时和开关闭合时电路的连接情况,以及各个电表分别测什么,再对比电表示数的变化。
二 典型例题
下面例举两种典型例题以供参考。
1.滑动变阻器的滑片P的位置的变化引起电路中电学物理量的变化
第一,串联电路中滑动变阻器的滑片P的位置的变化引起的变化。
例1:如图1,是典型的伏安法测电阻的实验电路图,当滑片P向右移动时,请你判断电流表和电压表的变化。
分析:(先确定电路,再看电阻的变化,再根据欧姆定律判断电流的变化,最后根据欧姆定律的变形公式判断电压的变化。)此电路是串联电路,电流表测的是总电流,电压表测的是R1两端的电压。当滑动变阻器的滑片向右移动时,滑动变阻器的电阻增大,电路的总电阻增大,从而使电路中的总电流减小。因此,电流表的读数减小。根据欧姆定律U1=I总R1,R1两端的电压减小,因此,电压表的读数减小。
针对练习:
[练习一]在如图2所示电路中,当闭合开关后,滑动变阻器的滑动片P向右移动时( )。
A.电流表示数变大,灯变暗;
B.电流表示数变小,灯变亮;
C.电压表示数不变,灯变亮;
D.电压表示数不变,灯变暗。
[练]在如图3所示电路中,当闭合开关后,滑动变阻器的滑动片P向右移动时( )。
A.电压表示数变大,灯变暗;
B.电压表示数变小,灯变亮;
C.电流表示数变小,灯变亮;
D.电流表示数不变,灯变暗。
第二,并联电路中滑动变阻器的滑片P的位置的变化引起的变化。
例2:如图4,当滑片P向右移动时,A1表、A2表和V表将如何变化。
分析:(先确定电路,然后看准每个电表分别测的电压和电流值,再根据欧姆定律判断变化,欧姆定律无法判断的再用电路的电流、电压、和电阻的关系判断。)此电路是并联电路,电压表测的是电源电压,电流表A1测的是支路上通过R1的电流,电流表A2测的是总电流。当滑动变阻器的滑片向右移动时,滑动变阻器的电阻增大,导致并联电路的总电阻增大,因此电路中的总电流减小,电流表A2的读数减小。由于定值电阻R1的阻值和它两端的电压保持不变,根据欧姆定律通过R1的电流不变,因此,电流表A1的读数不变。由于电压表测的是电源电压,所以电压表的读数也不变。
针对练习:
[练习三]如图5,当滑片P向右移动时,A1表、A2表和V表将如何变化?
[练习四]如图6所示的电路中,电源电压保持不变,闭合开关S,当滑动变阻器的滑片P向右移动时,电流表A1的示数如何变化?电压表V与电流表A示数的乘积将如何变化?
2.开关的断开或闭合引起电路中电学物理量的变化
例3:在如图7所示的电路中,开关K由断开到闭合时,电流表的示数将 ,电压表的示数将 (选填“变大”、“变小”或“不变”)。
分析:(先画出开关断开和闭合时的等效电路,然后再根据欧姆定律判断。)
如图8所示,开关断开时电阻R1和R2构成串联电路,电流表测的是总电流,电压表测得是R1两端的电压。开关
闭合时,整个电路只有一个电阻R1,电流表测的是总电流,电压表测的是R1两端的电压,也是电源电压。
如图9所示,当开关由断开到闭合时电路中的总电阻减小,所以电路中的总电流增大,电流表的读数增大。由于串联电路是分压电路,所以电压表的读数增大。
针对练习:
[练习五]在图10中,灯泡L1和灯泡L2是 联连接的。当开关K由闭合到断开时,电压表的示数将 ;电流表的示数将 (选填“增大”、“不变”或“减小”)。
[练习六]如图11所示,电源电压不变,R1、R2为定值电阻,开关S1、S2都闭合时,电流表A与电压表V1、V2均有示数。当开关S2由闭合到断开时,下列说法正确的是( )。
A.电压表V1示数不变;
B.电流表A示数不变;
篇6
模块一
电路安全计算分析
例题精讲
【例1】
如图所示,电源电压保持不变,R0为定值电阻.闭合开关,当滑动变阻器的滑片在某两点间移动时,电流表的示数变化范围为0.5A~1.5A之间,电压表的示数变化范围为3V~6V之间.则定值电阻R0的阻值及电源电压分别为(
)
A.
3Ω,3V
B.
3Ω,7.5V
C.
6Ω,6V
D.
6Ω,9V
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律;电路的动态分析.
解析:
由电路图可知,电阻R0与滑动变阻器串联,电压表测滑动变阻器两端的电压,电流表测电路中的电流;
当电路中的电流为0.5A时,电压表的示数为6V,
串联电路中各处的电流相等,且总电压等于各分电压之和,
电源的电压U=I1R0+U滑=0.5A×R0+6V,
当电路中的电流为1.5A时,电压表的示数为3V,
电源的电压:
U=I2R0+U滑′=1.5A×R0+3V,
电源的电压不变,
0.5A×R0+6V=1.5A×R0+3V,
解得:R0=3Ω,
电源的电压U=1.5A×R0+3V=1.5A×3Ω+3V=7.5V.
答案:
B
【测试题】
如图所示,滑动变阻器的滑片在某两点间移动时,电流表的示数范围在1A至2A之间,电压表的示数范围在6V至9V之间.则定值电阻R的阻值及电源电压分别是(
)
A.
3Ω
15
V
B.
6Ω
15
V
C.
3Ω
12
V
D.
6Ω
12
V
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律.
解析:
由电路图可知,电阻R与滑动变阻器R′串联,电压表测滑动变阻器两端的电压,电流表测电路中的电流;
当电路中的电流为1A时,电压表的示数为9V,
串联电路中各处的电流相等,且总电压等于各分电压之和,
电源的电压U=I1R+U滑=1A×R+9V,
当电路中的电流为2A时,电压表的示数为6V,
电源的电压:
U=I2R+U滑′=2A×R+6V,
电源的电压不变,
1A×R+9V=2A×R+6V,
解得:R=3Ω,
电源的电压U=1A×R+9V=1A×3Ω+9V=12V.
答案:
C
【例2】
如图所示电路中,电源电压U=4.5V,且保持不变,定值电阻R1=5Ω,变阻器R2最大阻值为20Ω,电流表量程为0~0.6A,电压表量程为0~3V.为保护电表,变阻器接入电路的阻值范围是(
)
A.
0Ω~10Ω
B.
0Ω~20Ω
C.
5Ω~20Ω
D.
2.5Ω~10Ω
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律;电阻的串联.
解析:
由电路图可知,滑动变阻器R2与电阻R1串联,电压表测量滑动变阻器两端的电压,电流表测量电路总电流,
当电流表示数为I1=0.6A时,滑动变阻器接入电路的电阻最小,
根据欧姆定律可得,电阻R1两端电压:
U1=I1R1=0.6A×5Ω=3V,
因串联电路中总电压等于各分电压之和,
所以,滑动变阻器两端的电压:
U2=U-U1=4.5V-3V=1.5V,
因串联电路中各处的电流相等,
所以,滑动变阻器连入电路的电阻最小:
Rmin==2.5Ω;
当电压表示数最大为U大=3V时,滑动变阻器接入电路的电阻最大,
此时R1两端电压:
U1′=U-U2max=4.5V-3V=1.5V,
电路电流为:
I2==0.3A,
滑动变阻器接入电路的最大电阻:
Rmax==10Ω,
变阻器接入电路的阻值范围为2.5Ω~10Ω.
答案:
D
【测试题】
如图所示电路中,电源电压U=4.5V,且保持不变,电阻R1=4Ω,变阻器R2的最大阻值为20Ω,电流表的量程为0~0.6A,电压表的量程为0~3V,为了保护电表不被损坏,变阻器接入电路的阻值范围是(
)
A.
3.5Ω~8Ω
B.
0~8Ω
C.
2Ω~3.5Ω
D.
0Ω~3.5Ω
考点:
欧姆定律的应用;滑动变阻器的使用.
解析:
⑴当电流表示数为I1=0.6A时,
电阻R1两端电压为U1=I1R1=0.6A×4Ω=2.4V,
滑动变阻器两端的电压U2=U-U1=4.5V-2.4V=2.1V,
所以滑动变阻器连入电路的电阻最小为R小=.
⑵当电压表示数最大为U大=3V时,
R1两端电压为U3=U-U大=4.5V-3V=1.5V,
电路电流为I==0.375A,
滑动变阻器接入电路的电阻最大为R大==8Ω.
所以变阻器接入电路中的阻值范围是3.5Ω~8Ω.
答案:
A
【例3】
如图所示电路,已知电流表的量程为0~0.6A,电压表的量程为0~3V,定值电阻R1阻值为6Ω,滑动变阻器R2的最大阻值为24Ω,电源电压为6V,开关S闭合后,在滑动变阻器滑片滑动过程中,保证电流表、电压表不被烧坏的情况下(
)
A.
滑动变阻器的阻值变化范围为5Ω~24Ω
B.
电压表的示数变化范围是1.2V~3V
C.
电路中允许通过的最大电流是0.6A
D.
电流表的示数变化范围是0.2A~0.5A
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律;电阻的串联;电路的动态分析.
解析:
由电路图可知,R1与R2串联,电压表测R1两端的电压,电流表测电路中的电流.
⑴根据欧姆定律可得,电压表的示数为3V时,电路中的电流:
I==0.5A,
电流表的量程为0~0.6A,
电路中的最大电流为0.5A,故C不正确;
此时滑动变阻器接入电路中的电阻最小,
电路中的总电阻:
R==12Ω,
串联电路中总电阻等于各分电阻之和,
变阻器接入电路中的最小阻值:
R2=R-R1=12Ω-6Ω=6Ω,即滑动变阻器的阻值变化范围为6Ω~24Ω,故A不正确;
⑵当滑动变阻器的最大阻值和定值电阻串联时,电路中的电流最小,电压表的示数最小,此时电路中的最小电流:
I′==0.2A,
则电流表的示数变化范围是0.2A~0.5A,故D正确;
电压表的最小示数:
U1′=I′R1=0.2A×6Ω=1.2V,
则电压表的示数变化范围是1.2V~3V,故B正确.
答案:
BD
【测试题】
如图所示电路,已知电流表的量程为0~0.6A,电压表的量程为0~3V,定值电阻R1阻值为10Ω,滑动变阻器R2的最大阻值为50Ω,电源电压为6V.开关S闭合后,在滑动变阻器滑片滑动过程中,保证电流表、电压表不被烧坏的情况下,下列说法中错误的是(
)
A.
电路中通过的最大电流是0.6A
B.
电压表最小示数是1V
C.
滑动变阻器滑片不允许滑到最左端
D.
滑动变阻器滑片移动过程中,电压表先达到最大量程
考点:
欧姆定律的应用;串联电路的电流规律;电阻的串联.
解析:
⑴由电路图可知,当滑动变阻器的滑片位于最左端时,电路为R1的简单电路,电压表测电源的电压,
电源的电压6V大于电压表的最大量程3V,
滑动变阻器的滑片不能移到最左端;
根据欧姆定律可得,此时电路中的电流:
I==0.6A,故电路中的最大电流不能为0.6A,且两电表中电压表先达到最大量程;
⑵根据串联电路的分压特点可知,滑动变阻器接入电路中的阻值最大时电压表的示数最小,
串联电路中的总电阻等于各分电阻之和,
电路中的最小电流Imin==0.1A,
电压表的最小示数Umin=IminR1=0.1A×10Ω=1V.
答案:
A
【例4】
如图,电源电压U=30V且保持不变,电阻R1=40Ω,滑动变阻器R2的最大阻值为60Ω,电流表的量程为0~0.6A,电压表的量程为0~15V,为了电表的安全,R2接入电路的电阻值范围为_____Ω到_____Ω.
考点:
欧姆定律的应用;串联电路的电流规律;串联电路的电压规律.
解析:
⑴当电流表示数为I1=0.6A时,
电阻R1两端电压为U1=I1R1=0.6A×40Ω=24V,
滑动变阻器两端的电压U2=U-U1=30V-24V=6V,
所以滑动变阻器连入电路的电阻最小为R小==10Ω.
⑵当电压表示数最大为U大=15V时,
R1两端电压为U3=U-U大=30V-15V=15V,
电路电流为I==0.375A,
滑动变阻器接入电路的电阻最大为R大==40Ω.
所以变阻器接入电路中的阻值范围是10Ω~40Ω.
答案:
10;40.
【测试题】
如图电路中,电源电压为6V不变,滑动变阻器R2的阻值变化范围是0~20Ω,两只电流表的量程均为0.6A.当开关S闭合,滑动变阻器的滑片P置于最左端时,电流表A1的示数是0.4A.此时电流表A2的示数为______A;R1的阻值______Ω;在保证电流表安全的条件下,滑动变阻器连入电路的电阻不得小于_______.
考点:
电流表的使用;并联电路的电流规律;滑动变阻器的使用;欧姆定律;电路的动态分析.
解析:
当开关S闭合,滑动变阻器的滑片P置于最左端时,R2中电流I2==0.3A,
则R1中的电流I1=I-I2=0.4A-0.3A=0.1A,R1==60Ω;
当滑片向左移动时,总电阻变大,总电流变小,由于电流表最大可为0.6A,且R1中的电流不变,
则R2中的最大电流I2′=I′-I1=0.6A-0.1A=0.5A,此时滑动变阻器的电阻R2′=
=12Ω.
答案:
0.3;60;12Ω.
模块二
电路动态分析之范围计算
例题精讲
【例5】
在如图所示的电路中,设电源电压不变,灯L电阻不变.闭合开关S,在变阻器滑片P移动过程中,电流表的最小示数为0.2A,电压表V的最大示数为4V,电压表V1的最大示数ULmax与最小示数ULmin之比为3:2.则根据以上条件能求出的物理量有(
)
A.
只有电源电压和L的阻值
B.
只有L的阻值和滑动变阻器的最大阻值
C.
只有滑动变阻器的最大阻值
D.
电源电压、L的阻值和滑动变阻器的最大阻值
考点:
欧姆定律的应用;滑动变阻器的使用.
解析:
由电路图可知,电灯L与滑动变阻器串联,电流表测电路电流,电压表V测滑动变阻器两端的电压,电压表V1测小灯泡L两端的电压.
⑴当滑动变阻器接入电路的阻值最大时,电路中的电流最小I=0.2A;
此时电压表V的最大U2=4V,电压表V1的示数最小为ULmin;
滑动变阻器最大阻值:R==20Ω,
灯泡L两端电压:ULmin=IRL,
电源电压:U=I(R2+RL)=0.2A×(20Ω+RL)=4+0.2RL.
⑵当滑动变阻器接入电路的阻值为零时,电路中的电流最大为I′,
此时灯泡L两端的电压ULmax最大,等于电源电压,
则ULmax=I′RL.
①电压表V1的最大示数与最小示数之比为3:2;
,
I′=I=×0.2A=0.3A,
电源电压U=I′RL=0.3RL,
②电源两端电压不变,灯L的电阻不随温度变化,
4+0.2RL=0.3RL,
解得:灯泡电阻RL=40Ω,电源电压U=12V,
因此可以求出电源电压、灯泡电阻、滑动变阻器的最大阻值.
答案:
D
【测试题】
在如图所示电路中,已知电源电压6V且不变,R1=10Ω,R2最大阻值为20Ω,那么闭合开关,移动滑动变阻器,电压表的示数变化范围是(
)
A.
0~6V
B.
2V~6V
C.
0~2V
D.
3V~6V
考点:
电路的动态分析.
解析:
当滑片滑到左端时,滑动变阻器短路,此时电压表测量电源电压,示数为6V;
当滑片滑到右端时,滑动变阻器全部接入,此时电路中电流最小,
最小电流为:I最小==0.2A;
此时电压表示数最小,U最小=I最小R1=0.2A×10Ω=2V;
因此电压表示数范围为2V~6V.
答案:
B
【例6】
如图所示的电路中,R为滑动变阻器,R1、R2为定值电阻,且R1>R2,E为电压恒定的电源,当滑动变阻器的滑片滑动时,通过R、R1、R2的电流将发生变化,电流变化值分别为I、I1、I2表示,则(
)
A.
当滑动片向右滑动时,有I1<I<I2
B.
当滑动片向左滑动时,有I<I1<I2
C.
无论滑动片向左还是向右滑动,总有I=I1=I2
D.
无论滑动片向左还是向右滑动,总有I>I2>I1
考点:
欧姆定律的应用;滑动变阻器的使用.
解析:
由电路图可知,R与R2并联后与R1串联,且R1>R2,
设R1=2Ω,R2=1Ω,U=1V,
电路中的总电阻R总=R1+,
电路中的电流I1=,
并联部分得的电压U并=I1×R并=,
因R与R2并联,
所以I=,
I2=;
当滑动变阻器接入电路的电阻变为R′时
I1=|I1-I1′|=,
I=|I-I′|=,
I2=|I2-I2′|=;
所以无论滑动片向左还是向右滑动,总有I>I2>I1.
答案:
D
【测试题】
如图所示的电路图,R1大于R2,闭合开关后,在滑动变阻器的滑片P从b向a滑动的过程中,滑动变阻器电流的变化量______R2电流的变化量;通过R1电流的变化量______R2电流的变化量.(填“<”“>”“=”)
考点:
欧姆定律的应用;串联电路的电压规律;并联电路的电压规律.
解析:
由电路图可知,滑动变阻器与R2并联后与R1串联,
串联电路中总电压等于各分电压之和,且并联电路中各支路两端的电压相等,
R1两端电压变化与并联部分电压的变化量相等,
I=,且R1大于R2,
通过R1的电流变化量小于通过R2的电流变化量;
由欧姆定律可知,通过R1的电流减小,通过滑动变阻器的电流变小,通过R2的电流变大,
总电流减小时,R2支路的电流变大,则滑动变阻器支路的减小量大于总电流减小量,
即滑动变阻器电流的变化量大于R2电流的变化量.
答案:
>;<.
【例7】
在图甲所示电路中,电源电压保持不变,R0、R2为定值电阻,电流表、电压表都是理想电表.闭合开关,调节滑动变阻器,电压表V1、V2和电流表A的示数均要发生变化.两电压表示数随电路中电流的变化的图线如图乙所示.根据图象的信息可知:_____(填“a”或“b”)是电压表V1示数变化的图线,电源电压为_______V,电阻R0的阻值为______Ω.
考点:
欧姆定律的应用.
解析:
由电路图可知,滑动变阻器R1、电阻R2、电阻R0串联在电路中,电压表V1测量R1和R2两端的总电压,电压表V2测量R2两端的电压,电流表测量电路中的电流.
⑴当滑片P向左移动时,滑动变阻器R1连入的电阻变小,从而使电路中的总电阻变小,根据欧姆定律可知,电路中的电流变大,R0两端的电压变大,R2两端的电压变大,由串联电路电压的特点可知,R1和R2两端的总电压变小,据此判断:图象中上半部分b为电压表V1示数变化图线,下半部分a为电压表V2示数变化图线;
⑵由图象可知:当R1和R2两端的电压为10V时,R2两端的电压为1V,电路中的电流为1A,
串联电路的总电压等于各分电压之和,
电源的电压U=U1+U0=10V+IR0=10V+1A×R0
---------①
当滑片P移至最左端,滑动变阻器连入电阻为0,两电压表都测量电阻R1两端的电压,示数都为4V,电路中的电流最大为4A,
电源的电压U=U2′+U0′=4V+4A×R0
---------------②
由①②得:10V+1A×R0=4V+4A×R0
解得:R0=2Ω;
电源电压为:U=U1+U0=10V+IR0=10V+1A×2Ω=12V.
答案:
b;12;2.
【测试题】
如图所示的电路,电源电压保持不变.闭合开关S,调节滑动变阻器,两电压表的示数随电路中电流变化的图线如图所示.根据图线的信息可知:________(甲/乙)是电压表V2示数变化的图象,电源电压为_______V,电阻R1的阻值为_______Ω.
考点:
欧姆定律的应用;电压表的使用;滑动变阻器的使用.
解析:
图示电路为串联电路,电压表V1测量R1两端的电压,电压表V2测量滑动变阻器两端的电压;
当滑动变阻器的阻值为0时,电压表V2示数为0,此时电压表V1的示数等于电源电压,因此与横坐标相交的图象是电压表V2示数变化的图象,即乙图;此时电压表V1的示数等于6V,通过电路中的电流为0.6A,故电源电压为6V,.
答案:
乙,6,10.
模块三
滑动变阻器的部分串联、部分并联问题
【例8】
如图所示的电路中,AB间电压为10伏,R0=100欧,滑动变阻器R的最大阻值也为100欧,当E、F两点间断开时,C、D间的电压变化范围是________;当E、F两点间接通时,C、D间的电压变化范围是________.
考点:
欧姆定律的应用;电阻的串联.
解析:
⑴当E、F两点间断开,滑片位于最上端时为R0的简单电路,此时CD间的电压最大,
并联电路中各支路两端的电压相等,
电压表的最大示数为10V,
滑片位于下端时,R与R0串联,CD间的电压最小,
串联电路中总电阻等于各分电阻之和,
根据欧姆定律可得,电路中的电流:
I==0.05A,
CD间的最小电压:
UCD=IR0=0.05A×100Ω=5V,
则C、D间的电压变化范围是5V~10V;
⑵当E、F两点间接通时,滑片位于最上端时R0与R并联,此时CD间的电压最大为10V,
滑片位于下端时,R0被短路,示数最小为0,
则CD间电压的变化范围为0V~10V.
答案:
5V~10V;0V~10V.
【测试题】
如图中,AB间的电压为30V,改变滑动变阻器触头的位置,可以改变CD间的电压,则UCD的变化范围是(
)
A.
0~10V
B.
0~20V
C.
10~20V
D.
20~30V
考点:
串联电路和并联电路.
解析:
当滑动变阻器触头置于变阻器的最上端时,UCD最大,最大值为Umax=
=20V;当滑动变阻器触头置于变阻器的最下端时,UCD最小,最小值为Umin
=,所以UCD的变化范围是10~20V.
答案:
C
【例9】
如图所示,电路中R0为定值电阻,R为滑动变阻器,总阻值为R,当在电路两端加上恒定电压U,移动R的滑片,可以改变电流表的读数范围为多少?
考点:
伏安法测电阻.
解析:
设滑动变阻器滑动触头左边部分的电阻为Rx.电路连接为R0与Rx并联,再与滑动变阻器右边部分的电阻R-Rx串联,
干路中的电流:I=
,
电流表示数:I′==
,
由上式可知:当Rx=时,I最小为:Imin=;当Rx=R或Rx=0时,I有最大值,Imax=;
即电流表示数变化范围为:~;
答案:
~
【测试题】
如图所示的电路通常称为分压电路,当ab间的电压为U时,R0两端可以获得的电压范围是___-___;滑动变阻器滑动头P处于如图所示位置时,ab间的电阻值将______该滑动变阻器的最大阻值.(填“大于”“小于”“等于”)
考点:
弹性碰撞和非弹性碰撞.
解析:
根据串联电路分压特点可知,当变阻器滑片滑到最下端时,R0被短路,获得的电压最小,为0;当变阻器滑片滑到最上端时,获得的电压最大,为U,所以R0两端可以获得的电压范围是0~U.
由于并联电路的总电阻小于任何一个支路的电阻.所以滑动变阻器滑动头P处于如图所示位置时,ab间的电阻值将小于该滑动变阻器的最大阻值.
篇7
一、串并联电路
学生在初中的学习当中已经了解了一些串并联电路的知识,对于一些简单的电路图学生可以清楚地了解其中的串并联关系,但是一些学生只是简单地知晓在串联电路当中的电流是相等的等知识,而对实验操作当中的高低电势等知识却没有清楚的认识,同时也很少知道仪器的负极和正极该如何进行接。为了解决这些问题,因此在进行物理教学的时候,常常会需要对一些物理规律进行解析。比如可以强调在遇到有多条支路的电路时,可以选择一条比较容易的支路进行连接,其他支路可以逐渐连接到电路当中;在进行仪器联连接的时候,可以根据正极接高势,负极接低势的规律进行操作;在有电流流经的时候,电路所含有的电势会有不同程度的降低。这些内容具有一定的复杂性,老师需要进行重点强调,使学生进行分别记忆,不仅可以有效解放学生的固定思维,也可以有效提高学生的物理解题能力。
二、闭合电路欧姆定律
一些学生无法灵活运用闭合电路欧姆定律,这是由于学生只是记忆公司,而没有了解公式当中所蕴含的规律,因此在实际教学过程中,需要使学生掌握物理公式出现的原因,才能有效应用公式进行解决实际问题。尤其是在学习闭合电路欧姆定律的时候,需要对电源电动势进行准确理解。电动势是电源的特性之一,具有较强稳定性;在进行测量电动势大小的时候可以通过测量未接电源之前的电压,其数值是相同的;在测量电阻的时候,如果电路处于串联的状态,则总电阻则与多个电阻保持一致。如果电路处于并联的状态,则总电阻为各个电阻相加的数值。另外根据欧姆定律I=E/(R+r)可以了解到电阻、电压、电流变化的影响,并且从中可以了解到许多规律。比如在总电阻变大的时候,电路当中的电流减少,并且电压增加;在串联电路当中,电阻的变化和电流、电压是相反的;在并联电路当中,电阻的变化和电流、电压的变化是相同的。通过这些规律的学习,可以有效帮助学生进行灵活应用欧姆定律解决所遇到的物理问题。
三、电荷在磁场中的运动
在进行学习电荷在磁场中的运动时,常常需要结合圆周运动以及其它数学知识进行解题。学生在处理这样的物理题具有一定的难度,这是由于电荷的运动轨迹的圆心比较难找,而且边界比较模糊不好确定。为了突破这一难关,需要在解题的时候进行建立物理情境,从而了解电荷在磁场内的运动范围。同时在高涨阶段,所给题目经常是均匀的磁场,因此可以根据题目的内容确定磁场的边界。比如可以使用先补后去的解题方法,即先假设所遇到的磁场是均匀的,在可以准确确定电荷的运动轨迹和圆心。再按照题目所设立的情景进行,进行确定真正的磁场。最后再使用确定圆心的条件,如根据出射点、运动半径、方向等因素,进行确定电荷运动轨迹的圆心。通过这些方法,不仅可以有效分析题目的重要条件,也可以有效解决复杂的求电荷运动轨迹圆心,降低学生解物理题的难度。
篇8
我们可以从以下几个方面加以区别理解。
一、它们描述的对象不同。电动势是电源具有的,是描述电源将其它形式的能转化为电能的本领的物理量;电压是针对一般电路中的两个点而说的,即某段电路两端的电压。
二、二者做功的力不同。电动势是反映电源非静电力做功特性的,它的数值大小等于电源非静电力从电源负极向正极移送单位正电荷所做的功,电动势W/q中的W就是非静电力所做的功,即电动势E是与非静电力做功相联系的。电压是电场中两点间的电势差值,是反映电场力做功本领的物理量,电场力在电场中移动单位正电荷所做的功就是电势差,公式电压U=W/q中W 是电场力做的功,可见电压U是与电场力做功相联系的。
三、物理意义不同。电动势是描述电源转化其它形式能量本领的量度,在闭合电路中某种非静电力作用在被移动的电荷上, 增加了电荷的电势能,在此其他形式的能如化学能、太阳能、机械能等转化为电能。不同的电源这种由非静电力做功转化为电能的本领不同,所以电动势也不同。而电压是电势能变化的量度,即是描述将电势能转化为其它形式的能量的多少,电压在数值上等于移动单位正电荷电场力做的功。它们都反映了能量的转化,但转化的过程是不一样的。
四、在给定电路中变与不变不同。对于一个给定的电源,电动势是常量,与外电路是否接通无关,也与外电路的组成情况无关,一节普通干电池不管新旧,它的电动势永远是1.5伏。而电路中的电压是变量,随外电路电阻的改变而改变,如并联支路数目增减,电阻变化时将引起电路各部分电流,电压重新分配,电压将发生变化。
篇9
关键词:实验探究;课堂教学;行动研究;价值实现
中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2012)4(S)-0066-3
如何有效提高物理探究教学的质量,是物理教学的永恒话题。下面以“欧姆定律”实验教学为例,谈谈我的一些实践探索与思考。
1 实验探究教学中的几番“顿挫”
“欧姆定律”是初中物理教学的一个重要内容,它揭示了电路中电流用遵循的基本“交通规则”,处于电学的核心位置,是电学中的最重要的规律之一,也是学生进一步学习电学知识和分析电路的基础。
1.1 首次教学:建立猜想,探究规律
首先,引导学生对“电流、电压、电阻三个物理量之问的定量关系”展开猜想,进而根据猜想来设计实验方案,然后让学生自主展开实验探究:
(1)导体电阻一定,导体中的电流与导体两端电压之间的关系;
(2)导体两端电压一定,导体中的电流与导体电阻之间的关系。
最后分析实验数据,归纳、概括规律:导体中的电流与导体两端的电压成正比,与导体的电阻成反比。
1.2 二次教学:调整器材,简化操作
尽管上述教学方案能达成预期教学目的,但在实际实验操作中发现:在探究“导体两端电压一定,导体中的电流与导体电阻之间的关系”实验中,由于需要多次改变电阻,并且每次更换都需要断开开关、拆除原电阻与电压表、接人新电阻与电压表、闭合开关四个动作,操作比较麻烦。事实上,由于操作频繁,不仅容易造成电路接触不良,而且客观上也影响了学生对实验现象的全面观察,从而影响到实验探究效果。
基于此,笔者调整了实验器材:用旋钮式电阻箱代替需要更换的几个电阻,原先每次更换电阻的四个规定动作就简化为一次旋钮。这样在保证实验效果的同时,不仅提高了实验效率,同时也为学生全面观察和数据分析预留了充分的时间。
1.3 三次教学:优化方案,厘清关系
然而,事情并非预期的那样乐观。学生在分析数据形成结论时,常常出现如下两种逻辑错误:导体电阻一定,导体两端电压与导体中的电流成正比;导体两端电压一定,导体电阻与导体中的电流成反比。就第一种逻辑错误而言,究其成因,问题不在学生本身,而恰恰在于教学之中。一是在先前认识滑动变阻器时,学生对“使用滑动变阻器改变灯泡电流”有较深的认识。二是在当前探究电流与电压关系时,是靠移动滑片来改变变阻器阻值,学生误认为是研究电流与变阻器阻值的关系。在操作中学生通过移动滑片来改变电流,产生了是由于电流的变化才引起了电压变化的认识,背离了“电压是形成电流的原因”。
基于此,为帮助学生形成电流与电压、电流与电阻之间正确的逻辑关系,笔者优化了实验方案,重新设计电路:通过改变电池的节数替代由变阻器来改变电阻两端的电压;将几个不同阻值的电阻并联接在电源两端,分别由开关控制。这样既保证了实验效果,同时消解了变阻器带来的负面影响,使电流与电压、电流与电阻之间的逻辑关系更直观地显现出来。待学生学习串联总电阻与分压知识之后,可以安排学生按教材中的实验方案再探究,学生在体验操作顺畅的同时,理解更为准确、深刻。
1.4 四次教学:超越物质,回归人本
通过前三次的教学改进,实验器材和实验方案逐步优化,探究活动效果得到了整体上的明显提高。然而,一个不容回避的教学事实是:尽管使用了同样的实验器材与实验方案,但不同的学生在实验中却有不尽相同的活动收获。如:在探究电流与电阻的关系时。有的学生发现更换电阻时,电阻变大(或变小)后,电压表示数也增大(或减小),但有的学生对此物理现象却视而不见。由此,笔者认识到物理实验教学应当“超越物质,回归人本”。即教学中不能仅仅关注“物”的因素,更要关注活动的“人”,注重培养学生的良好观察习惯和大胆猜想、敢于怀疑的科学精神。就培养良好观察习惯而言,一方面不仅要教给学生具体的观察方法,而且要在活动前提出明确的观察要求;另一方面要有预见性地提出明确的活动观察点。同时在活动记录单上增设“我在实验中还发现什么”专栏,切实引导学生全面、细致、深入地观察。
2 实践中的几点思考
2.1 物理探究活动目标:“有中心”,但不能“唯中心”
物理实验探究教学活动,是在教师的启发引导下,让学生经历与科学工作者进行科学探究时的相似过程,这一过程是科学发现过程的精华浓缩,而不是科学发现历史过程的真实重演。但毕竟时间有限,倘若面面俱到,势必会冲淡课堂探究活动的中心,直接影响教学效果。在“欧姆定律”教学活动中,探究发现导体中电流与电压和电阻之问的定量关系无疑是教学活动的中心。但教学活动要“有中心”,但不能“唯中心”。借用一句广告词:生命是一场旅程,在匆匆赶路的时候,更重要的是不要忘记欣赏路边的风景。在“欧姆定律”实验探究过程中实验细节的观察、数据误差的考量等都应当关注,尽管这些问题的分析与解决并非是本次活动的中心,仅仅是活动中的“衍生物”,但同样是活动中的“一种收获”,而恰恰是这些常常被遗忘的“路边的风景”,或成为后期知识生长的重要因子,或成为引导学生主动参与探究的导火线。
2.2 物理探究活动方案的设计:“教师决定”走向“师生协商”
探究活动方案的设计是物理探究活动的重要环节。在当前的物理教学中,一些教师基于对学生的实验方案设计的能力缺乏信心,或出于节省教学活动时间,把预先设计好的实验方案直接给予学生。让学生执行指令性的实验操作;有的教师出于培养学生实验方案设计能力,让学生自行设计实验方案,但当遭遇学生设计的方案不合理或错误时,往往又习惯性地回归到教师指令路径。探究活动方案的设计从“教师决定”走向“师生协商”。
在探究“导体中电流与电阻的定量关系”时,学生提出猜想后。一位学生设计了这样的实验方案:如图1所示,将几段阻值不同的电阻分别接入电路M、N之间,读出电流,然后根据记录的电流与电阻的相关数据进行分析,进而得出电流与电阻的定量关系。显然,这种方案不合理。因为接入几段阻值不同的电阻后,MN两点间的电压不同,未能控制MN间的电压,虽然能获得电流与电阻的相关数据,但无法得出两者之间正确的定量关系。对此,如果教师利用自己的权威,简单否定学生的实验方案,无疑会损伤学生的设计热情。那么,教师能否晓之以理使学生信服地自我否定呢?从物理学的角度看,解释MN两点间的电压不同,需要运用串联分压的知识,而后者是基于欧姆定理推演出来的,所以教学实践中教师无法以“理”服人。否其所为是不民主的,任其所为是不明智的。在教学实践中,笔者允许学生按设计方案进行操作,提
供其一个电压表,将电压表并联在MN两点间,要求其观察不同的电阻接入后电压表的示数,这样学生直观看到电阻变化后MN两点间的电压也发生了变化,学生自然意识到这种方案不符合控制变量法的思想,进而自我否定。在某种意义上,这样的教学处理做到了“民主”与“明智”兼得。
探究活动方案的设计从“教师决定”走向“师生协商”,是尊重、保护学生的表现,是鼓励学生创新的做法,也是基于学生原有的知识水平和符合认知规律的真真实实地让学生经历科学探究中的“设计实验方案”这一环节,这既能培养和保持学生自主探究能力和兴趣,也彰显了以学生发展为本的理念。
2.3 科学探究活动对象的关注:唯“物”走向“人——物”
感悟“欧姆定律”,我们应当虔诚地拨开历史尘埃,了解那一段令人难忘的科学钩沉。欧姆当年研究条件极其困难,电流很不稳定,自己设计实验器材,花费十年心血,研究电流定律,失败了上千次才获得成功。欧姆定律发表后,遭到德国很多权威人士特别是科学界的反对甚至是诋毁。德国物理学家鲍尔曾发难:“以虔诚眼光看待世界的人不要去读这本书,因为它是不可置信的欺骗,它的唯一目的是要亵渎自然的尊严。”经历14年的怀疑、批判、确认的洗礼与磨砺,欧姆定律的真理性才越发显现出来,得到学术界的公认。欧姆定律具有穿越时空的永恒光辉。
重温这段历史,笔者深深体会到科学探究活动中的“物”仅是一个必要条件,真正起决定作用的是“人”本身,物理教学应从单一“物”的关照走向“人与物”的全面关照,也就是说不仅要重视实验器材的完备、实验方案的优化,更要重视实验活动中学生观察能力和思维能力的发展。主动探索、勇于坚持、怀疑精神的熏陶。
在当下物理教学活动中,尽管教师普遍意识到培养学生观察能力和怀疑精神的重要性,但往往缺少行之有效的培养方法或策略,常常只有口头上的要求,难以真正落实到实验探究活动之中,从而导致教学活动价值的流失。为此,笔者进行了一些尝试与探究:在活动记录单上,除实验数据记录的栏目外,还增设两个栏目:一是“我在实验中还发现什么”,这一栏目的设置可以方便观察细致的同学及时记录,其记录内容是宝贵的生成性资源,其记录行为对其他同学也是一种示范与促进;二是“我有哪些困惑或疑问”,这一栏目的设置可以方便学生及时记录实验困惑与疑问,这本身不仅是学生行思结合的见证,也是理性精神的具体体现,同时也有利于教师及时把握实验动态,更好地调控实验探究活动。
总之,物理教学应努力从学生的发展需要出发,以研究者的态度审视自己,不断反思,寻求更好的方法和策略,不断建构并丰富自己的实践性知识,提升物理教学专业素养。在自觉的行动研究中,我们可以获得“教师职业的内在欢乐与尊严,在日常进行的、创造性育人过程中实现,而不是只有在所教的学生取得社会成就才得以实现”。
参考文献:
篇10
一、动态电路
电路中开关的断开与闭合,滑动变阻器滑片的移动,会带来电路连接方式、电阻(用电器)的工作状态、通过电阻中的电流和电阻两端电压的变化,此类电路人们常习惯地称之为“动态电路”。但应注意的是,在“动态电路”问题中,一般来说有两个物理量是不变的,即电源的电压(初中阶段)和定值电阻的阻值(不考虑温度的影响)。
无论是开关的断开与闭合带来的电路变化问题,还是滑动变阻器滑片的移动引起的动态电路,考试的考查方向一般有两个方面,一是分析动态电路中电表示数的变化,二是进行定量计算。
二、开关型“动态电路”
这类电路在开关的通、断过程中,往往会引起电路结构的变化,即接入电路的电阻(用电器)的数量及其连接方式的改变。因此解答此类问题的首要步骤是要画出相应开关状态下的等效电路图,一般的方法是:(1)判断每种状态下,电流表和电压表的测量作用;(2)从电路中去掉电压表,将电流表看成是导线;(3)电路中被短路和被断路的元件要去掉;(4)画出相应开关状态下的等效电路图。第二步,利用串联和并联电路的规律、欧姆定律等知识,分析画出的各等效电路中电流表和电压表的示数,前后比较即可判断出电表的示数如何变化。
例1(2011,哈尔滨)如图所示,电源电压不变,闭合开关S1后,再闭合开关S2,电流表的示数 ,电压表的示数 (填“变大”“变小”“不变”)。
[答案] 变大 变大
开关类动态电路的计算,思路方法与上述步骤一相同,只是在每种开关状态下的等效电路图中,标出已知量和要求的量,题目的解答就容易多了。
例2如图所示的电路中,电阻R1的阻值为20欧,电源电压不变。当S1 、S2断开,S3闭合时,电流表的示数为0.45A;当S1 断开, S2、S3闭合时,电流表的示数为0.75A。
求:(1)电源电压为多少?
(2)R2的阻值是多少?
(3)S2、S3断开,S1闭合时,加在电阻R1两端的电压为多少?
[分析] 分别画出三种状态下的等效电路图甲、乙、丙,在图上标出已知量和要求量,可以发现,利用欧姆定律可以很容易求得答案。
[答案] (1)当S1 、S2断开, S3闭合时,电阻R2断路,电阻R1接在电源两端,等效电路如图甲所示,则电源电压U=I1R1=0.45A×20Ω=9V。
三、滑动变阻器型“动态电路”
由于滑动变阻器滑片的移动引起的动态电路,大多数情况下是滑片的位置处于两个端点或中点的特殊情况,解答此类题目的一般思路也是首先应该(1)画出每种滑片位置对应的等效电路图;(2)弄清滑动变阻器接入电路中的电阻是哪一部分,进而分清滑片移动过程中变阻器接入电路的电阻怎样变化,是变大还是变小;(3)分析电路中还有哪些物理量随之改变(哪个用电器中的电流和它两端的电压),电路中不变的量仍然是电源电压和定值电阻的阻值。
例3 (2013,乐山)如图所示的电路中,电源电压不变,闭合开关S后,将滑动变阻器R的滑片P向左移动,在此过程中( )
A电压表 V1示数变小,电压表 V2示数变大
B电流表A示数变小,电压表V1示数不变
C电流表A示数不变,电灯L亮度变亮
D电压表V1示数不变,电灯L亮度变暗
[分析] (1)识别电路:电灯L和滑动变阻器R串联,电压表V1测电灯L两端电压,电压表 V2测R两端电压,电流表A测电路中的电流。
(2)当滑片P在最右端时的等效电路如图甲所示,电压表 V2被短路掉其示数为零,电压表V1的示数为UL=U,电流表A示数为I=■。
例4(2012,兰州)如图所示的电路中,电源电压不变,电阻R2为20Ω。闭合开关,滑动变阻器R3的滑片在b端时,电压表的示数为3V ;滑片移到中点时,电流表的示数为0.45A;滑片移到a端时,电压表的示数为9V。求:
(1) 电阻R1的阻值;
(2) 滑动变阻器R3的最大电阻;
(3) 电源电压U。
[分析]本题在电路识别方法上与例3相同,滑片在a端、b端及中点不同位置时,滑动变阻器接入电路中的电阻依次为0、R3、R3/2,相应地电流表和电压表的示数发生改变,但三种情况下的电路均为串联电路,电路中不变的物理量有电源电压、定值电阻R1和R2的值。题目中需要求解的未知量较多,可考虑利用串联电路的特点和欧姆定律列出关于R1、R3和U的方程,通过求解方程组得到需求的三个物理量。由于电源电压不变,可考虑每种状态电路中的总电压U、总电流I和总电阻R之间的关系、利用U=IR得到等式。
[答案]当滑片在b端时,R1、R2、R3串联,则有,U=I1(R1+R2+R3),
将R2=20Ω代入并解由此三个方程组成的方程组得:
R1=10ΩR3=60ΩU=27V。
例5 (2013,呼和浩特)如图所示的电路,电源两端电压恒为6V。若电路连接“3V 1.5w”的灯泡,闭合开关,调节滑动变阻器的滑片至点a 时,灯泡正常发光;若改接“4V 2W”的灯泡,闭合开关,调节滑动变阻器的滑片至点b 时,灯泡也正常发光。则( )
A电流表在两种状态下的示数均为0.5A
B点a在点b的右侧
C两种状态下,整个电路消耗的总功率相同
D电压表在两种状态下的示数之比是2∶3
[分析] 本题在电路连接方式分析上与例3、例4相同,不同的是,本题除了应用串联电路的特点、欧姆定律知识,还涉及电功率的知识,看似是选择题型,但需要经过计算才能确定所选答案。
(2)由滑片在a、b位置时,灯泡均能正常发光、串联电路中的电压关系及电源电压U=6V可知,在两种状态下电压表的示数分别为Ua =3V,Ub=2V,即Ua∶Ub=3∶2。再由Ua =IRa,Ub =IRb可知,滑动变阻器两种状态下接入电路的电阻Ra>Rb,结合图示可知a点在b点的右侧。