建筑抗震分析范文
时间:2023-06-21 09:46:09
导语:如何才能写好一篇建筑抗震分析,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:高层建筑;结构;抗震;设计
中图分类号:TU208文献标识码: A
近几年来,随着中国经济的快速高效发展,高层建筑不断地涌现,地震灾害对这类建筑的威胁越来越严重,对高层建筑的抗震分析也越来越成为目前国内外的科研热点问题。因此,设计人员不仅在思想上要重视抗震设防,而且要熟悉有关的规范规定,并且在项目设计中认真执行和贯彻。
一 建筑结构抗震能力的主要影响因素
(一)建筑结构所用的材料及施工质量
地震对结构作用的大小几乎与结构的质量成正比,一般说在相同条件下,质量大,地震作用就大,震害程度就大,质量小,地震作用就小,震害就小所以,在建筑物的楼板、墙体、框架、隔断、围护墙以及屋面构件中,广泛采用多孔砖、硅酸盐砌块、陶粒混凝土、加气混凝土板、空心塑料板材、瓦楞铁等轻质材料,将能显著改善建筑物的抗震性能施工质量的影响是深远的, 在整个施工过程中,任何一个环节出现问题,都可能影响建筑结构本身的抗震能力。
(二)抗震设防标准
抗震不仅是取决于建筑的抗震设防标准,还要严格的遵循建筑抗震设计规范。国家根据地震发生的可能性和震害的严重性确定各地区基本设防烈度,这是各地区抗震设计的基本参数,主要代表地面加速度的大小。对具体房屋中,需要结合建筑使用功能的重要性确定建筑的抗震设防标准,即确定设计烈度和抗震等级。对一般建筑,设计烈度就是本地区设防烈度。设计烈度愈高,抗震能力愈强,但建筑造价也愈高。
(三)建筑场地
地震造成建筑物的破坏,情况是各种各样的,由于地震时的地面强烈运动,使建筑物在振动过程中,因丧失整体性或强度不足或变形过大而破坏;由于水坝倒塌、海啸、火灾、爆炸等次生灾害所造成;由于断层错动、山崖崩塌、河岸滑坡地层陷落等地面严重变形直接造成前两种可以通过工程措施加以防治,而后一种情况,单靠工程措施很难达到预防目的,或者代价昂贵。因此,应进行详细勘察,搞清地形地质情况,挑选对建筑抗震有利的施工场地。尽可能避开对建筑抗震不利的地段, 任何情况下均不得在抗震危险地段上建造可能引起人员伤亡或较大经济损失的建筑物。
(四)合理的抗震设计
抗震设计就是要选择合适的结构形式,确定合理的抗震措施,保证结构的抗震性能,确保建筑物满足“小震不坏、中震可修、大震不倒”的抗震目标。高层住宅主要采用现浇剪力墙结构、框架一核心筒或框架一剪力墙结构,具有较好的强度和变形能力,抗震性能相对较好。无论板式住宅还是点式住宅,只要设计合理,都可满足抗震要求。多层住宅大部分采用砖混结构,目前多采用现浇楼板,并采取设构造柱和圈粱等抗震措施,或者采用框架结构,大大增强了抗震能力。
二 建筑结构抗震设计常见的问题分析
(一)缺乏岩土工程勘察资料或资料不全
有的在扩初设计阶段还缺建筑场地岩土工程的勘察资料,有的在扩初设计会审之后就直接进入了施工图设计,有的在规划设计或方案设计会审后就直接进入了施工图设计。无岩土工程勘察资料,设计缺少了必要的依据。
(二)抗震设防标准掌握不当
有一些项目擅自提高了设防标准,按照稚枣筑抗震设防分类标准(GB 50223-95)》划分应属六度设防的,但设计中提高了一度按七度设防,提高了建筑抗震设防标准,将会增加工程投资;有的项目严格应按七度采取抗震措施的,但设计中又按六度设防,减低了抗震设防标准,不利抗震。
(三)抗震构造柱布置不当
如外墙转角处,大厅四角未设构造柱或构造柱不成对设置;以构造柱代替砖墙承重;山墙与纵墙交接处不设抗震构造柱;过多设置抗震构造柱等。
(四)平面布局的刚度不均
抗震设计要求建筑的平、立面布置宜规正、对称,建筑的质量分布和刚度变化宜均匀,否则应考虑其不利影响。但有的平面设计存在严重的不对称,造成了纵向刚度不均,而底层作为汽车库的住宅,―侧为进出车需要,取消全部外纵墙,另―侧不需进出车辆,因而墙直接落地,造成横向刚度不均,对抗震极为不利。
(五)结构其他问题
有的底层无横向落地抗震墙,全部为框支或落地墙间距超长;有的仅北侧纵墙落地,南侧全为柱子,造成南北刚度不均;有的底层作汽车库,设计时横墙都落地,但纵墙不落地,变成了纵向框支;还有的底框和内框砌体住宅采用大空间灵活隔断设计,其中几乎很少有纵墙。不少地方都采用钢筋混凝土内柱来承重以代替砖墙承重,实际上将砖混结构演变为内框架结构,这比底框砖房还不利,因内框砖房的层数、总高度控制比底框砖房更严,因此存在着严重抗震隐患。更为严重的是这种情况并未引起目前大多数结构工程师的重视。
三 我国建筑结构抗震能力的提高措施
(一) 对旧有建筑进行加固行动
很多旧房屋现在已经开始出现基础沉降、墙体裂缝、倾斜、面层剥落等现象或隐患,其中部分建筑已影响使用,甚至出现危房鉴于拆旧建新投资费用较大,为了确保人民生命财产的安全,充分利用原有旧房,对不符合抗震要求的进行加固,对部分部位及构件进行修缮,以满足抗震设防目标,是十分必要的通常的方法是将结构隔震。消能减震技术应用到建筑物的抗震加固中,这种方法在某些方面具有独特的优点,它摆脱了常规加固中以构件承载力为主的加固模式,寻求通过减小建筑物上地震作用的途径,从而使结构及构件满足承载力要求,从而达到加固目的。我国人口众多,地震灾害频繁,因此多途径研究探索既有建筑物的抗震改造加固方法,以满足不同的改造加固要求,对工程结构抗震具有积极的意义。
(二)材料的选用和结构体系问题的解决
在高层建筑中,还应注意结构体系及材料的优选,现在我国钢材产量已居世界前列,建筑钢材的类型及品种也在逐渐增多,钢结构的加工制造能力也已有了很大的提高,因此在有条件的地方,建议尽可能采用型钢混凝土结构(SRC)钢管混凝土结构(CFS)或钢结构(S 或SS),以减小柱断面尺寸,并改善结构的抗震性能在超过一定高度后,由于钢结构质量较轻而且较柔,为减小风振而需要采用混凝土材料时,钢骨(钢管)混凝土,通常作为首选工程经验表明:利用钢管混凝土承重,柱自重可减轻 65%左右,由于柱截面减小而相应增加了使用面积,钢材消耗指标与钢筋混凝土结构相近,而工程造价和钢筋混凝土结构相比可降低 15%左右,工程施工工期能缩短约 1/2 此外钢管混凝土结构显示出良好的延性和韧性。因此,在高层建筑结构中,在采用与否钢骨混凝土构件时,建议考虑使用。
(三)研究开发更为合理的结构形式
随着科技的高速发展,自重轻、跨度大、功能多样、施工周期短成为现代建筑结构的发展方向。因而,研制出轻质高强的新型建筑材料,研究开发合理的结构形式成为各种新型结构体系应运而生的前提和基础譬如开合屋盖结构,这种结构是一种在很短时间内部分或全部屋盖结构可以移动或开合的结构形式,它使建筑物在屋顶开启和关闭两个状态下使用。开合屋盖是将一个完整的屋盖结构划分成几个可动和固定单元,使可动单元能够按照一定轨迹移动达到屋盖开合运转的目的。根据开合机理,屋盖体系的开合移动方式可分为:水平移动和水平旋转移动方式;空间移动方式;绕枢轴转动方式;折叠移动方式和组合移动方式等。
四 结束语
结构抗震设计的重要技术对建筑安全起到非常重要的作用。因此,要从我国高层建筑抗震设计现状及国际高层抗震设计发展的趋势出发,不仅要重视抗震设防,而且要熟悉有关的规范规定,并且在项目结构设计中认真执行和贯彻。努力探求新型的结构与材料,也成为地震区高层建筑发展的新方向。
参考文献:
[1]孙军.高层建筑结构设计的问题分析[J].山西建筑 2008(19).
[2]戴瑞同.钢筋混凝土和砌体结构的抗震设计[M].中国建筑工业出版社,1 999.
篇2
1高层建筑抗震设计的相关概念
高层建筑的抗震设计还需要结合当地的地形以及气候环境条件,针对一些地震高发地带,设计需要采用强度较高的施工材料,要做好建筑结构的优化工作,保证建筑满足抗震设防的要求。高层建筑有着良好的发展趋势,在设计与施工时,一定要保证建筑使用的安全性,并且要使建筑在地震力的作用下,不会出现结构严重变形的问题。高层建筑抗震设计是一项重要的工作,下面笔者对高层建筑结构抗震设计目标以及结构优化措施进行简单的介绍。
1.1高层建筑结构抗震设计目标
高层建筑结构抗震设计是一项重要的工作,设计人员需要保证结构的稳定性,高层建筑结构抗震设计目标是“小震不坏、大震不倒”。为了达到这一目标,设计人员还要合理确定施工的材料,施工材料要具有较高的强度与刚度,建筑结构要具有良好的延展性。另外,在高层建筑施工时,需尽量减少耗能情况,施工单位要多采用可再生的新型能源。
1.2高层建筑结构优化措施
1.2.1加强结构体系的优化高层建筑施工在选择材料时,应尽量选择轻质的材料,结构材料还要具有较高的强度,这样的结构有着良好的连续性,可以抵抗较大的荷载以及作用力,可以保证建筑结构的整体性。合理选择结构材料,并优化结构体系,是提高建筑防震效果的有效措施。建筑工程多采用的是钢结构或者型钢混凝土结构,这对钢材以及混凝土的性能有着较高的要求,在施工前,需要对施工材料的性能进行检测。优化建筑抗震结构体系,可以保证建筑的承载力,避免结构在地震力作用下出现变形问题,良好的建筑结构可以起到吸收地震能量的作用,在地震灾害下,有利于避免建筑出现较为严重的损毁问题。建筑抗震设计需主要结构的整体性,这考验了设计人员的能力,采用型钢混凝土结构,可以保证建筑结构达到立面的效果,提高建筑使用的安全性。
1.2.2场地的选择高层建筑对施工场地也有着一定要求,在施工前,设计人员需要做好地质的考察工作,对施工场地的土质进行检测,并保证地质结构的稳定性,设计人员加强实地勘探,可以了解该地区是否存在地震隐患,并了解地下岩层的结构,根据这些因素进行综合评价,从而得出准确的场地数据。如果遇到不适合建造高层建筑的场地,应该采取回避的措施,给出恰当的危险性评价,从根源上杜绝出现由于地面的震动而摧毁地基的现象。
1.2.3建筑结构的规则性建筑结构的规则性对于抗震作用比较大,不规则的建筑结构不利于抗震。因为建筑结构具有规则以及对称的剖面结构,地震对建筑物带来的摇晃有一定的支撑作用,从而起到很好的抗震效果。从建筑竖向剖面理论来说,竖向抗侧力构建的截面尺寸以及材料强度应该自下而上的逐渐减少,这样就能够避免测力结构的承载力突变。因此,对于没有特殊要求的高层建筑物,应该尽量避免过于规则的结构组成,不能一味的追求其视觉效果,更多的注重抗震要求。
1.2.4多道防震体系一般情况下,一次地震不会造成持续的震动,但是可能会造成接连不断的余震,尽管强度不大,但是从持续时间以及反复次数上来说,在一定程度上对建筑物造成不同程度的损坏。高层建筑物只是采取单体的结构,一旦遭遇到破坏时就会难以应付接踵而来的持续余震,最终导致建筑物坍塌。针对此种现象,就必须设立多道防震体系。设立多道防震体系,及时第一道防震线被摧毁,还有第二道以及第三道防震线,就能够很好的躲避反复的余震带来的破坏,大大的降低了危险指数,增加了抗震能力。
2高层建筑结构抗震设计中应主要的几个问题
2.1控制结构超限现象以及相关的解决措施
对于结构薄弱位置,在框架柱内设置型钢,提高其承载力以及抗震安全性;控制结构扭转比,使结构楼层的扭转位移比小于1.2;对于个别墙柱按照中震弹性以及小震计算结果进行包络设计,满足中震弹性的抗震性能目标;依次类推,标准层的个别墙柱则按照中震计算结果,满足中震不屈服的抗震性能目标;根据弹塑性实程分析结果,连梁以及框架梁出现弯曲塑性铰,梁端塑性铰在各个楼层分布较为均匀,反应历程中最大层间位移角小于1/120,满足规范要求。
2.2剪力墙连梁抗震设计措施
①调整连梁刚度折减系数:对内力以及位移进行计算时,对竖向与水平的荷载效应下两种情形进行区别对待。在水平荷载效应下,可以折减连梁的刚度系数,例如:当出现作用力时,折减系数应该大于或者等于0.50;在竖向荷载效应下,不需要折减连梁的刚度系数,通过利用支座弯矩调整的幅度来降低连梁支座的弯矩。
②调整连梁跨高比:在设计连梁时,可能会遇到刚度折减之后连梁的正截面仍然承受剪承载力不足的现象,这时就需要增加洞口的宽度,减低高度。
③其他措施:设置水平缝形成双连梁、连梁内设置交叉暗撑、采用型钢混凝土连梁、调整连梁的内力以及增加连梁延性等。
3结论
篇3
关键词:高层建筑 , 结构设计 ,抗震设计,短柱,措施
Abstract:The high-rise buildings aseismic design and construction work has been building the key, and summarizes the principle of seismic design of high-rise building, the architecture of the short column seismic necessary theoretical analysis, and the seismic measures must be taken. In order to avoid short column in high-rise building brittle failure occurs in, I think, first of all to correctly determine the short columns, and then the short column to take some structural measures or processing, improve the short column and the ductility of the seismic performance.
Keywords: high building, structure design, seismic design, short columns, measures
中图分类号:TU318文献标识码:A文章编号:
1 高层建筑抗震设计的原则
1.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能①结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。②对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。③承受竖向荷载的主要构件不宜作为主要耗能构件。
1.2 尽可能设置多道抗震防线①一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架—剪力墙结构由延性框架和剪力墙两个分体组成,双肢或多肢剪力墙体系组成。②强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。③适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。④在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。
1.3 对可能出现的薄弱部位,应采取措施提高其抗震能力①构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。②要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。③要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。④在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。
2 高层建筑抗震中短柱的正确判定
柱净高H与截面高度h之比H/h≤4为短柱,工程界许多工程技术人员也都据此来判定短柱,这是一个值得注意的问题。因为确定是不是短柱的参数是柱的剪跨比λ,只有剪跨比λ=M/Vh≤2的柱才是短柱,而柱净高与截面高度之比H/h≤4的柱其剪跨比λ不一定小于2,亦即不一定是短柱。按H/h≤4来判定的主要依据是:①λ=M/Vh≤2;②考虑到框架柱反弯点大都靠近柱中点,取M=0.5VH,则λ=M/Vh=0.5VH/Vh=0.5H/h≤2,由此即得H/h≤4。但是,对于高层建筑,梁、柱线刚度比较小,特别是底部几层,由于受柱底嵌固的影响且梁对柱的约束弯矩较小,反弯点的高度会比柱高的一半高得多,甚至不出现反弯点,此时不宜按H/h≤4来判定短柱,而应按短柱的力学定义——剪跨比λ=M/Vh≤2来判定才是正确的。
框架柱的反弯点不在柱中点时,柱子上、下端截面的弯矩值大小就不一样,即Mt≠Mb。因此,框架柱上、下端截面的剪跨比大小也是不一样的,即λt=Mt/Vh≠λb=Mb/Vh。此时,应采用哪一个截面的剪跨比来判断框架柱是不是属于短柱呢?笔者认为,应该采用框架柱上、下端截面中剪跨比的较大值,即取λ=max(λt,λb)。一般情况下,在高层建筑的底部几层,框架柱的反弯点都偏上,即Mb>Mt。
在层高一定的情况下,为提高延性而降低轴压比则会导致柱截面增大,且轴压比越小截面越大;而截面增大导致剪跨比减小,又降低了构件的延性,轴压比与延性比关系图如图1所示,因此,在高层特别是超高层建筑结构设计中,为满足规程对轴压比限值的要求,柱子的截面往往比较大,在结构底部常常形成短柱甚至超短柱。
图1 轴压比与延性比关系图
3 提高短柱抗震性能的措施
有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求。钢筋混凝土材料本身自重较大,所以对于高层建筑的底层柱,随着建筑物高度的增加,其所承担的轴力不断增加,而抗震设计对结构构件有明确的延性要求,在层高一定的情况下,提高延性就要将轴压比控制在一定的范围内而不能过大,这样则必然导致柱截面的增大,从而形成短柱,甚至成为剪跨比小于1.5的超短柱。众所周知,短柱的延性很差,尤其是超短柱几乎没有延性,在建筑遭受本地区设防烈度或高于本地区设防烈度的地震影响时,很容易发生剪切破坏而造成结构破坏甚至倒塌。
混凝土短柱的延性主要受轴压比的影响,同时配箍率、箍筋的形式对混凝土短柱的影响也很大。高层混凝土结构短柱,特别是结构低层的混凝土短柱,其轴压比很大,破坏时呈脆性破坏,其塑性变形能力很小。提高混凝土短柱的抗震性能,主要也就是提高混凝土短柱的延性。因此,可以从以下几方面着手,采取措施提高混凝土的抗震性能。
3.1提高短柱的受压承载力
提高短柱的受压承载力可减小柱截面、提高剪跨比,从而改善整个结构的抗震性能。减小柱截面和提高剪跨比,最直接的方法就是提高混凝土的强度等级,即采用高强混凝土来增加柱子的受压承载力,降低其轴压比;但由于高强混凝土材料本身的延性较差,采用时须慎重或与其他措施配合使用。此外,可以采用钢骨和钢管混凝土柱以提高短柱的受压承载力。
3.2 采用钢管混凝土柱
钢管混凝土是套箍混凝土的一种特殊形式,由混凝土填入薄壁圆形钢管内而形成的组合结构材料。由于钢管内的混凝土受到钢管的侧向约束,使得混凝土处于三向受压状态,从而使混凝土的抗压强度和极限压应变得到很大的提高,混凝土特别是高强混凝土的延性得到显著改善。同时,钢管既是纵筋,又是横向箍筋, 其管径与管壁厚度的比值至少都在90以下,相当于配筋率2至少都在4.6%。
当选用了高强混凝土和合适的套箍指标后,柱子的承载力可大幅度提高,通常柱截面可比普通钢筋混凝土柱减小一半以上,消除了短柱并具有良好的抗震性能。
3.3 采用分体柱
由于短柱的抗弯承载力比抗剪承载力要大得多,在地震作用下往往是因剪坏而失效,其抗弯强度不能完全发挥。因此,可人为地削弱短柱的抗弯强度,使抗弯强度相应于或略低于抗剪强度,这样,在地震作用下,柱子将首先达到抗弯强度,从而呈现出延性的破坏状态。分体柱方法已在实际工程中得到应用。人为削弱抗弯强度的方法,可以在柱中沿竖向设缝将短柱分为2或4个柱肢组成的分体柱,分体柱的各柱肢分开配筋。在组成分体柱的柱肢之间可以设置一些连接键,以增强它的初期刚度和后期耗能能力。一般,连接键有通缝、预制分隔板、预应力摩擦阻尼器、素砼连接键等形式。
篇4
关键词:高层建筑;抗震性能;设计分析
中图分类号:tu97 文献标识码:a
1 概述
事实上,在建筑结构的设计过程中,抗震性能设计是目前所有高层建筑极需认真考虑的问题。我国的高层建筑主材料一般都是选用钢筋混凝土,而高层建筑结构的复杂化以及设计的新颖化对高层建筑的抗震性能又有一定的影响。
2 当前高层建筑抗震理念
在人类建筑史当中,人们一直想要寻求一个很好的办法去抗震防震,随着地质学家对地震的了解以及深入,已经基本掌握了地震的特征以及一般的地震地面运动特点,于是,在此基础上,高层建筑的抗震性能设计理论以及设计方案都有了很大的转变,并且不断完善发展。
现在最为流行使用的抗震设计方法就是基于位移的抗震设计方法。这种方法主要是对高层建筑进行准确的定量分析研究,再用量化的位移指标来制定高层建筑的抗震性能,从而让高层建筑的抗震变形能力范围可以满足地震时最低的变形要求,最终保持高层建筑的抗震性能能够达到一定的标准。
基于位移的抗震设计方法一般能够细分成下面的方法,即为:①能力谱方法;②按延性系数设计方法;③直接基于位移的方法。直接基于位移的方法是按照地震作用下预期的位移去计算地震的作用,从而进行高层建筑的抗震性能设计,望高层建筑能够达到一定的预期变形,能够起到抗震防震的作用。
3.高层建筑抗震性能低的原因分析
3.1 高层建筑层数过多
混凝土高层建筑的层数是有一个极限的,也就是说混凝土高层建筑的高度是有一个极限的,不能无限增高。一旦该建筑超过了混凝土建筑的最大高度,高层建筑的自重就会变大,导致这个高层建筑的抗震性能变差,给实际上的高层建筑施工带来的施工难度就更大了。这样一来,施工的时间、成本的耗费也就大了,而且居民的安全却无法得到保障,这是没有好处的。若地震发生,高层建筑容易倒塌,给国家跟居民所造成的精神伤害以及经济损害是无法估计的。因此,为了能够保证高层建筑的抗震性能良好,高层建筑的层数不宜过高,一定要根据实际施工场地,严格依照专业的高层建筑设计师的标准高层建筑设计图来进行施工。
3.2 地基选取不当
在一定程度上,地基的选取也可以对高层建筑的抗震性能造成一定的影响。地基之所以会对高层建筑的抗震性能造成影响,是因为地基作为所有建筑的基础,一旦地基不牢固,地震又不幸发生,高层建筑损坏甚至倒塌的现象就会极易出现。因此,在实际的高层建筑施工设计过程当中,优先选择一些地势较低、相对平坦的场地,还要保证基底的硬度足够大,如一些坚硬施工场地或者是较为均匀的中硬度施工场地,避免在山崖、陡坡或者下陷的地方进行高层建筑施工。
3.3 材料选取不当
在地震较为频繁的地区,除了要考虑高层建筑的施工层数、地基的选取还必须要考虑高层建筑的施工材料。施工材料的选择,是控制高层建筑抗震性能的最直接途径。同时,还有注意选取比较合理的建筑结构体系,在实际施工中,施工工作人员应当确保混凝土结构的位移限制值必须控制在国家相关法律法规当中。
3.4 抗震设防烈度偏低
根据地震发生的频率以及地震发生时地震的强度,我国把全国划分成多个地震设防区域,在不同的地方,不同的高层建筑设防等级也是不尽相同的。一旦高层建筑的抗震设防烈度下降,高层建筑的结构安全隐患就会增大。我国目前使用的抗震设防标准还没有达到一个较高的水平,中级地震就相当于在规定的设计既准期以内超越概率约为百分之十的地震强度,所以,高层建筑的抗震设防烈度不容忽视。
4、有效增强高层建筑的抗震性能
4.1 高层建筑结构规则性
对高层建筑进行一个合理的布局是增强高层建筑抗震性能的有效措施,有专家曾经分析过,外观较为简单、建筑结构较为对称的建筑在地震发生时,该种建筑的抗震性能会比较好,不易被地震损坏。之所以会这样,是因为这类建筑在地震发生时可以很快地对地震的强度作出很好的反应,抵御地震。所以,专业的高层建筑施工人员在进行高层建筑设
计时会采用较为简单的建筑结构设计,确保建筑的平面外形以及立面外形的尺寸、抗侧力构件布置、承载力等各个方面都能够均匀分布,保持了高层建筑的相对规则性。唯有外观简单、受力均匀、结构硬度适中的高层建筑设计,才可以保证建筑物的抗震性能良好。
4.2 降低地震能量输入
要想降低高层建筑在地震中的能量输入,最常用的方法就是消能减震技术,这个技术就是在建筑结构的一些特殊部分,就好像节点、支撑点、连接缝等,在这些部位添加一些消能元件,然后这些消能元件就会通过产生摩擦非线性滞形耗能来分散或者是吸收地震能,从而减少建筑主体受地震的影响,防止高层建筑的结构被地震损坏甚至倒塌。
虽然这个方法可以大幅度地提高高层建筑的抗震性能,但这个方式的真正施工实施较难,若施工的尺度不能准确把握,到时整个工程就没有达到预期的抗震效果。所以,在实际施工当中,一定要注意合理规划施工。
4.3 控制地震扭转效应
一旦地震发生,那些建筑结构不对称、建筑格局不合理的建筑通常会出现水平移动,产生水平位移,这样就会产生扭转性的效应,严重的还会让高层建筑倒塌。究其原因,就是因为不规则的高层建筑的水平荷载中心跟刚度中心无法很好地重合在一起。所以,这就告诉专业的建筑施工人员,在实际的施工过程中要充分考虑建筑的结构会对建筑的抗震性能产生什么样的影响,最好选择一些外观规则、简单的建筑设计。
4.4 建筑结构自重减轻
当前的混凝土高层建筑,自重很大,一旦高层建筑的层数过多,要求相应的地基承载力也要大。所以,应当尽可能地减小高层建筑的自重,这样就对地基有很好的效果而且我们都应该注意到,建筑的质量跟地震效应是成一个正比关系的,建筑质量越大,受地震的影响就越大,所吸收的地震能量也就多。如这些地震能量无法释放,必然会损坏高层建筑。
4.5 增设抗震防线
要想增强高层建筑的抗震性能,还可以在建筑内外设置多道抗震防线,一旦第一道抗震防线被破坏,其他的抗震防线也可以继续起作用。
结语
在不断追求高层建筑的外形新颖奇特的同时,抗震性能一定不能忽略。因为一个建筑最能体现它的价值的除了其外观结构、建筑材料,更重要的一样就是抗震性能。从根本上增强高层建筑的抗震性能就要从实际上综合考虑各方面的因素。唯有从高层建筑的内部结构有足够大抗震防震措施,方可从根本上增强高层建筑的抗震性能。
参考文献
篇5
关键词:生土结构;震害;村镇建筑;夯土墙;土坯墙
Abstract: the research of northwest were born bearing the kind of the building wall and build habit, analyzes the advantages and disadvantages of the characteristic of structure generates. Describes the TuPiQiang bearing and wall of the house rammer earth bearing the earthquake disasters. Research in the static load and under seismic load generates the destruction of the building characteristics and structural causes of damage. Points out that the traditional build custom layout, foundation treatment, base material selection, wall material selection and wall construction method of the existing problems. Put forward some measures, and may also without any increase in cost or slightly increase the cost of the cases, greatly improved the structure of generates seismic performance.
Keywords: generates structure; Earthquake damage; Town construction; Rammer earth walls; TuPiQiang
中图分类号:TU352.1+1文献标识码:A 文章编号:
1、生土墙承重房屋的建造习惯和结构特点
1.1 生土建筑的优点
生土建筑利用地方材料建造,造价低廉,技术简单,冬暖夏凉。而且原土不需烧制,不污染环境,这是生土建筑具有较强生命力的主要原因。另外,房屋拆除后建筑垃圾可作为肥料回归土地,这种可持续发展的生态优势是其他任何材料无法取代的。
1.2 生土墙承重房屋的建筑形式
生土墙体承重房屋一般呈硬山搁檩型,全部墙体用土坯或夯土建成。夯土墙墙厚从400-800mm不等,内墙也可做300mm,墙顶上搁檩建顶。大多为双坡屋顶,也有单坡形式,房屋后墙比前墙高出1.5-2m,前墙留有门窗。双面坡的房屋前后墙均可开门窗。土坯墙一般前后墙顶顺墙长方向架 ,檩上铺椽建顶。土坯墙体采用泥浆砌筑,土坯 尺寸根据地区不同而有差异。
1.3 生土墙承重房屋的结构特点
生土墙房屋以墙体为承重体系。夯土墙墙体房屋屋盖系统的檩条或大量直接搁置在墙上,集中荷载直接作用于墙。土坯墙墙体由生土块材砌筑,由于黏结泥浆强度低且在土坯缝中不饱满,墙体承受集荷载的能力很弱,有时在墙顶设通长木梁(一般为圆木),檩条或屋架梁搁置在墙顶木梁上,将集中荷载分布在一定范围。[1][2]
生土结构房屋的屋盖全部荷载通过檩条或屋架(梁)传给承重的生土墙体,由于生土墙材料强度低,墙体一般较厚。夯土墙房屋的空间刚度和整体性略差。墙体上开设的门窗洞口,对墙体有局部削弱,洞口间墙体过窄和洞口上部墙体高度过度小时,对房屋性能影响较大。墙体荷载传给墙下条形基础,再由基础穿给地基。生土结构房屋的基础,在静力荷载作用下,一般性能良好。但在地震荷载作用下,易裂开产生通缝,滑动,失稳。严重时造成基础失效。村镇生土房屋的地基,通常开挖至基底后,对天然地基稍加夯实,有的不夯实而直接砌筑基础。若地基不均匀,软弱,则对上部结构性有不利影响。
2、生土墙承重房屋震害分析
2.1 震害调查
20世纪70年代以前发生于陕,甘,宁,青,新五省(区)21次强烈地震的震害调查资料表明:生土墙承重房屋在Ⅸ度及Ⅸ度以上地区几乎全部倒塌,在Ⅷ度及Ⅷ度以下地区,破坏和倒塌率随烈度提高而上升。
2.2 破坏特点及破坏原因
生土墙承重的房屋在静力荷载作用下的性能与房屋地基条件,墙体材料和施工方法关系较大。一般情况下。夯土墙承重房屋抗震性能优于土坯墙承重房屋,但不论那种形式的生土墙承重房屋,延性差是其显著弱点。
1) 地基基础破坏。生土墙房屋几乎都没有经过正规设计,基础深度宽度较小,地基未经很好处理,石料,黏土砖常采用泥浆砌筑。若房屋建造在软弱地基。砂土液化地基及土质不均匀地段,可能引起房屋的整体破坏。在静力作用下,反映为墙体开裂,甚至倾斜。在地震荷载作用下会导致房屋的严重变形或倒塌。
2) 结构体系不规则引起的破坏。尤其是单面坡房屋,后墙比前墙高1.5~2m,地震时前后墙的惯性力相差悬殊,易发生墙体严重开裂和前后墙变形差异引起的屋盖系统塌落或房屋的倒塌。
3) 在剪切力的作用下,很容易发生墙体裂开,墙体外倾的现象,这是此类房屋的主要震害之一。震害表明,在Ⅵ度既有少量倒塌,大部分为转角Ⅴ形局部塌落及墙体的斜裂缝,竖向裂缝,纵横墙交界处通裂缝等。
4) 墙体受压承载力不足引起的破坏。屋盖系统的檩条或大梁直接搁置在夯土墙上,墙体承受着屋盖系统的全部重量,在檩条或大梁与墙体的接触处荷载集中,由于墙体受压能力或局部承压能力不足,承重墙体往往使用阶段就产生竖向裂缝,对房屋的抗震性能不利。在地震作用下,由于地震力引起的梁檩与墙体搭接触的冲撞,造成梁檩拨出,山墙倒塌,甚至落架等震害。
3、改善生土结构受力性能的措施
3.1 平面布局
为了减小房屋的地震作用,建筑平面布置和立面处理应力求简单,规整。房屋高度不宜过高,开间不宜过大。最好每开间都设横墙,以减小纵墙的跨度。门窗不宜开得过大,以免因窗间墙过窄在地震时破坏。纵横墙布置要均匀对称,保证房屋高度均匀。避免砌筑一些附属物,如门脸,女儿墙等,防止地震时塌落伤人。烟囱不应削弱墙体强度。烟道可放置在土墙内侧或外侧的墙垛里,并应采取一定连接措施。
房屋以两面坡为宜。单面坡房屋由于屋顶重心不稳,在地震作用下容易向下滑动,与墙体脱开。而后墙高而稳定性差,在地震作用下也容易遭受破坏。
3.2 地基基础
地基应开槽分层回填夯实,深度根据土质确定,土质好的地方浅一些,土质差的地方深一些,通常500~1000为宜。宽度以每边宽出基础150~200。土质好的地区用原土分层回填夯实即可,土质差或湿陷严重的地区应采用2:8或3:7灰土分层回填夯实。
基础应砌至室外地坪以上300左右,以防止墙体底部受雨水侵蚀。材料可以用砖,毛石,片石和砾石。用石灰砂浆砌筑,施工中应注意错缝咬槎。也可用灰石基础。若能用几何尺寸较规则的料石做基础,将大大增强墙体的抗震性能。
3.3承重墙体
1)土坯平砌承压不足易出现通缝,立砌抗折刚度较大但稳定性差,且整体性较差,在地震烈度Ⅶ度以上的地区应优先选用夯土墙的形式。
2)土坯墙因错缝搭接砌筑,土坯尺寸应大体一致,并应掺入碎草等拉接材料,砌筑的泥浆性要好,砌缝的泥浆应饱满,最好用草泥浆以增强砌体的抗震能力。试验表明,土坯中按重量比掺入0。5%的草。土坯的抗弯和抗剪强度可增加50-100%。
3)夯土墙应应分层错缝夯筑,拆摸后应在墙体端部铲成斜面,以使两板结合紧密,如果相隔时间较长,再次夯筑时再铲斜面并应浇水后夯筑。上下两层必须浇水后夯筑,且在按缝处可竖向加竹片,木条等拉结材料,以增加层间拉结。在纵横墙交接处如沿高度每500左右设一层如荆条,苇秆,竹片。木条等拉结材料,墙体整体性会有较大提高。外墙拐角处纵横墙分板夯筑时,应每板加入拉结材料,拉结材料应铺至墙体尽端。门窗洞口两侧沿墙体高度方向水平加入竹片,树枝等拉结材料,以改善局部抗震性能。拉结材料使用前应先在水中充分浸泡,以加强和墙体的粘结。
4)夯土墙的土料中加入一定量的砂,碎石,可明显提高墙体承载力。由于夯土墙墙体较厚,条件许可的地区可采用小型电夯,以提高墙体的夯筑质量,减轻施工人员劳动强度,加快施工进度。墙体边角区须用斜面行锤夯实,以保证墙体质量。[3]
4、结语
1)生土结构房屋由于墙体承载能力低,自重大,延性差等特点,决定了夯土墙承重房屋的抗震性能较差。但由于其易于就地取材,建造方便,绿色环保,可持续发展和经济实用的特点,在我国广大农村,尤其是在经济尚不发达地区仍然是居民的一种主要形式。指出生土结构房屋建造中的一些问题,给出有效的提高抗震性的措施,对村镇建筑减灾防灾具有现实意义。
2)调查表明,生土墙房屋的传统做法有其合理方面,同时也有需要改进的地方,实践表明,通过对此类房屋的震害特点及破坏机理进行分析,提出改善此类房屋抗震性能的技术措施并加以应用,生土墙承重房屋的抗震性能可以得到明显的改善。在非抗震区和低烈度区使用和发展具有一定的前景和实用性。
参考文献:
[1] 尚建丽,杨晓东,李占印.双掺改性聚合物砂浆性能的试验研究.新型建筑材料,2002. 12
[2] 施维林.传统民居与未来居住建筑取向.新建筑,2002.No.2: 5-6
篇6
【关键词】高层建筑;抗震;结构设计
一、高层建筑抗震结构的分析
现代高层建筑结构形式主要是一个垂直于地面的竖向悬臂结构。其建筑的垂直载荷主要使建筑结构产生一个与地球引力相抗衡的轴心力;建筑的水平载荷使建筑结构产生弯矩。从建筑结构的受力特点进行分析可以看出:当建筑的垂直载荷方向保持不变时,随着建筑高度的不断增加仅仅会引起量的增加而已,而这时水平载荷的方向就可以来自四面八方;而当建筑为平均分布载荷时,建筑的高度就和弯矩呈现出二次方的变化。
再从建筑的侧移特点来看:建筑竖直方向载荷引起的建筑位移是比较小的,而水平方向的载荷作为平均分布的载荷时,建筑的高度就和其侧移呈现出四次方的变化。由此可以得出,在高层混凝土建筑结构中,水平方向的载荷对建筑结构的影响是要远远大于垂直方向载荷对建筑结构的影响的,所以在进行高层混凝土建筑建设时,水平载荷是在进行结构设计时需要重点控制的影响因素,所以除了在保证高层建筑结构抵抗水平载荷产生的弯矩、剪力以及压、拉应力时,要具有较大的强度以外,还要保证高层建筑结构具有足够的刚度,使得建筑随着高度的不断升高,所引起的侧向变形能控制在结构规范允许的范围之内。
二、高层建筑抗震设计结构设计的方法
对高层建筑结构的抗震设计时,要从减小地震作用力的输入和增强地震抵抗力两个方面进行考虑。下面将从五个方面进行分析:尽可能减小地震作用能量的输入,运用高延性设计、推广消震和隔震措施的运用,注重抗震结构的设计,重视建筑材料的选择,增多抗震防线的建设。将减小地震作用力和增强建筑的地震抵抗力二者结合起来,从两方面入手,进行建筑抗震的设计施工。
(一)减少地震发生时能量的输入
在具体的设计中,积极采用基于位移的结构抗震方法,对具体的方案进行定量分析,使结构的变形弹性满足预期地震作用力下的变形需求。对建筑构件的承载力进行验收的同时,还要控制建筑结构在地震作用下的层间位移限值;并且更具建筑构件的变形和建筑结构的位移之间的关系,确定构件的变形值;根据建筑界面的应变分布以及大小,来确定建筑构件的构造需求。对于高层建筑来讲,在坚固的场地上进行建筑施工,可以有效减少地震发生作用时能量的输入,从而减弱地震对高层建筑的破坏程度。
(二)运用高延性设计、推广消震和隔震措施的运用
现在在我国,许多高层建筑进行抗震设计时,多采用延性结构,也就是适当的控制建筑结构的刚度,允许地震时结构的构件进入到具有很大延性的塑性状态,从而消耗地震作用时的能量,使地震反应减小,减弱地震给高层建筑带来的破坏和重大损失。如果某高层建筑的承载能力较小,但是具有较高的延性,那么在地震中它也不容易倒塌,因为延性构件可以吸收较多的能量,经受住很大的结构变形。延性结构的运用,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒。
进入20 世纪以来,人们对建筑物抗振动能力的提高做出了巨大的努力,取得了显著的成果,其中阻尼器的使用在高层建筑的抗震方面有很大的作用。通过对阻尼器的利用,进行减震和能量的吸收,可以巧妙的避免或减弱地震对高层建筑的破坏作用。
(三)注重抗震结构的设计
高层建筑抗震设计的结构应该得到人们的重视。我国150m 以上的建筑,采用的3 种主要结构体系(框.筒、筒中筒和框架- 支撑体系),都是其他国家高层建筑采用的主要体系。我国钢材生产数量已较大,钢结构的加工制造能力已有了很大提高,因此在有条件的地方,建议尽可能采用钢骨混凝土结构、钢管混凝土(柱)结构或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。
我国传统文化中“以柔克刚”具有价高的思想价值,可以指导很多实际问题。在高层建筑结构的抗震设计中,可以从传统的硬性为主的抗震模式向以柔性为主的抗震模式转变,实现以柔克刚、刚柔相济,有效地减弱地震作用过程中释放的冲击力。比如,在高层建筑的拱形结构中有这样一个例子:迪拜帆船酒店,外观如同一张鼓满了风的帆,一共有56 层、321m高,就是运用拱结构抗震减灾的很好的例子。
(四)重视建筑材料的选择
在高层建筑的抗震方案设计中,建筑结构的材料选择也非常重要。首先,我们可以对建筑材料的参数进行抗震性能的分析,从整体上对材料的参数变异性进行研究,而不能仅考虑建筑材料的承载力忽略其他因素。从抵抗地震的角度来讲,就是要控制建筑结构的延性需求,这就要求我们从高层建筑建设施工的各方面,来选择符合抗震需求而且经济适用的建筑结构材料。
(五)增多抗震防线的建设
高层建筑结构防震可以设置多道抗震防线,增强对地震的抵抗力。高层建筑物设置多层的地震抵抗防线,第一道防线遭到破坏之后,有后备的第二道、第三道甚至更多的防线对地震的作用力进行阻挡,避免高层建筑物的倒塌。高层建筑结构进行抵抗地震设计时,可以采用具有多个肢节和壁式框架的“框架剪力墙”等防震结构。
框架剪力墙具有性能较好的多道防线抗震结构,其中的剪力墙是第一道抗震防线也的主要的抗侧力构件。所以,剪力墙要足够多,保证它的承受能力较高,不小于高层建筑底部地震倾覆力矩的一半。同时,为承受剪力墙开裂后重分配的地震作用,任一层框架部分按框架和墙协同工作分配的地震剪力,不应小于结构底部总地震剪力的20%和框架各层地震剪力最大值的1.5倍两者的较小值。剪力墙结构中剪力墙可以通过合理设置连梁(包括非建筑功能需要的开洞组成多肢联肢墙,使其具有优良的多道抗震防线性能。
三、高层建筑的抗震结构计算
目前国内外在进行高层建筑抗震结构的计算时,都开始广泛的采用电脑软件,特别是在面对一些比较复杂的建筑结构形式时,电脑软件能对其提供巨大的帮助。在运用电脑软件进行建筑抗震结构的计算时,要求建筑结构的工程师必须具有清晰的结构概念,能准确在计算机上建立出反映工程实际情况的模型,还要能对其计算结果是否具有准确性、合理性做出分析。
在利用计算机进行对高层建筑的抗震结构计算时,要求计算机软件的技术条件应该符合相关的标准规范,并且在进行特殊结构处理计算时,还要阐明其内容方面相关的科学依据。在面对复杂结构下,多发地震灾害的建筑内力和变形的分析时,至少要采用两个不同的力学模型进行研究计算,对计算出来的结果进行准确的分析、确认无误后,才能进行相关建筑工程的抗震结构设计。
四、结束语
高层建筑结构的抗震设计方法和技术是不断变化和进步的,我们需要在具体的实践中对高层建筑所处的地质和环境进行详细的分析和研究,选用适合的抗震结构,注重建筑结构材料的选择,减小地震的作用力,增强地震的抵抗力,从而达到高层建筑抗震的目的。
参考文献:
[1] 王荣书,高层建筑结构概念设计探析[J] 黑龙江科技信息,2010.
篇7
关键词:建筑抗震;设计规范;发展
中图分类号:TU352.1+1 文献标识码:A 文章编号:
建筑抗震设计规范作为建筑抗震工作的重要依据,在很在程度上影响着人们的生命财产安全,因此,抗震工作人员必须根据本国的经济发展水平和科技发展水平,制定出科学合理的建筑抗震设计规范,有效地保障人们的生命财产安全。
一、当代建筑抗震设计规范的内涵
建筑抗震设计规范是指为了减轻地震对建筑的破坏程度,减轻人员伤亡和经济损失对建筑建设规范作出的要求和规定。它包括对地震所产生的作用的客观分析、由各方制定的关于建筑建设活动的规定文件、对建筑的结构抗震性能的分析、对不同的建筑物和建筑场地的地基分析,以及建筑抗震方法策略经验的总结。建筑抗震设计规范受国家经济水平和科学技术水平的影响较大,因此,它能够反应一个国家的经济技术发展状况和抗震理念,有很重要的研究价值。
二、当代建筑抗震设计规范的发展趋向及问题
随着抗震理论的不断提高,当代建筑抗震设计规范也不断的发展。目前建筑抗震设计规范的发展现状是反应谱理论在设计规范中的应用比较全面,但是动力理论尤其是非线性动力理论的应用还有待完善。应用抗震设计规范的对象一般都是数量较大、面积较广的结构物,一些比较复杂的设计规范必须进行精简,形成具体简单地设计方法,才能够被更好的利用。在当代建筑设计规范的发展中,主要涉及到以下几个问题:
1、建筑抗震设防标准
地震的发生规律是不可预测的,当代建筑抗震设防标准是根据对地震发生概率的分析,采用了“大震、中震、小震”三个标准。大震是指大于当地抗震设防烈度的地震,也叫做罕遇烈度的地震;小震指小于当地抗震设防烈度的地震,也叫众值烈度的地震;中震是指等于当地抗震设防烈度的地震,也叫基本烈度地震。抗震设防是为了尽量减少地震对建筑的破坏和人们生命财产安全的危害,对于大小不同的地震,要根据建筑的重要性和人口的集中度,给与不同标准的设防,可以概括为“大震不倒塌,中震能修补、小震不损坏”。我国是一个人口众多、面积辽阔的国家,而且各地区的地理条件差别很大,地震给不同地区带来的危害,差别也很大。在制定建筑抗震设防标准的过程中,需要根据不同地区的实际情况,制定合理的建筑抗震设防标准。
2、建筑物的设计结构
建筑结构的体系类型、建筑的施工因素以及建筑结构的使用功能都在很大程度上影响结构地震的反应。当代建筑抗震设计规范对此有不同的规定。对于建筑结构的使用功能的重要程度,建筑抗震设计规范给出了不同分类,对不同的类型给予不同的抗震措施。在建筑的结构体系方面,对于平面或立面不规则等复杂的的平面结构的建筑结构,要考虑扭转振动效应,进行水平地震的计算和内力调整;对于比较均匀和对称的结构要运用通过地震的作用效应来实现扭转效应。但是现实中,那些均匀结构的建筑,也存在扭转破坏的情况,由于地震自己可以产生扭转的作用,有时会使结构的扭转作用变大。所以,当通过地震的作用效应来考虑扭转效应时,要注意结构的平面大小对扭转效应的影响,进行不同的调整。
3、地震的作用
有很多因素会对地震的作用产生影响,地震的作用可以表示成地震发生的概率的一个函数,如果将地震的作用用参数来表示,要考虑地震发生的一个概率,通过地震的频谱特征、地震的强度和持续时间来表示,地震的大小、发生地的地理情况、震中距等都会对地震的作用有很大程度的影响。因为地震的发生的持续时间也不能确定,而且震级较小但持续时间较长的地震破坏力比震级大但是持续时间较短的地震破坏力更大,对于这种情况,往往通过调整地震的频谱特征和强度来表示。在时程分析法中才能考虑地震的持续时间对结构的影响,用拟静力理论的振型分解法和底部剪力法也可以反映地震的持续时间,今后,运用地震的持续时间来调整地震的作用也需要给予重视。
4、场地和地基
当选择建筑场地时,应该先了解场地的地质结构和地震活动情况,总结出抗震的有力地段、不利地段和危险地段,尽量避开不利和危险地段。场地和地基常常通过场地的土分类和它们的特征周期值来影响地震,当代建筑抗震设计规范,运用运用场地土覆盖层的厚度以及剪切波速来划分场地的类型,但是这在表示场地土层对地震的影响上并不全面,党对场地图层进行分类时,还要考虑到承载力、基数等的变化对分类的影响,并且要在构造方法、计算方法和概念的设计上加以分析。在当代建筑抗震设计规范中,对于场地条件在地震影响上的研究还有待完善,应该在抗震设计规范中进行必要的修正。
三、对建筑抗震设计规范的完善
针对当代建筑抗震设计规范发展中的一些问题,必须采取适当的措施加以解决,使建筑抗震设计规范更为完善。
首先是对于建构抗震设防分区的完善,地震对建筑所在地的影响,应该运用地震动强度以及设计反应谱来反映。其次是对于场地地基和基础抗震设计的完善,包括根据不同场地的类型采取抗震构造措施的措施,对建筑场地类型划分的部分调整,以及在地基基础抗震设计和岩土勘察上的完善。还有就是对于不同结构的建筑在抗震方法上的完善,钢筋混凝土结构的建筑要在框架结构上进行调整;砌体结构的建筑要注意,在层数和总高度上同时控制砌体建筑的使用范围,在一个墙段内要有多个芯柱和构造柱。
总之,在对建筑物进行抗震设计时,主要要有一些设计概念:1.选择对抗震有利的场地,避开对抗震不利的地段;2.建筑形状力求简单、规则;3.利用多道抗震防线;4.加强结构的延性,防止脆性破坏;5.非结构构件应满足抗震要求。
结束语:
由于地震严重威胁人类的生命财产安全,而地震的发生有不可预测,所以,抗震工作十分重要。建筑抗震设计规范对抗震工作的实施有很好的规范和指导作用,随着抗震理念的不断发展,建筑抗震设计规范也不断完善,必然会在指导抗震工作上发挥更大的作用。
参考文献:
[1] 谢礼立,马玉宏.现代抗震设计理论的发展过程[J].国际地震动态.2003(8)
[2] 蔡健,周靖,禹奇才.建筑抗震设计理论研究进展[J].广州大学学报(自然科学版).2005(01)
篇8
关键词:高层建筑;抗震设计
Abstract: the structural seismic design theory with the development of social economy and development, people in the production process, the mastery and application of earthquake resistance and disaster mitigation technology has made a lot of progress, but the building aseismic design method of is a significant issue, not only to be able to develop the existing buildings aseismic design, still can for society and the safety of people's lives and property provided protection.
Keywords: high building; Seismic design
中图分类号:[TU208.3]文献标识码:A 文章编号:
一、引言
随着经济水平的增长和高层建筑的增多,结构抗震分析和设计已变得越来越重要。由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在着许多模糊和不确定因素,在结构内力分析方面,由于未能充分考虑结构的空间作用、材料时效、阻尼变化等多种因素,计算方法还很不完善,单靠微观的数学力学计算很难使建筑结构在遭遇地震时真正确保具有良好的抗震能力。特别是我国处于地震多发区,高层建筑抗震设防更是工程设计面临的迫切任务,高层建筑结构的抗震仍然是建筑物安全考虑的重要问题。
二、抗震概念设计的含义
建筑结构的抗震概念设计是指在进行结构抗震设计时,根据地震灾害和工程经验等所形成的基本设计原则和设计思想,从概念上,特别是从结构总体上考虑抗震的工程决策,即正确地解决总体方案、材料使用和细部构造,以达到合理抗震设计的目的。抗震概念设计的基本要点有:
1.选择良好的抗震结构体系
高层建筑结构在抗震设计时,应选择合理的结构类型,设计的结构既要考虑其抗震安全性,也要尽可能的经济。结构应布置多道抗震防线,避免部分结构或构件失效而导致整个体系丧失抗震能力或丧失对重力的承载能力。此外,结构应拥有良好的整体性和变形能力,使结构的强度、刚度和变形能力三者达到统一。
2.建筑布置宜规则
高层建筑应重视体形和结构的总体布置。由于建筑体形不合理或结构总体布置不合理而造成的地震灾害,在国内外的大地震中都有所见。抗震设计选择的建筑平面和立面布置宜对称、规则,避免采用严重不规则的结构。结构的刚度宜均匀变化,竖向抗侧力构件的截面尺寸和材料强度宜自下而上逐渐减小,避免有刚度和承载力突然变小的楼层,造成薄弱层的出现,地震时该部分容易破坏。
3.选择合理的结构计算简图和地震作用传递途径
目前大多数高层建筑都可以利用计算机进行程序运算,为保证计算结构的可靠性,要求工程设计人员要熟练掌握结构的简化计算方法,得到结构构件在荷载作用下的计算见图,结构在地震作用下的传力途径要简单、直接,利用合理的力学模型和数学模型获得更为符合实际的抗震验算结果。
4.选择有利于抗震的场地和地基
高层建筑设计中要选择对建筑抗震有利的地段,避开对建筑抗震不利的地段。当无法避开时,应当采取适当的抗震措施,不应在危险地段上建造高层建筑。此外,设计前应估算建筑结构的自振周期,并与场地卓越周期错开,防止地震时结构发生类共振现象的破坏。
三、高层建筑抗震计算方法
当地震发生时,地面上原来静止的结构物因地面运动而发生强迫振动。因此,结构地震反应是一种动力反应,其大小不但与地面运动有关,还与结构的动力特性有关,一般需要采用结构动力学方法分析才能得到。目前常用的方法有底部剪力法、振型分解反应谱法和时程分析法。
1.底部剪力法
底部剪力法是一种拟静力法,把地震作用当作等效静力荷载来计算结构最大地震反应,其计算量比较小,但由于忽略了高阶振型的影响,且对第一振型也作了简化,因此计算精度稍差。
2.振型分解反应谱法
振型分解反应谱法是利用振型分解原理和反应谱理论进行结构最大地震反应分析,它属于一种拟动力法,计算量稍大,但计算精度较高,计算误差主要来自于振型组合时关于地震动随机特性的假定。
3.时程分析法
时程分析法是随着电子计算机技术和试验技术的发展而发展起来的一种计算方法。该方法通过选择一定的地震波,直接输入到所设计的结构,然后对结构的运动微分方程进行数值积分,求得结构在整个地震时程范围内的地震反应。时程分析法属于一种完全动力法,计算量大,但计算精度很高,可分为振型分解法和逐步积分法两种,而逐步积分法是又包含线形加速度法、纽马克β法等多种求解方式。
下面以单质点弹性体系为例,说明按线性加速度求解运动方程的基本原理。这种方法的基本假定是,质点的加速度反映在任一微小时段,即积分时段t内的变化呈线性关系。设已求出ti时刻质点的地震位移δ(ti)、速度(ti)和加速度(ti),现求经过时段t后在(ti)时刻的位移δ(ti+t)、速度和加速度(ti+t)。线性加速度的变化率为:
现将质点移加速度分别在ti时刻按泰勒级数展开:
将式(1)代入式(2)和式(3),并注意到式(2)和式(3)中δ(ti)的四阶以上导数均为零,于是:
ti+t时刻质点加速度,可前面得出:
式(4)-式(6)为ti+t时刻关于,的代数方程组。
关于线性加速度的多个质点体系时程分析法,其原理与单质点体系基本相同,在此不一一赘述。
四、地震作用下高层建筑动力时程分析算例
有一高层建筑高86m,共24层。本文根据其结构设计施工图建立了质量串有限元数学模型(如图1),其中各楼层用三维质量单元进行模拟,而柱、剪力墙等竖向承重构件用梁单元进行模拟。利用有限元动力特性分析模块计算的结构X向前两阶振型分别是0.154Hz和0.470Hz,Y向前两阶振型分别是0.153Hz和0.461Hz。本文计算选用的地震波为随机生成的地震加速度模拟数据(如图2所示),经瞬态动力分析计算得到的结构顶部加速度响应如图3所示。由图可知,尽管输入的地震波幅值较小,但由于结构的动力放大效应,仍然导致结构上部出现了较大的动力响应。
图1有限元模型
图2基底地震波
图3顶部加速度反应
五、结论
随着社会的发展、结构设计理念的创新及施工技术的进步,促使高层建筑往更高的方向发展,其在地震作用下的安全性也变的尤为重要。但由于高层建筑抗震设计属于繁重而复杂的过程,设计时一定要从概念设计及定量分析两个方向同时入手,从而获得即经济又安全可靠的设计结果。
参考文献:
[1]李爱群,高振世.工程结构抗震设计[M].北京:中国建筑工业出版社,2007.
[2]李国强,李杰,苏小卒.建筑结构抗震设计[M].北京:中国建筑工业出版社,2008.
篇9
关键字:高层结构设计抗震
随着科学的发展和时代的进步,高层建筑如雨后春笋般的出现。高层建筑的高度在一定程度上反映了一个国家的综合国力和科技水平,世界著名的建筑更是建筑史上的纪念碑。但是如果高层建筑因结构设计不清,而造成结构布置不合理,不仅会造成大量的浪费,更重要的是给高层建筑留下了结构质量的安全隐患。因此高层建筑的结构设计就显得尤为重要了。
一 结构设计特点
1.1 水平载荷是设计的主要因素
高层结构总是要同时承受竖向载荷和水平载荷作用。载荷对结构产生的内力是随着建筑物的高度增加而变化的,随着建筑物高度的增加,水平载荷产生的内力和位移迅速增大。
1.2 侧向位移是结构设计控制因素
随着楼房高度的增加,水平载荷作用下结构的侧向变形迅速增大,结构顶点侧移与建筑高度的四次方成正比,设计高层建筑结构时要求结构不仅要具有足够的强度,还要具有足够的抗推强度,使结构在水平载荷下产生的侧移被控制在范围之内。
1.3 结构延性是重要的设计指标
高层建筑还必须有良好的抗震性能,做到“小震不坏,大震能修。”为此,要求结构具有较好的延性,也就是说,结构在强烈地震作用下,当结构构件进入屈服阶段后具有较强的变形能力,能吸收地震作用下产生能量,结构能维持一定的承载力。
1.4 轴向变形不容忽视
高层结构竖向构件的变位是由弯曲变形、轴向变形及剪切变形三项因素的影响叠加求得的。在计算多层建筑结构内力和位移时,只考虑弯曲变形,因为轴力项影响很小,剪力项一般可不考虑。但对于高层建筑结构,由于层数多,高度大,轴力值很大,再加上沿高度积累的轴向变形显著,轴向变形会使高层建筑结构的内力数值与分布产生明显的变化。
二 建筑抗震的理论分析
2.1 建筑结构抗震规范
建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。
2.2 抗震设计的理论
拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。
反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。
三 高层建筑结构抗震设计
3.1 抗震措施
在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。
3.2 高层建筑的抗震设计理念
我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。
三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。
对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。
3.3 高层建筑结构的抗震设计方法
我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;除1款外的建筑结构,宜采用振型分解反应谱方法;特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。
四 高层建筑结构发展趋势
随着城市人口的不断增加建设可用地的减少,高层建筑继续向着更高发展,结构所需承担的荷载和倾覆力矩将越来越大。在确保高层建筑物具有足够可靠度的前提下,为了进一步节约材料和降低造价,高层建筑结构够构件正在不断更新,设计理念也在不断发展。高层建筑结构也正朝着结构立体化,布置周边化,体型多样化,结构支撑化,体型多样化,材料高强化,建筑轻量化,组合结构化,结构耗能减震化等方向发展。
篇10
关键词:超限高层建筑、抗震设计、分析
中图分类号:TU97文献标识码: A
一、前言
改革开放以来,我国经济快速增长,城市化进程明显加快,大量农村人口迅速向城市集中,由此造成城市人口数量的不断膨胀,对房屋的需求也急剧增加。为了缓解城市人口对房屋需求的压力,越来越多的高层、超高层建筑如雨后春笋般出现在各大、中城市。超高层建筑,除了具有充分利用有限的土地面积,最大限度利用地上建筑使用空间外,还具有强烈的标志性及展示性作用,从而往往能成为区域性、地标性建筑或成为城市“名片”。
然而,尽管城市中的超高建筑越来越多,但目前却没有统一的方法和明确的依据来对超限工程进行抗震设计,多数情况下还是要依靠工程师和专家们的结构概念和经验来把握,而其可靠程度,限于现今的技术水平一般只能作出定性结论,还很难作出定量的描述。以下本文就超限高层建筑工程抗震设计方面内容作出简要分析,供广大同行参考。
二、超限高层建筑工程抗震设计研究的作用和意义
随着我国经济的快速发展,在全球经济一体化的趋势下,我国基础设施的建设发展有了突破性进展,出现了各个行业的流动资金开始往基础设施建设汇集的现象。超高层建筑工程是在人们对空间的成分充分利用的前提下应运而生的,这反映了人们对充满现代感和时代感的城市生活的追求。但是,问题也随之而来,因为超限高层建筑工程自身的结构特点已经超出了我国对建筑工程的规定,抗震也是摆在超高建筑工程面前的重大难题。尤其是这几年以来我国地震灾害频发,汶川和玉树地震的发生造成对建筑物的破坏,更是让我们触目惊心。建筑物的抗震安全性和人民的生命财产安全密不可分。所以,我们要正确认识到在发展过程中存在的问题,认识到超限高层建筑工程抗震设计的重要性。完善超限高层建筑的抗震设计是人民生命财产安全的重要保证,也是社会发展的需要所在。
三、超限高层建筑工程抗震设计的原则和基本内容
1、超限高层建筑工程抗震设计的原则
在建筑物抗震设计上,我国遵循这样三条原则“:小震不坏、中震可修、大震不倒”。 第一,小震不坏。当建筑物遇到多遇地震时,其结构没有遭受到损坏,无需修理就可以继续使用。在这个原则下,一般是对建筑结构的承载力进行验算,是建筑工程抗震设计第一阶段的弹性设计。第二,中震可修。当建筑物遇到设防地震时,建筑物可能发生一定程度的损坏,经过修补之后就可以继续投入使用。这要求建筑设计时考虑到建筑结构的非线性弹塑性变形和承载力,是第二阶段的弹塑性变形验算。第三,大震不倒。当遭受到罕遇地震影响时,建筑物不会发生倒坍等威胁人民生命财产安全的重大事故。这一阶段的设计是前面两个阶段验算和设计的分析过程,并采取相应的抗震措施和技术来提高建筑物的抗震性能。
2、基本内容
第一,当超限高层建筑物采用钢筋混凝土框架结构和抗震墙结构时,其高度不得超过《建筑抗震设计规范》规定的最大适用高度。当采用的是抗震墙结构和筒体结构时,建筑工程为 9 度设防时,其高度不得超过《建筑抗震设计规范》规定的最大适用高度;建筑工程为 8 度设防时,其最大高度应是《建筑抗震设计规范》规定最大适用高度的120%;建筑工程为 7 度和 6 度设防时,其最大高度应是《建筑抗震设计规范》规定最大适用高度的 130%。第二,超限高层建筑物设计时,其高度、高宽比和体型规则性这三者中至少有一项需要满足《建筑
抗震设计规范》的要求。第三,在进行抗震设计时,至少要采用两种力学模型来计算分析建筑物的受力情况,其计算程序需要经过有关行政部门的鉴定许可。第四,为保证超限高层建筑的安全性,应采取比《建筑抗震设计规范》更严格的抗震措施。第五,当超限高层建筑物有明显薄弱层时,还应进行结构的弹塑性时程分析。
四、超限结构抗震设计要点
1、高度和高宽比超限建筑
a. 尽可能采用适用高度较高的结构类型, 如钢筋混凝土框架结构房屋高度超限时, 可改用框架-剪力墙结构。
b. 验算结构整体抗倾覆稳定性, 验算在侧向力最不利组合情况下桩身是否会出现拉力或过大的压力, 并进行风荷载或地震作用下的舒适度验算, 控制顶点位移及层间侧移, 当侧移无法满足要求时, 可考虑利用建筑设备层和避难层空间, 沿竖向设置若干层伸臂桁架或腰桁架。
c. 适当降低底部竖向构件在最不利荷载组合下的轴压比并加强配筋, 当轴压比不满足要求且构件截面再增大有困难时, 可采用钢或其它组合构件与混凝同组成的结构。
d. 要有足够的埋置深度, 考虑重力二阶效应, 并进行风荷载作用下的舒适度验算。
2、平面规则性超限建筑
a. 采用弹性楼盖模型, 或按分块刚性楼板+局部弹性板进行计算, 并考虑扭转耦联效应。
b. 对于凹凸不规则和楼板局部不连续的情况,采取符合楼板平面内实际刚度变化的弹性楼板计算模型。
c. 对于楼板应力集中部位( 凹凸部位及洞口四角) 和弱连接的楼板, 应采用加大楼板厚度、增加板内配筋、配置集中配筋的边梁、配置 45°斜向钢筋等方法予以加强。凹口部位可增设部分拉梁或拉板, 以改善这些薄弱部位的刚度和延性, 提高其抗震性能。
d. 当平面过于不规则、楼板连系过弱或建筑物超长时, 可通过设置变形缝将结构分成若干个子结构。对结构扭转效应明显的超限高层建筑, 应尽量使抗侧力构件在平面布置中对称、均匀, 避免过大偏心,并尽量加大竖向构件的抗侧刚度和强度。
3、竖向规则性超限建筑
a. 立面收进引起超限, 如有可能则宜采用台阶形多次内收的立面, 确保结构位移沿竖向没有突变,并使结构扭转效应控制在合理范围内; 宜加强收进部位的竖向构件及楼板; 立面收进若造成偏心, 则底部结构会因扭转而产生较大内力, 故应加强底部周边构件的配筋, 并补充进行静力非线性分析和时程分析, 验证结构的抗震性能, 确定结构的薄弱部位。
b. 连体建筑的连体部位及其周边应采用弹性楼板计算, 并控制连接部位的层数, 且两塔楼层刚度差异不宜过大, 连接体与主体宜用弱连接,如铰接等;连接体结构自身重量应尽量减小, 故应优先采用钢结构或型钢混凝土结构等。
c. 对于立面开大洞的建筑, 应加强洞口四角及洞边, 避免在小震时洞角开裂。
d. 对于悬挑建筑, 应考虑竖向地震作用; 当悬挑质量较大时, 应避免偏心造成的扭转。
e. 对于带转换层的高层建筑, 尽量避免多级复杂转换, 优先采用梁式转换, 慎用厚板转换。尽量强化和提高转换层下部结构侧向刚度、抗震承载能力和延性, 并控制转换层的设置高度; 结构分析时除检查结构位移和刚度有无突变外, 还应重点检查框支柱所承受的地震剪力和轴压比; 采取有效措施减少转换层上、下结构等效剪切刚度和承载能力的突变;加强转换层楼板、转换构件、框支梁、框支柱、框支层上部剪力墙(包含筒体)及落地剪力墙(包含筒体)的抗震构造措施。
五、结束语
随着抗震技术和理念的快速发展,抗震设计的重要性也日益凸显出来,而超限高层建筑工程结构复杂,抗震设计要求高,这也就要求设计者必须不断提高自身知识修养,借鉴他人抗震设计经验,运用最新抗震技术和措施提高建筑物的抗震性能。转变思想观念,多方面借鉴相关知识和概念,从其他地方激发设计灵感,转变刚性为主的抗震模式,努力实现抗震设计理念的创新,开创超限高层建筑工程抗震设计的新局面,为老百姓打造更加安全的建筑物。
参考文献:
[1] 徐培福 戴国莹:《超限高层建筑结构基于性能抗震设计的研究》,《土木工程学报》,2005年01期
[2] 侯伟雄:《提高建筑物抗震性能措施探讨》,《科技风》,2010年11期
相关期刊
精品范文
10建筑装饰装修工程