化学反应的过程范文

时间:2023-06-20 17:18:20

导语:如何才能写好一篇化学反应的过程,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

化学反应的过程

篇1

如氨氧化制硝酸、甲苯氧化制苯甲酸、乙烯氧化制环氧乙烷等。

(1)氧化的火灾危险性

①氧化反应需要加热,但反应过程又是放热反应,特别是催化气相反应,一般都是在250~600℃的高温下进行,这些反应热如不及时移去,将会使温度迅速升高甚至发生爆炸。

②有的氧化,如氨、乙烯和甲醇蒸气在空中的氧化,其物料配比接近于爆炸下限,倘若配比失调,温度控制不当,极易爆炸起火。

③被氧化的物质大部分是易燃易爆物质。如乙烯氧化制取环氧乙烷中,乙烯是易燃气体,爆炸极限为2.7%~34%,自燃点为450℃;甲苯氧化制取苯甲酸中,甲苯是易燃液体,其蒸气易与空气形成爆炸性混合物,爆炸极限为1.2%~7%;甲醇氧化制取甲醛中,甲醇是易燃液体,其蒸气与空气的爆炸极限是6%~36.5%。

④氧化剂具有很大的火灾危险性。如氯酸钾,高锰酸钾、铬酸酐等都属于氧化剂,如遇高温或受撞击、摩擦以及与有机物、酸类接触,皆能引起着火爆炸;有机过氧化物不仅具有很强的氧化性,而且大部分是易燃物质,有的对温度特别敏感,遇高温则爆炸。

⑤氧化产品有些也具有火灾危险性。如环氧乙烷是可燃气体;硝酸虽是腐蚀性物品,但也是强氧化剂;含36.7%的甲醛水溶液是易燃液体,其蒸气的爆炸极限为7.7%~73%。另外,某些氧化过程中还可能生成危险性较大的过氧化物,如乙醛氧化生产醋酸的过程中有过醋酸生成,过醋酸是有机过氧化物,性质极度不稳定,受高温、摩擦或撞击便会分解或燃烧。

(2)氧化过程的防火措施

①氧化过程中如以空气或氧气作氧化剂时,反应物料的配比(可燃气体和空气的混合比例)应严格控制在爆炸范围之外。空气进入反应器之前,应经过气体净化装置,消除空气中的灰尘、水汽、油污以及可使催化剂活性降低或中毒的杂质,以保持催化剂的活性,减少着火和爆炸的危险。

②氧化反应接触器有卧式和立式两种,内部填装有催化剂。一般多采用立式,因为这种形式催化剂装卸方便,而且安全。在催化氧化过程中,对于放热反应,应控制适宜的温度、流量,防止超温、超压和混合气处于爆炸范围之内。

③为了防止接触器在万一发生爆炸或着火时危及人身和设备安全,在反应器前和管道上应安装阻火器,以阻止火焰蔓延,防止回火,使着火不致影响其他系统。为了防止接触器发生爆炸,接触器应有泄压装置,并尽可能采用自动控制或调节以及报警联锁装置。

④使用硝酸、高锰酸钾等氧化剂时,要严格控制加料速度,防止多加、错加,固体氧化剂应粉碎后使用,最好呈溶液状态使用,反应中要不间断搅拌,严格控制反应温度,决不许超过被氧化物质的自燃点。

⑤使用氧化剂氧化无机物时,如使用氯酸钾氧化生成铁蓝颜料,应控制产品烘干温度不超过其着火点,在烘干之前应用清水洗涤产品,将氧化剂彻底除净,以防止未完全反应的氯酸钾引起已烘干的物料起火。有些有机化合物的氧化,特别是在高温下的氧化,在设备及管道内可能产生焦状物,应及时清除,以防自燃。

⑥氧化反应使用的原料及产品,应按有关危险品的管理规定,采取相应的防火措施,如隔离存放、远离火源、避免高温和日晒、防止摩擦和撞击等。如是电介质的易燃液体或气体,应安装导除静电的接地装置。

⑦在设备系统中宜设置氮气、水蒸气灭火装置,以便能及时扑灭火灾。

2 还原

如硝基苯在盐酸溶液中被铁粉还原成苯胺、邻硝基苯甲醚在碱性溶液中被锌粉还原成邻氨基苯甲醚、使用保险粉、硼氢化钾、氢化锂铝等还原剂进行还原等。

还原过程的危险性分析及防火要求:

(1)无论是利用初生态还原,还是用催化剂把氢气活化后还原,都有氢气存在(氢气的爆炸极限为4%—75%),特别是催化加氢还原,大都在加热、加压条件下进行,如果操作失误或因设备缺陷有氢气泄漏,极易与空气形成爆炸性混合物,如遇着火源即会爆炸。所以,在操作过程中要严格控制温度、压力和流量;车间内的电气设备必须符合防爆要求。电线及电线接线盒不宜在车间顶部敷设安装;厂房通风要好,应采用轻质屋顶、设置天窗或风帽,以使氢气及时逸出;反应中产生的氢气可用排气管导出车间屋项,并高于屋脊2m以上,经过阻火器向外排放;加压反应的设备应配备安全阀,反应中产生压力的设备要装设爆破片;安装氢气检测和报警装置。

(2)还原反应中所使用的催化剂雷氏镍吸潮后在空气中有自燃危险,即使没有着火源存在,也能使氢气和空气的混合物引燃形成着火爆炸。因此,当用它们来活化氢气进行还原反应时,必须先用氮气置换反应器内的全部空气,并经过测定证实含氧量降到标准后,才可通人氢气;反应结束后应先用氮气把反应器内的氢气置换干净,才可打开孔盖出料,以免外界空气与反应器内的氢气相遇,在雷氏镍自燃的情况下发生着火爆炸,雷氏镍应当储存于酒精中,钯碳回收时应用酒精及清水充分洗涤,过滤抽真空时不得抽得太干,以免氧化着火。

(3)固体还原剂保险粉、硼氢化钾、氢化铝锂等都是遇湿易燃危险品,其中保险粉遇水发热,在潮湿空气中能分解析出硫,硫蒸气受热具有自燃的危险,且保险粉本身受热到190℃也有分解爆炸的危险;硼氢化钾(钠)在潮湿空气中能自燃,遇水或酸即分解放出大量氢气,同时产生高热,可使氢气着火而引起爆炸事故;氢化锂铝是遇湿危险的还原剂,务必要妥善保管,防止受潮。保险粉用于溶解使用时,要严格控制温度,可以在开动搅拌的情况下,将保险粉分批加入水中,待溶解后再与有机物接触反应;当使用硼氢化钠(钾)作还原剂时,在工艺过程中调解酸、碱度时要特别注意,防止加酸过快、过多;当使用氢化铝锂作还原剂时,要特别注意,必须在氮气保护下使用,平时浸没于煤油中储存。前面所述的还原剂,遇氧化剂会猛烈发生反应,产生大量热量,具有着火爆炸的危险,故不得与氧化剂混存。

(4)还原反应的中间体,特别是硝基化合物还原反应的中间体,亦有一定的火灾危险,例如,在邻硝基苯甲醚还原为邻氨基苯甲醚的过程中,产生氧化偶氮苯甲醚,该中间体受热到150℃能自燃。苯胺在生产中如果反应条件控制不好,可生成爆炸危险性很大的环己胺。所以在反应操作中一定要严格控制各种反应参数和反应条件。

(5)开展技术革新,研究采用危险性小、还原效率高的新型还原剂代替火灾危险性大的还原剂。例如采用硫化钠代替铁粉还原,可以避免氢气产生,同时还可消除铁泥堆积的问题。

3 硝化

硝化通常是指在有机化合物分子中引入硝基(—NO2),取代氢原子而生成硝基化合物的反应。如甲苯硝化生产梯恩梯(TNT)、苯硝化制取硝基苯、甘油硝化制取硝化甘油等。

硝化过程的火灾危险性主要是:

(1)硝化是一个放热反应,引入一个硝基要放热152.2~153 kJ/mol,所以硝化需要降温条件下进行。在硝化反应中,倘若稍有疏忽,如中途搅拌停止、冷却水供应不良、加料速度过快等,都会使温度猛增、混酸氧化能力加强,并有多硝基物生成,容易引起着火和爆炸事故。

(2)硝化剂具有氧化性,常用硝化剂浓硝酸、硝酸、浓硫酸、发烟硫酸、混合酸等都具有较强的氧化性、吸水性和腐蚀性。它们与油脂、有机物,特别是不饱和的有机化合物接触即能引起燃烧;在制备硝化剂时,若温度过高或落入少量水,会促使硝酸的大量分解和蒸发,不仅会导致设备的强烈腐蚀,还可造成爆炸事故。

(3)被硝化的物质大多易燃,如苯、甲苯、甘油(丙三醇)、脱酯棉等,不仅易燃,有的还兼有毒性,如使用或储存管理不当,很易造成火灾。

(4)硝化产品大都有着火爆炸的危险性,特别是多硝基化合物和硝酸酯,受热、摩擦、撞击或接触着火源,极易发生爆炸或着火。

4 电解

电流通过电解质溶液或熔融电解质时,在两个极上所引起的化学变化称为电解。电解在工业上有着广泛的作用。许多有色金属(钠、钾、镁、铅等)和稀有金属(锆、铪等)冶炼,金属铜、锌、铝等的精炼;许多基本化学工业产品(氢、氧、氯、烧碱、氯酸钾、过氧化氢等)的制备,以及电镀、电抛光、阳极氧化等,都是通过电解来实现的。

如食盐水电解生产氢氧化钠、氢气、氯气,电解水制氢等。食盐水电解过程中的危险性分析与防火要点:

(1)盐水应保证质量 盐水中如含有铁杂质,能够产生第二阴极而放出氢气;盐水中带入铵盐,在适宜的条件下(pH

3C12+NH4Cl——4HCl+NCl3

三氯化氮是一种爆炸性物质,与许多有机物接触或加热至90℃以上以及被撞击,即发生剧烈地分解爆炸。爆炸分解式如下:

2NCl3——N2+3C12

因此盐水配制必须严格控制质量,尤其是铁、钙、镁和无机铵盐的含量。一般要求Mg2+

(2)盐水添加高度应适当 在操作中向电解糟的阳极室内添加盐水,如盐水液面过低,氢气有可能通过阴极网渗入到阳极室内与氯气混合;若电解槽盐水装得过满,在压力下盐水会上涨,因此,盐水添加不可过少或过多,应保持一定的安全高度。采用盐水供料器应间断供给盐水,以避免电流的损失,防止盐水导管被电流腐蚀(目前多采用胶管)。

(3)防止氢气与氯气混合 氢气是极易燃烧的气体,氯气是氧化性很强的有毒气体,一旦两种气体混合极易发生爆炸,当氯气中含氢量达到5%以上,则随时可能在光照或受热情况下发生爆炸。造成氢气和氯气混合的原因主要是:阳极室内盐水液面过低;电解槽氢气出口堵塞,引起阴极室压力升高;电解槽的隔膜吸附质量差;石棉绒质量不好,在安装电解槽时碰坏隔膜,造成隔膜局部脱落或者送电前注入的盐水量过大将隔膜冲坏,以及阴极室中的压力等于或超过阳极室的压力时,就可能使氢气进入阳极室等,这些都可能引起氯气中含氢量增高。此时应对电解槽进行全面检查,将单槽氯含氢浓度控制在2%以下,总管氯含氢浓度控制在0.4%以下。

(4)严格电解设备的安装要求 由于在电解过程中氢气存在,故有着火爆炸的危险,所以电解槽应安装在自然通风良好的单层建筑物内,厂房应有足够的防爆泄压面积。

(5)掌握正确的应急处理方法 在生产中当遇突然停电或其他原因突然停车时,高压阀不能立即关闭,以免电解槽中氯气倒流而发生爆炸。应在电解槽后安装放空管,以及时减压,并在高压阀门上安装单向阀,以有效地防止跑氯,避免污染环境和带来火灾危险。

5 聚合

将若干个分子结合为一个较大的组成相同而分子量较高的化合物的反应过程为聚合。

如氯乙烯聚合生产聚氯乙烯塑料、丁二烯聚合生产顺丁橡胶和丁苯橡胶等。

聚合按照反应类型可分为加成聚合和缩合聚合两大类;按照聚合方式又可分为本体聚合、悬浮聚合、溶液聚合和乳液聚合、缩合聚合五种。

(1)本体聚合

本体聚合是在没有其他介质的情况下(如乙烯的高压聚合、甲醛的聚合等),用浸在冷却剂中的管式聚合釜(或在聚合釜中设盘管、列管冷却)进行的一种聚合方法。这种聚合方法往往由于聚合热不易传导散出而导致危险。例如在高压聚乙烯生产中,每聚合1公斤乙烯会放出3.8MJ的热量,倘若这些热量未能及时移去,则每聚合1%的乙烯,即可使釜内温度升高12~13℃,待升高到一定温度时,就会使乙烯分解,强烈放热,有发生暴聚的危险。一旦发生暴聚,则设备堵塞,压力骤增,极易发生爆炸。 转贴于

(2)溶液聚合

溶液聚合是选择一种溶剂,使单体溶成均相体系,加入催化剂或引发剂后,生成聚合物的一种聚合方法。这种聚合方法在聚合和分离过程中,易燃溶剂容易挥发和产生静电火花。

(3)悬浮聚合

悬浮聚合是用水作分散介质的聚合方法。它是利用有机分散剂或无机分散剂,把不溶于水的液态单体,连同溶在单体中的引发剂经过强烈搅拌,打碎成小珠状,分散在水中成为悬浮液,在极细的单位小珠液滴(直径为0.1um)中进行聚合,因此又叫珠状聚合。这种聚合方法在整个聚合过程中,如果没有严格控制工艺条件,致使设备运转不正常,则易出现溢料,如若溢料,则水分蒸发后未聚合的单体和引发剂遇火源极易引发着火或爆炸事故。

(4)乳液聚合

乳液聚合是在机械强烈搅拌或超声波振动下,利用乳化剂使液态单体分散在水中(珠滴直径0.001~0.01um),引发剂则溶在水里而进行聚合的一种方法。这种聚合方法常用无机过氧化物(如过氧化氢)作引发剂,如若过氧化物在介质(水)中配比不当,温度太高,反应速度过快,会发生冲料,同时在聚合过程中还会产生可燃气体。

(5)缩合聚合

缩合聚合也称缩聚反应,是具有两个或两个以上功能团的单体相互缩合,并析出小分子副产物而形成聚合物的聚合反应。缩合聚合是吸热反应,但由于温度过高,也会导致系统的压力增加,甚至引起爆裂,泄漏出易燃易爆的单体。

6 催化

催化反应是在催化剂的作用下所进行的化学反应。例如氮和氢合成氨,由二氧化硫和氧合成三氧化硫,由乙烷和氧合成环氧乙烷等都是属于催化反应。

催化的火灾危险性:

(1)反应操作 在催化过程中若催化剂选择的不正确或加入不适量,易形成局部反应激烈;另外,由于催化大多需在一定温度下进行,若散热不良、温度控制不好等,很容易发生超温爆炸或着火事故。

(2)催化产物 在催化过程中有的产生氯化氢,氯化氢有腐蚀和中毒危险;有的产生硫化氢,则中毒危险更大,且硫化氢在空气中的爆炸极限较宽(4.3%~45.5%),生产过程中还有爆炸危险;有的催化过程产生氢气,着火爆炸的危险更大,尤其在高压下,氢的腐蚀作用可使金属高压容器脆化,从而造成破坏性事故。

(3)原料气 原料气中某种能与催化剂发生反应的杂质含量增加,可能成为爆炸危险物,这是非常危险的。例如,在乙烯催化氧化合成乙醛的反应中,由于催化剂体系中常含有大量的亚铜盐,若原料气中含乙炔过高,则乙炔就会与亚铜盐反应生成乙炔铜。乙炔铜为红色沉淀,是一种极敏感的爆炸物,自燃点在260~270℃之间,干燥状态下极易爆炸,在空气作用下易氧化成暗黑色,并易于起火。

7 裂化

裂化有时又称裂解,是指有机化合物在高温下分子发生分解的反应过程。裂化可分为热裂化、催化裂化、加氢裂化三种类型。

(1)热裂化

热裂化在高温高压下进行,装置内的油品温度一般超过其自燃点,若漏出油品会立即起火;热裂化过程中产生大量的裂化气,且有大量气体分馏设备,若漏出气体,会形成爆炸性气体混合物,遇加热炉等明火,有发生爆炸的危险。在炼油厂各装置中,热裂化装置发生的火灾次数是较多的。

(2)催化裂化

催化裂化一般在较高温度(460~520℃)和0.1~0.2MPa压力下进行,火灾危险性较大。若操作不当,再生器内的空气和火焰进入反应器中会引起恶性爆炸。U形管上的小设备和小阀门较多,易漏油着火。在催化裂化过程中还会产生易燃的裂化气,以及在烧焦活化催化剂不正常时,还可能出现可燃的一氧化碳气体。

(3)加氢裂化

由于加氢裂化使用大量氢气,而且反应温度和压力都较高,在高压下钢与氢气接触,钢材内的碳分子易被氢气所夺取,使碳钢硬度增大而降低强度,产生氢脆,如设备或管道检查或更换不及时,就会在高压(10~15MPa)下发生设备爆炸。另外,加氢是强烈的放热反应,反应器必须通冷氢以控制温度。因此,要加强对设备的检查,定期更换管道、设备,防止氢脆造成事故;加热炉要平稳操作,防止设备局部过热,防止加热炉的炉管烧穿或者高温管线、反应器漏气而引起着火。

8 氯化

以氯原子取代有机化合物中氢原子的过程称为氯化。如由甲烷制甲烷氯化物、苯氯化制氯苯等。常用的氯化剂有:液态或气态氯、气态氯化氢和各种浓度的盐酸、磷酸氯(三氯氧化磷)、三氯化磷(用来制造有机酸的酰氯)、硫酰氯(二氯硫酰)、次氯酸酯等。

氯化过程危险性分析与防火要点:

(1)氯化反应的火灾危险性主要决定于被氯化物质的性质及反应过程的条件。反应过程中所用的原料大多是有机易燃物和强氧化剂,如甲烷、乙烷、苯、酒精、天然气、甲苯、液氯等。如生产1t甲烷氯化物需要2006m3甲烷、6960kg液氯,生产过程中同样具有着火爆炸危险。所以,应严格控制各种着火源,电气设备应符合防火防爆要求。

(2)氯化反应中最常用的氯化剂是液态或气态的氯。氯气本身毒性较大,氧化性极强,储存压力较高,一旦泄漏是很危险的。所以贮罐中的液氯在进入氯化器使用之前,必须先进人蒸发器使其气化。在一般情况下不准把储存氯气的气瓶或槽车当贮罐使用,因为这样有可能使被氯化的有机物质倒流进气瓶或槽车引起爆炸。对于一般氯化器应装设氯气缓冲罐,防止氯气断流或压力减小时形成倒流。

(3)氯化反应是一个放热过程,尤其在较高温度下进行氯化,反应更为剧烈。例如在环氧氯丙烷生产中,丙烯需预热至3000℃左右进行氯化,反应温度可升至500℃,在这样高的温度下,如果物料泄漏就会造成着火或引起爆炸。因此,一般氯化反应设备必须有良好的冷却系统,并严格控制氯气的流量,以免因流量过快,温度剧升而引起事故。

(4)由于氯化反应几乎都有氯化氢气体生成,因此所用的设备必须防腐蚀,设备应保证严密不漏。因为氯化氢气体易溶于水中,通过增设吸收和冷却装置就可以除去尾气中绝大部分氯化氢。

9 重氮化

重氮化是使芳伯胺变为重氮盐的反应。通常是把含芳胺的有机化合物在酸性介质中与亚硝酸钠作用,使其中的胺基(-NH2)转变为重氮基(-N=N-)的化学反应。如二硝基重氮酚的制取等。

重氮化的火灾危险性分析:

(1)重氮化反应的主要火灾危险性在于所产生的重氮盐,如重氮盐酸盐(C6H5N2Cl)、重氮硫酸盐(C6H5N2H504),特别是含有硝基的重氮盐,如重氮二硝基苯酚[(NO2)2N2C6H2OH]等,它们在温度稍高或光的作用下,即易分解,有的甚至在室温时亦能分解。一般每升高10℃,分解速度加快两倍。在干燥状态下,有些重氮盐不稳定,活力大,受热或摩擦、撞击能分解爆炸。含重氮盐的溶液若洒落在地上、蒸汽管道上,干燥后亦能引起着火或爆炸。在酸性介质中,有些金属如铁、铜、锌等能促使重氮化合物激烈地分解,甚至引起爆炸。

(2)作为重氮剂的芳胺化合物都是可燃有机物质,在一定条件下也有着火和爆炸的危险。

(3)重氮化生产过程所使用的亚硝酸钠是无机氧化剂,于175℃时分解能与有机物反应发生着火或爆炸。亚硝酸钠并非氧化剂,所以当遇到比其氧化性强的氧化剂时,又具有还原性,故遇到氯酸钾、高锰酸钾、硝酸铵等强氧化剂时,有发生着火或爆炸的可能。

(4)在重氮化的生产过程中,若反应温度过高、亚硝酸钠的投料过快或过量,均会增加亚硝酸的浓度,加速物料的分解,产生大量的氧化氮气体,有引起着火爆炸的危险。

10 烷基化

烷基化(亦称烃化),是在有机化合物中的氮、氧、碳等原子上引入烷基R—的化学反应。引入的烷基有甲基(-CH3)、乙基(-C2H5)、丙基(-C3H7)、丁基(-C4H9)等。

烷基化常用烯烃、卤化烃、醇等能在有机化合物分子中的碳、氧、氮等原子上引入烷基的物质作烷基化剂。如苯胺和甲醇作用制取二甲基苯胺。

烷基化的火灾危险性:

(1)被烷基化的物质大都具有着火爆炸危险。如苯是甲类液体,闪点-11℃,爆炸极限1.5%~9.5%;苯胺是丙类液体,闪点71℃,爆炸极限1.3%~4.2%。

(2)烷基化剂一般比被烷基化物质的火灾危险性要大。如丙烯是易燃气体,爆炸极限2%~11%;甲醇是甲类液体,闪点7℃,爆炸极限6%~36.5%;十二烯是乙类液体,闪点35℃,自燃点220℃。

(3)烷基化过程所用的催化剂反应活性强。如三氯化铝是忌湿物品,有强烈的腐蚀性,遇水或水蒸汽分解放热,放出氯化氢气体,有时能引起爆炸,若接触可燃物,则易着火;三氯化磷是腐蚀性忌湿液体,遇水或乙醇剧烈分解,放出大量的热和氯化氢气体,有极强的腐蚀性和刺激性,有毒,遇水及酸(主要是硝酸、醋酸)发热、冒烟,有发生起火爆炸的危险。

(4)烷基化反应都是在加热条件下进行,如果原料、催化剂、烷基化剂等加料次序颠倒、速度过快或者搅拌中断停止,就会发生剧烈反应,引起跑料,造成着火或爆炸事故。

(5)烷基化的产品亦有一定的火灾危险。如异丙苯是乙类液体,闪点35.5℃,自燃点434℃,爆炸极限0.68%~4.2%;二甲基苯胺是丙类液体,闪点61℃,自燃点371℃;烷基苯是丙类液体,闪点127℃。

11 磺化

磺化是在有机化合物分子中引入磺(酸)基(-SO3H)的反应。常用的磺化剂有发烟硫酸、亚硫酸钠、亚硫酸钾、三氧化硫等。如用硝基苯与发烟硫酸生产间氨基苯磺酸钠,卤代烷与亚硫酸钠在高温加压条件下生成磺酸盐等均属磺化反应。

磺化过程危险性分析:

(1)三氧化硫是氧化剂,遇比硝基苯易燃的物质时会很快引起着火;另外,三氧化硫的腐蚀性很弱,但遇水则生成硫酸,同时会放出大量的热,使反应温度升高,不仅会造成沸溢或使磺化反应导致燃烧反应而起火或爆炸,还会因硫酸具有很强的腐蚀性,增加了对设备的腐蚀破坏。

篇2

化学反应是一个复杂的过程,在反应过程中容易受到不同因素的影响。第一,化学反应会受到浓度的影响。一般情况下当其他条件不变的情况时浓度越大,反应速率越大,化学平衡会向正向转移。第二,化学反应会受到压强的影响。一般情况下当其他条件不变的情况时压强越大,反应速率越大,化学平衡会向气态物质系数小的方向转移。这一反应影响条件是针对气体反应的,增大压强相当于增大了单位体积内气体的浓度,一次化学反应的反应速率就会随着压强的增大而变快。第三,化学反应会受到温度的影响。一般情况下当其他条件不变的情况时温度升高,反应速率会增大,化学平衡会向吸热方向转移。实践证明,温度的变化可以影响到一切的化学反应的反应速率,只是影响程度会有所差异。第四,化学反应会受到催化剂的影响。一般情况催化剂对化学平衡不会产生影响,也不参与化学反应,在反应前后其质量和组成是不变的。它加入的目的就是改变化学反应的反应速率。通常正催化剂都会加速化学反应的反应速率。此外,光、反应固体物颗粒大小、溶剂等也会影响到化学反应的反应速率。其中温度和催化剂的影响比较明显、具有很大的实用价值。如在工业合成氨中,会使用铁做催化剂,加快化学反应的反应速率,提高氨的生成速度。

2化学反应中催化剂的作用

2.1催化剂的类型

在化学反应中,催化剂虽不参与化学反应,但它会与反应物发生作用,加快了化学反应的反应速率,使化学反应变得更为剧烈。首先,催化剂不参与化学反应,即化学反应前后催化剂的质量、物质结构不会发生任何的改变。其次,催化剂会改变反应的速率,甚至可使反应的速率提高上万亿倍,大大提高了工业生产中化学反应应用的效率,提高了单位时间内产品的产量,创造了企业的经济效益。催化剂的类型多样,按催化过程可分为均相催化剂和多项催化剂;按催化剂的反应类型可分为氧化还原催化剂、酸碱催化剂和配位催化剂。按物质类型可分为过度金属催化剂、金属氧化物催化剂、酸碱催化剂和金属络物催化剂。随着工业的发展,人类环保意识的增强,对工业生产中的化学反应的要求也越来越高,产生了从环保角度出发的绿色化学,如燃煤中加入生石灰反应,减少了煤燃烧过程中二氧化硫的排放。在绿色化学中很大一部分就是通过催化剂的合理利用来减少和排除工业生产对环境的污染、破坏,随之相应产生了绿色催化剂。

2.2催化剂的作用

在现代工业生产中,催化剂起到了巨大的作用,促进了工业的发展和工业生产的效率,催化剂的研究和使用时当今世界热点,据统计有80%以上的工业生产化学反应都会用到催化剂。首先,催化剂的使用降低了工业生产的成本。一方面,催化剂的使用使工业生产中的化学反应更为充分,降低了工业生产的原料损耗,提高了生产效率。另一方面催化剂加快了化学反应的速度,提高了单位时间内工业生产的生产量,节约了人力等成本,使企业在同一时间内生产了更多的产品,节约了生产消耗,为企业赢得了更多的利益。此外,一些催化剂的应用简化了所需产品的加工工艺,使人类通过廉价的手段提取了高效益的能源、产品,创造了极大的社会效益。其次,催化剂的使用提高了企业的生产能力。如在工业合成氨的过程中,使用催化剂使合成氨的化学反应速率提升了上万亿被,大大的提高了企业的生产能力,为企业创造了更多的经济价值和社会效益。再次,催化剂能控制化学反应生成的产物,如在乙烯与氧气的反应中,使用PdCl-CuCl2做催化剂可以生成乙醛;而使用银作催化剂则会生成环氧乙烷。因此,生产中可以通过催化剂控制化学反应的生成产物,获取生产所想要得到的新物质。此外,对于复杂反应,催化剂可以有效的加快主反应的反应速率,对副反应起到一定的拟制作用,提高了生产中所需产物的收率。第四,催化剂改善了化学反应的条件,如一些反应本身要在高温下进行,才能确保反应和反应速率化学反应,加入催化剂后可在常温下进行并确保反应的速率;又如一些反应对设备的腐蚀性严重,采用催化剂后可改变发生的化学反应,降低了反应过程中对设备的腐蚀,并确保了生产的顺利进行。可见催化剂的这一作用能有效改善企业化工生产中对生产设备的要求,较低了生产条件,为企业赢得了更多的利益。第五,催化剂的使用使更多的化学反应得以实现,拓展了工业生产中化学反应的原料来源,为企业的生产发掘出更多的资源。第六,催化剂拟制了一些化工生产中危害物品的生成,降低了化学反应对环境的污染。如工业生产邻苯二酚过程中,采用酶E.Coli做催化剂,使产物的生成定向为邻苯二酚,避免了化学反应生产过程中的副产品的产生和废弃物的生成,有效的保护了环境。

3化学反应和催化剂应用的研究趋向

化学反应对人类的贡献是有目共睹的,但化学反应造成的环境污染等负面影响也是不容忽视的,随着环境问题的日益恶化,人类的环保意识逐渐增强。早在二十世纪时人们就提出了绿色化工,随着人类对化学反应及催化剂使用研究的深入,目前人类已掌握了很多提高化学反应效率,减少环境污染的措施,并将其运用到工业化工生产中,实现了化学反应对人类的无害服务。同时,人们利用化学反应不断的开发新的能源,如在催化剂作用下将煤炭资源转化为液体燃料,增强了能源的利用效率,还降低了煤炭不充分燃烧所带来的环境污染问题。因此,未来化学反应与催化剂应用的研究方向就是绿色化工、能源化工。随着科技的发展,人类必将实现化学反应的无公害、无污染,并充分的利用催化剂等手段,拓展人类对能源原料的需求,进一步促进人类文明的发展。

篇3

通过对化学反应中反应物及生成物质量的实验测定,使学生理解质量守恒定律的含义及守恒的原因;

根据质量守恒定律能解释一些简单的实验事实,能推测物质的组成。

能力目标

提高学生实验、思维能力,初步培养学生应用实验的方法来定量研究问题和分析问题的能力。

情感目标

通过对实验现象的观察、记录、分析,学会由感性到理性、由个别到一般的研究问题的科学方法,培养学生严谨求实、勇于探索的科学品质及合作精神;

使学生认识永恒运动变化的物质,即不能凭空产生,也不能凭空消失的道理。渗透物质不灭定律的辩证唯物主义的观点。

教学建议

教材分析

质量守恒定律是初中化学的重要定律,教材从提出在化学反应中反应物的质量同生成物的质量之间存在什么关系入手,从观察白磷燃烧和氢氧化钠溶液与硫酸铜溶液反应前后物质的质量关系出发,通过思考去“发现”质量守恒定律,而不是去死记硬背规律。这样学生容易接受。在此基础上,提出问题“为什么物质在发生化学反应前后各物质的质量总和相等呢?”引导学生从化学反应的实质上去认识质量守恒定律。在化学反应中,只是原子间的重新组合,使反应物变成生成物,变化前后,原子的种类和个数并没有变化,所以,反应前后各物质的质量总和必然相等。同时也为化学方程式的学习奠定了基础。

教法建议

引导学生从关注化学反应前后"质"的变化,转移到思考反应前后"量"的问题上,教学可进行如下设计:

1.创设问题情境,学生自己发现问题

学生的学习是一个主动的学习过程,教师应当采取"自我发现的方法来进行教学"。可首先投影前面学过的化学反应文字表达式,然后提问:对于化学反应你知道了什么?学生各抒己见,最后把问题聚焦在化学反应前后质量是否发生变化上。这时教师不失适宜的提出研究主题:通过实验来探究化学反应前后质量是否发生变化,学生的学习热情和兴趣被最大限度地调动起来,使学生进入主动学习状态。

2.体验科学研究过程、设计、实施实验方案

学生以小组探究方式,根据实验目的(实验化学反应前后物质总质量是否发生变化)利用实验桌上提供的仪器和药品设计实验方案。在设计过程中,教师尽量减少对学生的限制,并适时的给学生以帮助,鼓励学生充分发挥自己的想象力和主观能动性,独立思考,大胆探索,标新立异。在设计方案过程中培养学生分析问题的能力,在交流方案过程中,各组间互相补充,互相借鉴,培养了学生的语言表达能力。在实施实验时学生体验了科学过程,动手能力得到了加强,培养了学生的观察能力、研究问题的科学方法和严谨求实的科学品质及勇于探索的意志力。同时在实验过程中培养了学生的合作意识。通过自己探索,学生不仅获得了知识,也体验了科学研究过程。

3.反思研究过程、总结收获和不足

探索活动结束后可让学生进行总结收获和不足,提高学生的认知能力。

教学设计方案

课题:质量守恒定律

重点、难点:对质量守恒定律含义的理解和运用

教具学具:

溶液、溶液、溶液、溶液、溶液、白磷、锥形瓶、玻璃棒、单孔橡皮塞、烧杯、小试管一天平、酒精灯。

教学过程:

创设情境:

复习提问:在前几章的学习中,我们学习了哪些化学反应?

投影:反应文字表达式

氯酸钾氯化钾+氧气

氢气+氧气水

氢气+氧化铜铜+水

引言:这是我们学过的化学反应(指投影),对于化学反应你知道了什么?

思考讨论:化学反应前后物质种类、分子种类、物质状态、颜色等发生了变化;原子种类、元素种类没发生变化;对于化学反应前后质量、原子数目是否发生变化存在争议。

引入:化学反应前后质量是否发生变化,有同学说改变,有同学说不变,意思不统一,那么我们就通过实验来探讨。

设计与实施实验:

讨论:根据实验目的利用实验桌上提供的仪器和药品设计实验方案。

交流设计方案

评价设计方案

教师引导学生评价哪些方案是科学合理的,哪些需要改进,鼓励学生开动脑筋,积极主动地参与实验设计过程。

1.实施实验:

同学们的设计方案是可行的,可以进行实验。

指导学生分组实验,检查纠正学生实验操作中的问题

1.依照设计方案进行实验并记录实验现象和测定的实验数据。

2.对实验结果进行分析,反应前后物质的总质量是否发生变化。

3.汇报实验结果

引导学生从实验内容,化学反应前后各物质的质量总和是否发生变化汇报实验结果

同学们的实验结果是巧合,还是具有普遍意义?

汇报:

1.实验内容

2.实验结果

反应前物质总质量(烧杯+试管+两种溶液)_______g,反应后物质总质量为_______g。

反应前后物质总质量是否发生变化_______。

3.演示实验

演示:白磷燃烧前后质量测定。

1.观察记录

反应前物质总质量为_______g,反应后物质总质量为_______g。

2.书写反应文字表达式

3.实验结果分析:反应前后物质总质量是否发生变化_______。

总结:

思考:通过以上几个实验你能得到什么结论

科学家曾做过大量实验,无数实验都证明:化学反应前后各物质的总质量相等。这是化学反应遵循的规律。这个规律叫做质量守恒定律(板书课题)

提问:哪位同学试着回答什么是质量守恒定律

板书:一、质量守恒定律内容(略)

讨论:化学反应前后质量守恒原因

问题讨论:

为什么参加化学反应前各物质的质量总和等于化学反应后生成的各物质的质量总和。

投影:水分子分解示意图,引导学生从化学反应的微观实质认识化学反应前后质量守恒的原因。

板书:二、化学反应前后质量守恒的原因。

投影:课堂练习

1.已知12g木炭与32g氧气恰好完全反应,则生成的质量是_______g。

A.44gB.32gC.22gD.12g

2.镁带在空气中燃烧生成氧化镁的质量比金属镁的质量大,有人说这个事实不符合质量守恒定律,你说对吗?为什么?

3.蜡烛燃烧后的产物有二氧化碳和水,根据质量守恒定律可知,该物质的组成中一定含有_______元素和_______元素,可能含有_______元素。

反思研究过程:

通过对化学反应前后质量是否发生变化的探讨,你有哪些收获?

总结:对于今天的学习每个同学都有不同程度的收获,同时也发现了自己的不足,在今后的学习中相信大家会做的更好。

板书设计:

第一节质量守恒定律

一、定律内容

参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和。

反应前总质量反应后总质量

gg

磷+氧气五氧化二磷

二、化学反应前后质量守恒原因

探究活动

通过实验探究化学反应前后质量是否发生变化。

(1)根据提供的仪器和药品设计实验方案。

(2)交流与评价。

篇4

[关键词]化工工艺 设计 安全危险 分析

中图分类号:TP697 文献标识码:A 文章编号:1009-914X(2015)22-0297-01

一、化工工艺设计概述

1.化工工艺的概念

把化学原材料向化学产品转换的一种方式与方法就是化工工艺,这一实现方式与方法的所有工业流程都包括在化工工艺当中。想要实现化工工艺从生产到产品的转换,涵盖步骤主要由以下几个方面:

第一,处理原材料。初步处理化工原材料,方式有碾碎、提纯、粉磨等等。

第二,进行设计化学反应。达到化学原材料往成品转换的本质为化学反应的设计,此为化工工艺比较关键的一个步,由已作相关处理的原材料提供其化学反应所需环境,在一定程度上提高化学反应的转换率。

第三,化学产品的精处理。把化学反应生成的产品作出一系列的精处理,使得到的化学产品可以满足于实用性的要求。

2.化工工艺设计

化工工艺设计指的为达到化学反应所需的原材料、反应条件和工艺流程的设计过程的目的。化工工艺设计的范畴相对较大,不但拥有工艺流程设计,还包含工艺流程实现的管理方式等。在尚未进行化工工艺设计时,当最先熟知化工工艺设计的原则和安全规程,经由灵活设计化工生产工艺,达到工艺流程精简、安全规范、高效稳定运行的目的。

3.化工工艺设计的特点

1)化工工艺设计具有系统性的特点。化工工艺流程为一项系统而复杂的设计,其中包括了化工生产的各个方面。

2)化工工艺设计规模各异。不一样的化工生产方式,它的化工工艺设计就不一样,包含化学原材料、化学反应和化学成品等等。

3)化学工艺设计的资料具有不全面性。化工工艺本身为一项特别先进的设计项目,它的流程设计没有特别多的参考经验。

二、化工工艺设计中所存在的安全危险问题及控制措施分析

1.化工工艺设计中对原材料安全性能的控制

化工工艺设计是实现化学原材料往化学成品之间的转换过程,将产生多种不同的化学反应与物理反应,某一种物质在某一形态下具有危险性和危害性,所以当对一些可能具有危险性的物质进行掌握与控制,检验此类物质在化工工艺流程中的稳定性,展开安全性评估和识别,有效防止原材料、半成品以及副产品在化工工艺中出现危险的状况。

2.化工工艺设计中存在的安全性问题及控制措施

化工工艺设计是实现化学反应而拟制的工艺路线与流程,在设计时当综合考虑,在有效保障产品质量的条件下,选择一条相对安全或者能够有效保障安全性的路线,把化工工艺设计中的危险度降到最小。所以,进行工艺流程设计期间当遵循以下的几个原则:

第一,工艺路线实现的最简化。化工工艺实现流程的最简化,能够有效减少化工工艺流程中间所存在的化学反应,提高化工工艺反应的安全性。

第二,尽最大程度地选择危险性和危害性相对低的原材料。对于化学工艺设计的安全性降低原则来说,原材料安全性的提高比化工工艺流程的简化具有更重要的意义。

第三,在最大可能的情况下选择新的设备和新技术。新设备以及新技术能够很好的地把化学反应当中产生的危险物质降低,可以将中间生成物的在一定程度上循环利用,进一步的把化工工艺设计的成本降低,从而把经济效益和化工工艺的安全性与环保性提高。

三、化工工艺设计中控制措施分析

化工工艺流程设计中的核心内容就是化学反应,通过化学反应可完成原材料到成品的转化,许多的安全性问题h及于这一过程当中。因而,对于提高化工工艺设计的安全性有着十分重要意义的部分就是选择安全性良好的化学反应设备。对于化学反应种类繁多的化工工艺来讲,控制化学反应的安全性有着很大的难度。除此之外,还有很多不可控因素存在于化学反应的过程中,像是化学反应需要的温度、湿度控制很难达到精确的控制等,通常能够成为化学反应的一种潜在安全隐患。如果想要很好的对化学反应中设备安全性问题进行控制,就要注意以下几个方面:

1)降低进料量,能够准确的控制化学反应所需的加热速度以及冷却速度。化学反应过程当中,对化学反应具备的条件进行精确控制就是为了有效地提升它的反应转化率。这样,就可以很好的降低相关副产品的生成,把化工工艺的安全性提升。

2)化学反应过程中,要对相应的反应参数进行控制,防止反应仪器产生超压、超荷等状况。化学反应的过程中,反应设备的安全性主要依靠对反应本身的控制,如果化学反应过程当中出现一些超压现象,很大程度上就会致使设备状态失灵,导致安全事故。

3)相关废弃物的排放。化学反应一般会致使产生很多副产品与废弃物,将副产品进行合理的利用就能够很好地实现社会经济效益,很大的价值存在于其中。但是,废弃物不同,不止不可以提供价值,处理不合适还会有严重的环境危害与潜在危险。所以,化工工艺流程设计中应考虑如何处理有关废弃物的排放,做到有关废弃物在达到排放标准之后才可以进行排放。不只是能够很好的实现保护环境,同时可以把化工工艺流程设计的安全性提高。

结语

实现化学工业生产的前提就是化工工艺设计,化工工艺设计有着更高的安全性要求的根本原因是化学工业本身的特殊性与限制性。本文分析了目前我们国家化工工艺流程设计当中出现的问题,并以此提出了相对应的措施。化工工艺设计是一种的流程设计,它具有很强的系统性,其设计时应将影响安全性的各个因素都考虑到其中。但是,无论再完美的设计也很难做到兼顾化工工艺过程当中的任何一个细节,对于在化工工艺生产中所存在的缺陷我们应从化工工艺工艺当中进行及时的补救与修改,把任何一个流程都要控制好,绝对不允许发生化工事故。

参考文献

[1] 赵文涛,刘克强.化工工艺设计中安全危险的识别与控制 [J].中国石油和化工标准与质量,2013,11(14):2-13.

篇5

1. 教材的知识结构:本课内容是苏教版必修二专题二第一单元第一课时的《化学反应速率》,是高中化学理论的重要组成部分,也是整个中学化学教材的重点内容之一。从知识结构上看包括三部分的内容:化学反应速率的概念、表示方法及简单计算、影响化学反应速率快慢的因素。

2.教材的地位和作用:从教材整体上看,学生通过初中化学的学习,了解了化学反应的本质是旧键的断裂和新键的形成,在必修二专题一第二单元中学习了化学键的知识,学生容易理解化学反应速率快慢的本质原因是反应物本身的性质。学好这一课可以让学生了解化学反应速率的概念,认识影响化学反应速率的外界条件,并为学习化学反应限度、化学平衡的移动做好必要的知识储备。

二、教学目标

1.知识与技能:理解化学反应速率的概念、表示方法,认识影响化学反应速率的外界条件,并能说明相关问题。

2.过程与方法:培养学生的阅读能力、科学探究能力、问题分析能力。

3.情感态度与价值观:将化学知识应用于社会生活中,能够对有关的社会生活问题作出合理的判断。

三、教学重点和难点

重点、难点:化学反应速率的概念、影响化学反应速率的因素。

四、教学过程

【展示】(投影)氢氧混合气体的爆炸景观;青香蕉、熟香蕉的对比图。

师:日本福岛核电站氢氧混合气体的爆炸和香蕉的成熟,请对比两者反应过程的快慢。

生:氢氧混合气体的爆炸很快,瞬间完成;香蕉的成熟较慢。

生:(思考、讨论,描述方法)

方法1:用单位时间内物体经过的位移来描述;

方法2:用经过相同的位移需要时间的多少来描述;

方法3:相同的时间所经过位移的多少来表述;

……

师:很好。2004年雅典奥运会110米栏比赛中,刘翔以12′88的成绩获得冠军,就说明他的速度是非常快的。那么,我们化学上怎样来描述化学反应的快慢呢?

生:(思考、讨论,描述方法)

方法1:用相同时间内反应掉物质质量的多少来描述;

方法2:用相同时间内生成物质质量的多少来描述;

方法3:用相同时间内生成气体体积的多少来描述;

方法4:用反应掉相同的量需要时间的多少来描述;

……

师:很好。由此看来,描述化学反应进行快慢的方法有很多,请大家阅读书本第30页。

【板书】(一)化学反应速率

生:是平均速率,只有大小没有方向。

师:用不同的物质表示的同一个化学反应的化学反应速率一样吗?我们需要注意什么?

生:不一样,我们需要指明物质的种类。

师:化学反应速率能用任何物质来表示吗?

生:不能。固体的浓度不会改变。

【投影】总结化学反应速率的特点:

①化学反应速率表示的是一段时间内的平均速率,不是瞬时速率;

②化学反应速率是标量,即只有大小而没有方向,均取正值;

④化学反应速率一般不能用固体或纯液体表示。

篇6

1.教材地位和内容分析

化学反应速率是化学反应条件确定的重要依据之一,作为动力学原理的重要组成部分,化学反应速率的学习和研究具有重要的理论价值和应用价值.在高中化学知识框架中,化学反应速率在必修Ⅱ和选修Ⅳ两个模块呈现,虽然具体的学习要求不同,但足见其在高中化学知识体系中的重要地位.从知识[JP3]内在构成来看,化学反应速率主要包括概念、计算及影响因素等.[JP]

2.当前教学研究存在的问题

在教学过程中,广大一线教师均有这样的体验:学生在单纯地学习化学反应速率概念、计算和影响因素时,普遍感觉比较轻松,但在运用反应速率知识辅助学习化学平衡原理时,原有的对化学反应速率的认识立即变得模糊,容易出现瞬间短路的现象.这样的现象其实反映了一个问题:化学反应速率的知识体系真像原本以为的那样容易被学生掌握吗?那么如何才能帮助学生克服这样的学习障碍呢?笔者以搭建学习支架的方式进行了有益的尝试.

二、理论依据

1.学习支架存在的理论基础

建构主义认为学习是新旧知识反复进行双向交互作用的进程,即对新知识意义的不断建构和对旧有知识意义的不断加以改造、重新组合的过程,也就是从同化到顺应,又由顺应到同化不断循环交替的过程.教学过程中,教师通过搭建学习支架能更好地帮助学生联系旧有的知识经验,展开组内组间合作交流,从而更有利于重新构建新知识.

2.学习支架的概念内涵

所谓支架指的是具有支撑作用的构架,学习支架即是在学生学习过程中对其学习具有支撑作用的辅助工具.确切地说,学习支架是一种旨在帮助学习者构建知识的概念框架,目的是将繁重复杂的学习任务简化分解,从而以便学习者更深入地理解问题.正因为这样,学习支架在各级各类学习中,都应该有着广泛的适用性,尤其是把支架搭建在学习者的最近发展区上,此时效果最佳.教师在搭建学习支架前,应努力创设情境,以期在激发学生学习兴趣的同时唤醒学生脑海中所有相关就知识的记忆,从而更准确地定位学生的最近发展区.同时应该让学生全程参与搭建学习支架、解决所有问题的全过程,既让他们体验获得知识的整个思维过程,又使他们自主搭建学习支架的能力得到发展和提升.

三、案例分析

下面我们就以选修Ⅳ化学反应速率为例,来具体谈一下如何搭建学习支架.

1.准备工作――学生最近发展区分析

学生通过必修II化学反应速率的学习己经初步定性接受了反应速率概念,知道反应速率是表征化学反应快慢的物理量,了解化学反应速率受温度、浓度、压强、催化剂等外部条件的影响,但对于这些外部条件影响反应速率的变化历程、影响效果等知之甚少.学生经过必修阶段元素化合物知识、氧化还原理论的学习储备初步具有了一些定量分析化学反应的经验,但还缺少定量分析化学反应速率的相关经验.学生通过部分演示实验、分组实验掌握了一些控制变量进行对比实验、探究实验的方法和技巧,使掌握定量测定化学反应速率、定量分析外部条件对反应速率的影响效果成为可能.

2.搭建认知支架,整合知识基础

个体学习活动常常受到个体所处的周围环境、文化背景的深刻影响,所以从学习者已有的生活经验出发,创设生活情境,有利于激发学习者的学习热情和学习兴趣,使他们更为积极主动地开展对比与想象,将所要学习的新知识与头脑中原有的旧知识同化顺应,从而整合形成一个更为完善、更加稳固的知识基础.为此,在化学反应速率教学中,设置认知支架:以源自生活的一组图片“食物的变质”“化石能源的形成”“炸药爆炸”帮助学生回忆化学反应快慢的定性直观描述,“校运会百米冲刺”“百米飞人大战”回忆描述快慢的定量方法及定量工具.这样学生很容易由运动会百米计时联想到化学反应速率的定量描述方法为消耗一定量反应物或生成一定量产物所需时间,或是单位时间内反应物的消耗量或产物的生成量.

3.搭建实验支架,培养学科思维

化学是一门以实验为基础的学科,观察实验可以帮助学生获得感性认识的第一手材料,操作实验可以发展学生实践动手能力,分析实验可以提升学生学科思维能力,设计实验更可以提高学生学科素养.在教学过程中,通过化学实验教师和学生将组合成学习统一体,从而产生更多的交互式合作与交流.在设计实验方案定量探究影响化学反应速率的过程中,搭建如下三个实验支架:(1)引导学生对照酸性高锰酸钾与草酸反应原理,明确影响该反应速率的因素,将所有变量分类成自变量、因变量和控制变量,以便帮助学生准确把握控制变量法.(2)引导学生将自变量按浓度、压强、温度、催化剂等因素分类,将抽象的控制变量概念具体化为基于控制变量法设计的一组系列实验,并通过小组合作、交流讨论确定各个实验方案的可行性.(3)引导学生分组操作实验、观察现象,记录相关数据于自己设计的实验报告纸上,并分析处理所得数据,得出实验结论.通过实验支架的搭建,将学生由看热闹的外行变成理性严谨的内行,使学生更深刻地体会到化学学科的研究过程和方法,提升科学素养.

4.搭建概念图支架,发展知识网络

概念图是基于奥苏贝尔认知同化学习理论的网络结构示意图,它以节点表示概念,节点间连线表征概念间内在逻辑关系,将学习过程形象直观为旧有知识网络体系不断同化新知识从而不断扩展的过程.为了使学生顺利接受并理解新知识,教师应首先整固学生的上位概念体系,建立稳定的概念固定点,为新概念的纳入做好充分准备,其次应注意选择合乎学生认知发展规律和知识内在逻辑结构的学习流程,方便学生前后联系,此外还应注意适时对新旧概念展开对比区分,以防错位混淆.因此,在教学中搭建如下支架:(1)必修化学反应速率概念与影响因素概念图;(2)反应速率概念的量化表征、瞬时速率与平均速率概念、同一化学反应中不同物质表征的反应速率及其定量关系;(3)影响化学反应速率的因素的微观解释、图像及一些简单数量关系;(4)化学反应速率完整概念图的整合.通过概念图支架的搭建,引导学生学会从简单到复杂、从局部到整体建构概念图,体验概念图内在的逻辑关系,使所学新知识内化而成的新知识网络体系更加清晰、稳固.

篇7

能源与人类的生存和发展息息相关。本章通过对化学反应中能量变化的探讨,使学生感悟到过去化学反应在人类利用能源中所充当的角色,在未来人类解决能源危机、提高能源利用率和开发新能源等方面中的关键作用,以激发学生学习化学的兴趣,教育学生关心能源、环境等与现代社会有关的化学问题。

本节课的教学是围绕化学能与热能的关系而展开的。教学分为三个部分:

在第一部分中教材先从化学键知识入手,说明化学键与能量之间的密切联系,揭示了化学反应中能量变化的主要原因。然后分析了化学反应过程中反应物和生成物的能量储存与化学反应吸收还是放出能量的关系,为后面强调“与质量守恒一样,能量也是守恒的”的观点奠定了基础。

在第二部分中教材通过三个实验,说明化学反应中能量变化主要表现为热量的形式,提出吸热反应和放热反应的概念。这部分内容强调了科学探究和学生活动,让学生在实验探究中认识和感受化学能与热能之间相互转化及其研究过程,学会定性和定量的研究化学反应中热量变化的科学方法。

在第三部分中教材为了拓宽学生的科学视野,图文并茂地说明了生物体内生命活动过程中的能量转化、能源与人类社会发展的密切关系,使学生建立正确的能量观。

关于化学反应与能量之间的关系,学生在初中化学中已经有所了解,在他们的生活经验中也有丰富的感性认识。本节教学内容是让学生在学习物质结构初步知识之后,从本质上认识化学反应与能量的关系。

本节教学重点:化学能与热能之间的内在联系以及化学能与热能的相互转化。

本节教学难点:从本质上(微观结构角度)理解化学反应中能量的变化,从而建立起科学的能量变化观。

依据以上分析,建议将本节课的教学分为三个课堂教学单元:理论思考教学,实验探究教学,实际应用教学。这三个教学单元相互联系,同时又各自平行独立,其中任何一个单元都可以作为教学切入点进行课堂整体教学,这样就形成了以下几种教学思路:

教学设计Ⅰ以理论思考教学作为切入点。

从复习化学键知识入手启发学生思考化学反应中“化学键的破与立”与化学反应中能量变化的关系进入理论思考教学引发学生考虑化学能与热能相互转化的问题进入实验探究教学提出人类如何利用化学反应产生的热量问题进入实际应用教学。

这一教学思路强调的是理论的指导作用,启发学生从理论出发提出化学反应中能量变化的几种科学假设,然后设计实验对各种假设进行验证,以此培养学生应用理论知识解决实际问题的能力。

理论思考教学单元中,应充分利用学生已有的结构化学知识、化学键模型、图表和多媒体课件等课堂内的教学资源,运用模拟课件将“化学键的断裂和形成是化学反应中能量变化的主要原因”这一抽象复杂的知识直观化和形象化,运用对比、比喻、联想等教学方法进行“一个确定的化学反应在发生过程中是吸收能量还是放出能量,决定于反应物的总能量与生成物的总能量的相对大小”的教学,力求用直观化的图表说明问题,注意新、旧知识的衔接和启发学生进行讨论和对比。

教学设计Ⅱ以实验探究教学作为切入点。

首先从一个燃烧实验入手启发学生理解物质发生化学反应的同时还伴随着能量的变化,而这些能量变化通常又表现为热能变化进入实验探究教学提出“为什么有的化学反应吸热,而有的化学反应放热”的问题进入理论思考教学提出人类如何利用化学反应产生的热量问题进入实际应用教学。

这一教学思路强调的是科学研究的一般过程,即应用实验创设教学情境,引发学生发现并提出新的问题,设计并进行实验用以收集、整理事实和数据,再得出结论,抽象出吸热反应和放热反应的概念,然后上升到理论高度去理解概念,最后应用到实际中去。整个教学过程即是一个完整的科学探究过程。

实验探究教学单元中,在探讨化学反应放热、吸热本质时,要使学生明确三点:1.热量变化是化学反应中能量变化的主要表现形式;2.化学反应过程中的能量守恒;3.化学反应在发生过程中是吸热还是放热,决定于反应物的总能量与生成物的总能量的相对大小。实验2-1、2-2、2-3是教学中非常重要的课内教学资源,为了最大限度的发挥其教学价值,建议将实验2-1和实验2-3安排为学生分组实验,因为放热现象不能用眼睛直接观察到,学生亲自动手实验有利于触摸反应器和观察温度计,能增强感性认识。由于实验2-2中产生氨气,因此要在通风条件好的环境下安排学生分组实验,此实验直观,现象明显、有趣,能很好的调动学生的参与热情。经过分组实验,学生有了完整丰富的感性认识后,引导学生进行高质量的理性分析则是至关重要的。通过学生汇报、小组内交流、填写实验报告等多种多样的形式,给学生创造机会学习对现象的描述和分析、对实验事实和数据的处理、依据事实和数据进行抽象等科学方法。最后,为了能使实验教学进入高层次的创造性实验和创造性思维阶段,可以提出一些富有挑战性的学习问题或任务,供学生在课堂内讨论或课外深入学习。例如,除了触摸、使用温度计和观察少量水是否结冰等方法外,还有没有其他指示反应放热或吸热的方法?将你认为可行的方法列出来,并根据这些方法设计实验;在定性实验的基础上能否定量测定一个反应所放出或吸收的热量?如果能,应该怎样设计实验?你怎样设计实验比较两个反应放出能量的大小?

教学设计Ⅲ以实际应用教学作为切入点。

首先让学生观看人类开发和利用能源的录像、图片等,或提出一个有关能源的社会实际问题进行讨论进入实际应用教学使学生认识到化学反应所释放出的能量是当今世界上最重要的能源,研究化学反应中能量变化的重要意义进入实验探究教学引导学生考虑怎样从本质上去理解:为什么有的化学反应吸热,而有的化学反应放热?进入理论思考教学。

这一教学思路强调的是将化学研究与社会的生存和发展密切联系起来,引导学生从实际出发去研究化学反应。

实际应用教学单元中,注意较多地渗透化学社会学的观点,要求的知识比较浅显但涉及的知识面广,这部分内容在课堂内不要讲得过深、过细和过多,应侧重于调动学生的学习兴趣和学习热情,引导学生充分利用课外教学资源进行学习。在课堂内建议选择有针对性的录像片段、具有说服力的图片、数据资料供学生观看和阅读,然后进行讨论和分析。同时,给学生一些学习问题和学习任务,鼓励学生充分利用课外教学资源进行学习,如上网学习,去图书馆查阅资料,到社会上去调研,寻找日常生活中与能量有关的现象等,也可下发一些课后阅读资料让学生分析并写出报告。

本节课整体教学结构及流程图为:

二、活动建议

实验2-1

实验要点:铝与稀酸和弱酸反应现象不明显,常常需要加热,所以要选择强酸且浓度不要太低。尽量使用纯度好的铝条,反应前要用砂纸打磨光亮,这样进行实验时,用手触摸才能明显感觉到反应放热,用温度计测量效果会更好。

实验报告设计:

实验目的1.了解铝与盐酸反应中热量变化的情况;

2.学会观察和测定化学反应中热量变化的方法。

实验要求组内成员共同合作完成下列三个栏目中所要求的学习任务。

实验活动时间:小组成员姓名:

思考与讨论

1.铝与盐酸反应的化学方程式:。

2.在反应过程中你将能看到什么现象?

3.用眼睛不能直接观察到反应中的热量变化,你将采取哪些简单易行的办法来了解反应中的热量变化?

4.要明显的感知或测量反应中的热量变化,你在实验中应注意哪些问题?

实验记录

实验步骤*

眼睛看到的现象

用手触摸的感觉

用温度计测量的数据

在一支试管中加入2~3mL6mol/L的盐酸溶液向含有盐酸溶液的试管中插入用砂纸打磨光的铝条

结论

反思与评价

(一)个人反思和总结

1.通过这个实验你学到了哪些化学知识?学会了哪些实验方法?

2.在整个过程中,你最满意的做法是什么?你最不满意的做法是什么?

(二)组内交流和评价

1.在思考、讨论过程中,同组成员给了你哪些启示?你又给了同组成员哪些启示?

2.在实验过程中,同组成员给了你哪些帮助?你又给了同组成员哪些帮助?

(三)组间交流和评价

1.当听完其他小组的汇报后,发现他们的哪些做法比你们小组的好?哪些不如你们的好?

2.当听完其他小组的汇报后,你是否又有了新的想法?

根据你在这次活动中的收获和表现,以10分制计算,你的得分是:。请阐述理由:。

请将你的报告送交到老师处。谢谢合作!

*实验步骤也可以让学生自己设计和填写。

实验2-2

实验要点:这个实验成功的关键是在短时间内反应充分进行,使体系温度快速降低,将玻璃片上的水凝固。实验中要注意两点:(1)将Ba(OH)2·8H2O晶体研磨成粉末,以便与NH4Cl晶体充分接触;(2)由于该反应属于固相反应,一定要在晶体混合后立即用玻璃棒快速搅拌混合物,以使它们很快起反应;(3)反应放出有刺激性气味的氨气,会造成学习环境的污染,所以要注意对氨气的吸收。

建议实验探究过程如下:

(一)提出研究的题目

在常温下氢氧化钡晶体与氯化铵晶体反应过程中能量的变化。

(二)收集实验证据

1.阅读教材并根据已有知识设计实验方案和实验步骤如下:

图2-1氢氧化钡晶体与氯化铵晶体的反应

2.根据上述实验方案和步骤讨论实验过程中应注意的问题。

3.分组实验,观察实验现象,收集实验事实。

4.汇报实验现象和结果。

(三)整理并得出结论

1.列表整理实验事实和结论:

实验步骤实验现象得出结论将晶体混合后立即用玻璃棒快速搅拌混合物有刺激性气味的气体产生,该气体能使湿润的紫色石蕊试纸变蓝有NH3气生成用手触摸烧杯下部感觉烧杯变凉反应吸热用手拿起烧杯烧杯下面的带有几滴水的玻璃片(或小木板)粘到了烧杯底部反应吸收热量使体系温度降低,使水结成冰将粘有玻璃片的烧杯放在盛有热水的烧杯上一会儿再拿起玻璃片脱离上面烧杯底部冰融化反应完后移走烧杯上的多孔塑料片,观察反应物混合物成糊状有水生成

2.用化学方程式表示上述反应:

Ba(OH)2·8H2O+2NH4Cl==BaCl2+2NH3+10H2O

(四)反思与评价

1.整个实验中有哪些创新之处?

2.在实验过程中对你最有启迪的是什么?

实验2-3建议将教材中的实验改为下列三组对比实验。

实验要点:通过三组强酸和强碱之间的反应对比实验,定性的抽象出“中和热”概念。在实验中要注意:(1)三组实验所处条件要相同,如使用的仪器、外界环境中温度和压强要相同;(2)三组实验酸和碱的用量要相同,以保证生成水的量相同;(3)控制相同的反应时间。

三个学生分成一组进行实验,其中每个学生做一个实验并记录现象和数据,供组内交流、比较使用,然后讨论得出结论。最后向全班汇报,进行组间交流。

步骤一:三个学生各取一个大小相同的试管,分别做一个实验并记录实验现象和数据。

步骤二:汇总实验现象和数据并列表比较。

反应物

及用量

HNO350mL1mol/LHCl50mL1mol/LHCl50mL1mol/L

NaOH50mL1mol/LNaOH50mL1mol/LKOH50mL1mol/L

混合前温度

室温

室温

室温

混合后温度

t1

t2

t3

结论

HNO3与NaOH发生中和反应时放热HCl与NaOH发生中和反应时放热HCl与KOH发生中和反应时放热

对实验进行

归纳和概括

强酸与强碱发生中和反应时放出热量

步骤三:对实验进行原理性抽象──为什么强酸与强碱发生反应时都会放出热量?

本质分析──三个反应的化学方程式和离子方程式分别为:

HNO3+NaOH=NaNO3+H2O,H++OH-=H2O

HCl+NaOH=NaCl+H2O,H++OH-=H2O

HCl+KOH=KCl+H2O,H++OH-=H2O

由此可见,三个反应的化学方程式虽然不同,反应物也不同,但是它们的反应本质相同,都是H+与OH-离子反应生成水的反应,属于中和反应,其离子方程式都是:H++OH-=H2O。所以,可提出推测,即中和反应都放热。由于三个反应中H+和OH-离子的量都相等,则生成水的量也相等,故放出的热量也相等(在上述三个实验中,温度上升的幅度接近)。

形成概念──酸与碱发生中和反应生成1molH2O时所释放的热量称为中和热。

三、问题交流

学与问

这里所列举的两类反应说明了化学反应与热能之间的辩证关系以及它们之间的相互转化:

一方面,用煤、石油、天然气的燃烧放热来说明化学能向热能的转化,人们利用这些化学反应获取能量;另一方面,用CaCO3经过高温煅烧分解生成CaO来阐述热能对化学反应的支持作用,人们利用热能来完成常温下很难发生的化学反应。

总之,通过列举实例和提出问题,引导学生不仅思考化学反应与能量的关系和相互转化问题,还要探讨背后的本质问题。

思考与交流

学生通过实验认识和感受中和反应中的热量变化,教材又提出了“如何通过实验来测定盐酸与氢氧化钠反应的中和热”的问题,将定性实验探究引向定量实验探究上。这对学生的实验技能要求更高,因为学生在设计定量实验时要考虑的因素更多。在设计实验装置和操作时应从两个方面考虑,一是注重“量”的问题,如①反应物的浓度和体积取定值;②测量反应前后的温度值;③做平行实验取平均值。二是尽量减小实验误差,如①用经过标定的盐酸和氢氧化钠溶液;②量液器最好使用移液管;③搅拌使反应充分进行;④及时散热,使混合液温度均衡;⑤温度计的精确度高,最好使用精度为0.1℃或更高的温度计;⑥盐酸跟氢氧化钠溶液混合后液面上方的空间尽可能小;⑦使用绝缘装置,避免热量散发到反应体系之外;⑧温度计要读准确。

四、习题参考

1.吸收能量,放出能量,反应物总能量与生成物总能量的相对大小。

2.热量,放出。

3.C、H元素,CO2、H2O。

4.②③④⑤⑥,①。

篇8

【关键词】化学反应工程 应用 教学改革

【中图分类号】G642 【文献标识码】A 【文章编号】1674-4810(2013)16-0056-02

化学反应工程是一门涉及高等数学、化工原理、化工热力学、化工传递过程、化工分析与合成等多学科、多领域的科学,也是一门研究化学反应的工程问题的学科。化学反应工程是我校化学工程与工艺本专科的核心课程,目的是将实验室中发现的化学反应可靠地移植到工业生产中,并且就所确定的反应与预期的生产能力对反应器的形状、尺寸及操作方式进行设计,其应用遍及化学、石油化学、生物化学、医药、冶金及轻工业等许多工业部门。

一 化学反应工程在化工工程中的应用

1.化工工程是否具有可行性是一个最直接、最根本的问题,而解决这一问题的基础是先要了解各反应的速率

对于具有工程意义的系统来说,反应动力学无法用理论计算,而必须通过实验来确定。所谓的反应进行分析,即通过实验测定动力学数据并对之进行数学关联,从而获得反应速度方程。因为大多数重要的工业反应都不是在充分混合的均相中进行的,传热和传质过程对这些反应的进行也有相当大的影响。因此,传递过程动力学与化学动力学的共同作用在化学反应工程中具有非常重要的意义。

化学反应工程学中的动力学就是专门阐明化学反应速度与各个物理因素之间的定量关系。有些从热力学分析认为可行的,如常压、低温合成氨,由于速度太慢而实际上是不可行的,只有研究出好的催化剂才能在适当的温度和压力下以显著速度进行反应,这就是动力学的问题。还有一些过程,从热力学分析认为是不当的,如甲烷裂解制乙炔,在1500℃左右的高温下,乙炔极不稳定,最终似乎只可以得到碳和氢。但如果使它在极短时间(如0.001秒)内反应并立刻淬冷到低温,那就能获得乙炔,工业上也就是这样来实施的,所以在实际应用上起决定性作用的往往是动力学因素。为了实现某一反应,需要选定合适的条件、反应器结构型式以及确定反应器的尺寸和处理能力等,这些都紧紧依赖于对反应动力学特性的认识。动力学是反应工程的一个重要基础,更是化工工程的一个重要基础。

2.化工工程需要工业反应器,而反应器的设计与计算、开发与放大是化学反应工程的一个重要内容

尽管各种产品有不同的生产过程,但作为化工生产的核心——化学反应器是必不可少的。各种不同类型的化学反应器具有不同的反应工程性质,因为在这些反应器中的流体力学及热力学状况可能完全不同。这就要求在进行反应器设计时,要以质量、能量及动量的基本守恒方程式为基础。除了化学动力学以及质量和热量的交换外,反应器中的流体力学及温度变化类型对于反应器的生产能力也会产生影响。

工业装置上采用的反应条件,不一定与小试或中试的一致。如在实验室的小装置内,反应器的直径很小,床层也薄,一般又常以气体通过床层的空间速度作为反应条件的一种标志。但在放大后,床层的高径比往往就不一样了。如要保持相同的空间速度,线速度就需改变,而线速度的大小又影响到压降、流体的混合和传热等情况,从而导致反应的结果不再与小试相同。又如,在小装置中进行某些放热反应时,温度容易控制,但在大装置中,传热和控温往往成为头等难题,甚至根本不可能达到与小装置相同的温度条件,所有这些导致出现“放大效应”。因此,工业装置的反应条件必须结合工程上的考虑才能最合理地确定。在化学反应工程学科建立以前,工业界广泛采用的方法是逐级经验放大的方法,中间试验往往耗资大、历时久。化学反应工程学科建立以后,逐步形成一套新的数学模型方法。目前,逐级经验放大和数学模型两种方法同时并存,各有适用范围,但是,即使是逐级经验放大的方法,也常是以化学反应工程的理论为指导,而不再是纯经验性的了。

3.工业反应过程的优化操作以及反应技术的开发是反应工程在工业方面的重要应用

化工产品只有在反应器中才能产生,想提高产品的产量必然要对反应器的操作条件进行优化。实际工业反应过程未必在最优的条件下操作,即使设计是优化的,在实施时往往有许多难以预料的因素,使原定的优化设计条件在实际操作中未必是优化的。运用化学反应工程理论对现行的工业反应过程进行分析,结合模拟研究,可找出薄弱环节和进一步调优的方向,通过调节和改造以获得最大的经济效益。由此可知,在化工工程中,老厂的增产挖潜、新厂的设计、新工艺、新产品以及新设备的付诸实践,化学反应工程都起着重要的指导作用。反应工程的理论为新反应器和新反应技术的开发指明了方向,研究者可据此寻找合理的设备结构和操作方法。近年来出现的新的石油化工裂解技术和各种新型技术,都得益于反应工程理论的指导。在工业应用中,在定性指导方面已发挥了很大的作用。但是,与理论研究相比,反应器内传递过程的实验研究和数据积累还很薄弱,特别是对于化工生产中经常遇到的多相流动体系的研究还不足。因此,反应工程的研究需要与多相流体力学和多相传递过程的研究相结合,以便相辅相成。同时,化学反应工程向生化、冶金等领域扩展时还会出现新问题,这就需要进一步的研究。

二 化学反应工程课程教学改革

针对目前的高校教学,我认为在此门课程教学与学习中应对以下几方面进行加强:

1.强化计算机的应用

气固相催化反应器是用数学模型法设计计算最成功的实

例之一,常用拟均相模型求解。对拟均相一维模型可以得到微分方程组,此微分方程组可以用数值法求解,常用的数值法有欧拉法、改进欧拉法、龙格—库塔法等。另外要求学生结合所学“化工计算机应用”的课程内容,采用VB计算机语言进行编程,对各种计算方法、边界条件、步长等进行比较,使计算结果稳定、准确。

2.加强实验教学

如返混是不同停留时间的物料混合,返混降低了反应器中反应物料浓度,影响反应速度、转化率及选择性,所以返混对化学反应结果影响特别大。通过开设相应实验,可以从中看到返混对反应物浓度的影响及停留时间分布的特征,反应器的空速等操作条件对返混程度的影响,对串联全混釜模型与轴向分散模型有了深刻的理解。根据流动模型参数,结合在其中进行反应的特征参数,计算或预测非理想流动状态下反应实际可达到的转化率。

3.与生产实践相结合

本课程以工业反应过程及反应器设备为研究对象,安排学生到工厂实习,这对本课程的学习非常重要。我们连续几年安排学生到中石化茂名分公司实习,在实习前,我们要求学生结合所学“石油炼制工艺学”课程内容,并针对自己实习的车间查阅相关资料,了解反应原料组成和来源;掌握装置的反应过程原理和工艺条件,熟悉装置的设备。在实习基地先组织听取技术人员的安全知识讲座。然后在实习中了解主要装置的工艺流程,熟悉现场的管线——泵——反应器——储罐等的走向,认清部分工艺的简易流程,了解化工生产中所用到的各类反应器、换热器、罐及辅助设备等,使学生对各类反应过程及所涉及的设备有感性认识。通过进厂实习也进一步证明理论与实践密不可分,有利于教学质量的提高。

三 结论

化学反应工程是一门工程类学科,与工程实际紧密联系,数学模型复杂,实践性和应用性很强。课程改革通过结合现代教学方法与手段,引入专业实验和生产实习等实践环节,加深了学生对理论知识的理解,培养了学生综合应用知识的能力及工程意识,提高了分析、解决工程问题的能力,适应了新世纪人才培养模式的需求。

参考文献

[1]刘军.化学反应工程[M].北京:化学工业出版社,2009:1~10

[2]许志美、张濂.倡导科学思维方法,培养工程分析能力——“化学反应工程”教学研究[J].化工高等教育,2003(1):66~67

篇9

【关键词】课堂教学 实录 教学理念

【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2013)10-0136-02

本节课是人教版高中化学必修2教材第三章第三节《化学反应的速率和限度》第一课时的内容,是一节名师展示课,具体实践了教师对新课程的理解和实施,展现了化学课堂教学的新理念。

一 教学实录

[教师活动]图片导入:请同学们观看大屏幕(播放爆炸和溶洞形成图片),从化学视角看发生化学变化时有何区别。

[学生活动]观看图片,齐声回答,爆炸反应非常快,溶洞形成过程很缓慢。

[教师活动]问题引入:看了上面两张图片,大部分同学都能从化学变化的视角得出:有的化学反应进行的很快,瞬间完成;有的化学反应很慢,需要很长时间才能完成。现在请同学们观察实验(演示:在盛有碳酸氢钠溶液的小试管中滴加稀盐酸。提问:此反应是快还是慢,你判断的依据是什么?)

[学生活动]反应很快。气泡冒出快。

[教师活动]气泡冒出快可以判断化学反应快慢,还有哪些现象也能判断,请同学们思考,并归纳。

[学生活动]学生齐声回答“固体量的改变”、“浑浊程度或沉淀”、“颜色变化”、“温度变化”等。

[教师活动]归纳小结:我们根据同学们的发言,归纳判断化学反应进行的快慢的方法有:

产生气体的快慢

固体质量的变化 只能粗略地估计化学反应的快慢

温度的变化 (定性角度)

浑浊程度 准确地反映化学反应的快慢

颜色变化等 需要统一的(定量标准)

拓展:请看屏幕(投影刘翔110m栏的四幅冲刺图片)。

[学生活动]观察与思考:第一、第二幅图看到刘翔跑

得快,第三幅图显示刘翔冲刺时间是12′ 88,第四幅图显示罗伯斯冲刺时间是12′ 87,罗伯斯目前最快。

[设计意图]从生活的实例帮助学生了解定性和定量的区别。

[教师活动]过渡:物理学中用什么描述物体的运动快慢?(学生齐声回答:速度。)不考虑速度的方向称之为速率。化学上用化学反应速率来表示化学反应的快慢。因很多反应在溶液中进行,因此化学反应速率通常用物质的量浓度在单位时间内的改变量来表示。

板书:

一、化学反应速率

1.化学反应速率的含义:通常用单位时间内反应物浓度的减少或生成物浓度的增加(均取正值)来表示。

2.表达式:V=C/t。

设疑:同学们,你们能根据表达式算出化学反应速率的单位吗?

[学生活动]回答分别是:mol/(L·s)、mol/(L·min)、mol/(L·h)。

[教师活动]强调:同学们说的都是化学反应速率的单位,习惯上用得比较多的是mol/(L·s)。无论是用哪一反应物表示还是用某一生成物表示,其反应速率都取正值,且是某一时间内的平均速率。巩固练习:请同学们计算下面题目中相应的化学反应速率(题略)。

[学生活动]计算化学反应速率,并汇报结果。

[教师活动]过渡(略)。

[学生活动]反应时的温度、反应物的浓度、固体的表面积、催化剂等。

[教师活动](投影展示)沙莉文面包包装封面上保质期说明、蜂窝煤球形状、炉子生火时用扇子扇风、雕牌洗衣粉包装上的“超效加酶”等。

板书:

二、影响化学反应速率的因素

1.内因:反应物本身的性质。

2.影响化学反应速率的外界因素:反应物的浓度、反应时的温度、固体的表面积、催化剂等。

提供药品:请同学们看桌面上的药品和仪器;分别有铝片、铁片、铜片、块状大理石(碳酸钙)、粉末状大理石(碳酸钙)、2mol/L盐酸、0.5mol/L盐酸、3%过氧化氢溶液、三氯化铁溶液、二氧化锰固体;提供仪器:试管、酒精灯、烧杯、镊子、胶头滴管等。用供给的实验仪器和药品设计合理的实验方案,六人一组分别验证影响化学反应速率的外界因素。

[学生活动]学生跃跃欲试,设计实验方案。

[教师活动]方法引导:(1)研究某一因素的影响时,要控制其他变量都是相同的,要设计对照实验。(2)主要通过定性的实验现象判断化学反应速率的快慢:逸出气体的快慢、颜色变化、固体量的增减、浑浊程度、温度变化等。

[学生活动]活动探究:同学们根据自己设计的实验方案,有条不紊地进行实验、记录观察到的实验现象,组内讨论并得出结论,小组汇报情况:(1)将铜片和铁片放入两支试管中,分别加入2mol/L盐酸,观察实验现象(验证反应物本身的性质对化学反应速率的影响);(2)用相同质量、相同形状的铁片放入两支试管中,分别加入2mol/L盐酸和0.5mol/L盐酸观察现象(验证反应物的浓度对化学反应速率的影响);(3)将相同质量、相同形状的铁片放入两支试管中,分别加入0.5mol/L盐酸,观察现象,再将其中的一支试管放在燃着的酒精灯上加热,观察现象(验证反应物的温度对化学反应速率的影响);(4)两支试管分别放入块状大理石(碳酸钙)和粉末状大理石(碳酸钙),再分别加入0.5mol/L盐酸,观察现象(验证改变反应物的接触面积对化学反应速率的影响);(5)两支试管中分别加入3ml的3%过氧化氢溶液,观察现象,再向其中的一支试管中加入少量的二氧化锰固体粉末,观察现象(验证催化剂对化学反应速率的影响)。

[教师活动]总结归纳:同学们体验了实验验证,知道物质本身的性质越活泼,反应速率越快;升高反应时的温度,反应速率加快;降低反应时的温度,反应速率减慢;增大反应时的浓度,反应速率加快;减小反应时的浓度,反应速率减慢;增大反应物的接触面积,加快反应速率;使用催化剂能改变化学反应速率。(知识回顾)采用哪些方法可以加快铁与盐酸反应的反应速率?

[学生活动]学生齐声答:升高温度,增大盐酸浓度,将铁片磨成铁粉,可以加入适当的催化剂(如硫酸铜)。

[教师活动]知识拓展:同学们知道了外界因素可以影响化学反应的速率,请同学们思考,铝与稀盐酸反应时可观察到放出气泡的速率先较慢、渐渐变快、后又逐渐变慢,为什么?请各小组讨论。

[学生活动]小组同学间一下讨论开了,纷纷举手发言。反应的过程是,盐酸先与铝表面的氧化膜反应(放出气体少),再与铝反应,放出大量气泡,随着反应的进行盐酸的浓度渐小,反应速率变慢,气泡减少。

[教师活动]知识应用:探究影响化学反应速率的外界条件,意义在于控制反应条件,提高对人类有利的化学反应速率,降低那些对人类不利的化学反应速率,利用化学反应为人类造福。请同学们举例。

[学生活动]学生各抒己见。用冰箱贮存食物(降低浓度减慢化学反应速率,食物变质速率变慢),食品包装中放入干燥剂和吸氧剂,降低水分和氧气的浓度以减慢食品变质的反应速率,工业上炼铁用鼓风机鼓入空气,增大氧气的浓度,加快炼铁的化学反应速率,提高生产效率。

[教师活动]小结(略)。

二 教学新理念

本堂课较好地体现了新课程的教学目标,关注学生的全面发展,创造性地使用教学用书,以课本知识为平台,灵活地联系生活、社会中的现象和科技发展的实际,体现多元的学习方式,突出自主、探究、合作学习的特色,构建了新型的课堂文化。

1.创造性地利用教学用书

教材中研究外界因素对化学反应速率的影响,只有[实验2~5]温度对化学反应速率的影响,[实验2~6]催化剂对化学反应速率的影响。本课中研究外界因素对化学反应速率的影响,设计为学生分组探究,从反应物的浓度、温度、固体反应物的颗粒状态(表面积)、催化剂等方面,自主设计实验方案,自主探究,亲自体验的探究式学习,极大地创设情境引导学生主动参与学习,突出师生交往、学生合作的多元学习方式。

2.实施了实验探究、小组合作的学习方式

影响化学反应速率的因素是复杂的,将复杂的问题简单化,从生活中的现象,猜想影响化学反应速率的因素。根据提供的仪器和药品设计合理的实验方案,按照预设的实验方案开展小组合作式的实验探究,验证影响化学反应速率的因素,归纳并得出结论。学生亲身实验过程,体验成功的快乐,课堂气氛活跃,这是新课程倡导的核心学习方式。

3.紧密联系生活、社会和科技的发展实际

多媒体投影的许多图片都是教师亲自摄影来自学生熟悉的素材。建立速率概念时,用体育比赛中有关刘翔110m栏的四幅冲刺图片;探究化学反应速率受外界因素影响时,用莎利文面包包装封面说明不同温度时的保持期、蜂窝煤球及煤炉生火、雕牌洗衣粉包装封面上的“超效加酶”等图片。唤醒学生已有的知识储备,旧知识与新知识进行有机嫁接。举例生活化,用化学视角看生活,生活素材为化学教学所用。学生能轻松地接受新知识,可谓水到渠成。

4.构建新型的课堂文化

课堂教学充满民主、开放、平等、对话和协商的氛围。学生回答问题、汇报实验成果时,教师不是站在讲台上听,而是走下讲台到学生中间,弯下腰来倾听学生汇报,即使回答不全面,也是用协商、平等的语言,如“请你再想一想”、“请再考虑”、“请坐下继续思考”等。实践新课程教学理念,体现“以人为本”,尊重学生,关注全体学生,师生平等。教师是组织者、引导者和促进者,师生形成了真正的学习共同体。

篇10

初中化学 课程标准 能量观 微粒观

《义务教育化学课程标准(2011年版)》(以下简称课标)明确指出,“义务教育阶段的化学教育,要激发学生学习化学的好奇心,引导学生认识物质世界的变化规律,形成化学的基本观念……”化学能量观是化学观念中的核心观念,需要经过螺旋式递进。2012年修订的三个版本[1-3]的化学教材在不同阶段都有安排,充分体现了学习的阶段性和层次性。要求教师把握好知识深广度,既要符合学生的认识规律和心理特征,又要层层递进,从定性到定量、事实到科学概念来认识并建立化学反应与能量之间的双向关系,引导学生建构适应层次的能量观[4-6]:(1)物质具有能量,不同物质或同种物质的不同状态所具有的能量不同。(2)化学反应过程中,不仅有物质变化,而且有能量变化,伴随化学反应的能量变化有不同的形式;化学能是能量的一种存在形式;能量是影响化学反应的重要因素,化学能与其他能量的相互转化以化学反应为基础和前提,能量不会创生和消亡,只是在转化的过程中有能量转化的效率问题,使能量有所损耗。(3)能源是社会发展的基础,能源的开发和利用离不开化学。(4)微观世界也存在着能量关系,表现为分子间、原子(离子)间、电子与原子核间的相互作用。

一、基于课标的视角,比较、分析三个版本教材能量观的呈现方式

课标中,每个二级主题都从“标准”和“活动与探究建议”两个维度,对化学学习内容进行了说明,还有可供选择的情境素材。其中,在“化学变化的基本特征”二级主题中明确指出:“知道物质发生化学变化时发生着能量的变化,认识通过化学反应实现能量转化的重要性”。笔者尝试基于课标,分析三个版本教材能量观呈现的基本视角(见表1)。

教材还以蜡烛燃烧为素材研究物质的性质和变化,能量观渗透在火焰温度的测定之中,若能在描述“发光、发热、火焰”等具体现象的基础上再提出更为深刻的问题――“为什么化学变化伴随有能量转化?”实验就不再局限于蜡烛燃烧的具体现象和产物的检验上了。使学生了解该反应是持续发生的自发反应,先反应释放的能量可引发后续反应,从而将化学的基本观念与化学过程的方法教育有机地联系起来[7]。

物质的化学变化包括了质的变化、量的变化与能量转化,从能量观的角度理解物质结构及其转化是化学的基本视角。教学过程中,要联系燃料的燃烧、中和反应、葡萄糖在体内氧化释放能量、生石灰与水反应放出的热量能“煮熟”鸡蛋、化学电池等日常现象作为情境素材,通过创设真实的问题情境和建构性的学习,帮助学生理解化学变化和能量变化的密切关系,培养学生学习化学的兴趣和能力。

二、初中化学能量观建构的基本策略

研究化学反应中的能量变化与研究化学反应合成物质同样重要。因此,教师要重视引导学生建构不同知识之间、理论与事实之间、新旧经验之间的有意义联系,在关注情境的选取与创设、问题的构思与引导、内容的组织与呈现、活动的设计与安排的交互过程中经过螺旋式递进,使学生初步认识化学反应中有能量变化,在燃烧和燃料的学习中得以强化,了解如何应用化学变化实现能量的转化和物质、资源的合理利用,形成和发展能量观。

1.借助实验表征建构能量观

借助实验表征,引导学生理解吸、放热除了对温度有影响,还会引起气体压强、体积、溶解度、物质状态等的变化。在不使用温度计的情况下,让学生用手感知,或通过合适的实验装置(如图1、2),借助实验现象,加深学生对化学能量观的理解。

还可以借助铁丝、镁条、氢气的燃烧、干电池和充电电池等实验探究,使学生宏观感知、理解化学体系是一种储能体系,化学反应伴随有能量变化,常见形式是化学能转化为热能、光能、电能,且电能与化学能可以相互转化。借助高锰酸钾加热制取氧气,水的电解,观察二氧化锰、硫酸铜溶液对过氧化氢分解反应的影响等实验,使学生了解有些化学反应需点燃、加热、高温、通电、催化剂等条件,如果没有这个条件反应就不能发生。从而有效调节和控制能量的储存和释放过程,促进或抑制化学反应,使化学反应向着有利的方向发展,明白反应条件对化学反应的重要作用,帮助学生建构能量观。

2.深化对燃料和燃烧的认识,发展能量观

教材中通过大量的事实证明:人类利用燃烧的主要目的是为了获取能源。煤、石油和天然气等化石燃料是当今世界上最重要的能源,资源的浪费主要表现在化石燃料的不充分燃烧上。因此,关于能源问题,一要让学生了解燃料燃烧反应释放能量,帮助学生研究怎样才能使燃料完全燃烧,提高燃烧的效率;二要让学生考虑燃烧的安全问题,学习怎样运用化学知识防火、灭火;三要讲燃料燃烧对环境的影响,怎样减少燃料燃烧时有害气体和烟尘的排放,减少对环境的污染;四要讲燃料的选择与清洁能源的开发利用,讲化学科学为开发清洁、高效的能源能做些什么[8]。利用核心概念的文字表达方式揭示有关燃料问题的化学学科本质(如图3):

图3 燃料燃烧的文字表达式

设置问题组:(1)燃烧能为我们做什么?(2)选择燃料时应综合考虑的因素有哪些?(3)为什么有些物质可以作为燃料,有些则不能?(4)燃烧生成物为什么会对环境产生影响,有哪些对策?(5)物质在化学反应中的能量变化有什么规律?(6)化学反应中的能量变化对我们学习物质的物理性质和化学性质、物质的制备和选择反应条件有什么启示?怎样利用化学反应中的能量?

通过问题组的解决,借助可燃物与氧气发生的剧烈氧化反应,从化学反应热现象认识到通过化学反应可以获得能量,通过对燃烧概念的发展性理解,使学生了解燃烧是强化物质转化伴随有能量变化认识的重要内容,形成对化学反应中的能量变化初步的感性认识;通过对燃烧、缓慢氧化和爆炸发生条件的认识,初步感知可以通过改变反应发生的条件来影响化学反应。了解人类的一切活动都离不开能源,能源居于首位,能源的开发和利用离不开化学,认识化学在提高燃料的燃烧效率中的重要作用,从自我做起,节约能源,引导学生建构能量观。

3.借助微粒观,了解能量观的内涵

微观层面认识能量观,这部分内容既基于物理学习,又与微观世界联系,抽象程度很高,鲁教版以水为例,创设连续性问题情境:在水的状态变化时水分子的能量、运动速率、间隔怎样变化?在水天然循环的各个环节上水分子的能量如何变化?是怎样运动的?以分子或原子不断做无规则运动为切入点,推论出构成物质的微粒具有热能。溶解现象并非单纯的物理现象,其伴随的能量变化涉及微粒的运动和相互间的作用力。物质溶解于水的过程中发生了两种能量变化:溶质的分子(或离子)向水中扩散的吸收热量过程;溶质的分子(或离子)和水分子形成水合分子(或水合离子)的放出热量过程。溶质不同,这两种过程吸收或放出的热量不同,使溶液的温度发生不同的变化。

核外电子运动也是一种能量的反映。元素得失电子的能力取决于原子中电子的能量,元素原子的最外层电子处于较高能量状态,不稳定,原子间通过得失电子或共用电子对的方式成键,使体系能量降低,形成相对稳定的结构。学生形成核外电子运动的能量思维方式,从能量的角度研究物质及其转化的思维方法等[4]。因此,可把物质转化过程看作是诸存在物质内部的能量(化学能)转化为热能、光能等释放出来,或者是热能、光能等转化为物质内部能量(化学能)被储存起来的过程。在水的电解教学中,若能从微观视角解释为什么水需要通电,引导学生认识分子、原子在化学变化中的行为,深入了解原子的内部结构以及原子核外电子的分布及其在化学变化中的表现,那么学生对化学反应条件对化学反应的重要作用的认识会达到更高的水平[9]。

初中学生的能量观建构是一个不断深化、有机联系、螺旋式上升的结构化内容,随着对能量观认识的不断丰富和发展,将从微观表征对化学和能量关系本质加以构建,形成更合理、完整的能量观。因此,学生能量观的建构应该注重认识和理解的完整性,使学生对学科知识的理解更加本质化,自身的观念更加清晰化,实施以观念建构为本的课堂教学。

参考文献

[1] 王晶,郑长龙主编.全日制义务教育化学九年级上、下册.北京:人民教育出版社,2012.

[2] 王祖浩,王磊主编.全日制义务教育化学九年级上、下册.上海:上海教育出版社,2012.

[3] 毕华林,卢巍主编.全日制义务教育化学九年级上、下册.济南:山东教育出版社,2012.

[4] 梁永平.论化学学习中的能量观建构.化学教育,2008(8).

[5] 姚远远,陈凯.初中化学教科书中能量观的建构.化学教育,2013(5).

[6] 徐敏.中学化学“能量观”的构成要素及内涵.中学化学教学参考,2013(7).

[7] 魏锐,如何由实验观察提出科学问题――以蜡烛燃烧为例,化学教育,2012(1).