初中数学常用的数学方法范文
时间:2023-06-13 17:21:06
导语:如何才能写好一篇初中数学常用的数学方法,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
一、配方法
所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和的形式。通过配方解决数学问题的方法叫配方法。其中,用得最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到。
二、因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法,在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除了中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法,还有如利用拆项添项法、求根分解法、换元法、待定系数法等。
三、换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
四、判别式法与韦达定理
一元二次方程a2x+bx+c=O(a、b、c∈R,a≠0)根的判别,=b2―4ac不仅用来判定根的性质,而且作为一种解题方法,在代数式变形、解方程(组)、解不等式、研究函数乃至几何、三角运算中都有非常广泛的应用。
五、待定系数法
在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
六、构造法
在解题时,我们常常会采用这样的方法:通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
七、反证法
反证法是一种间接证法,它先提出一个与命题结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
八、面积法
平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时也会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
九、几何变换法
在数学问题的研究中,常常会运用变换法,把复杂性问题转化为简单性的问题去解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。几何变换包括:(1)平移;(2)旋转;(3)对称。
篇2
好的开始是成功的一半,完美的结局则蕴含了成功的精髓,课堂小结作为初中,数学课堂教学中必不可少的部分,不仅总结和归纳所学知识,而且启迪新知识,具有承前启后,画龙点睛的作用,提升了学生的思维能力、开拓了学生的视野,本文总结了初中数学教学中课堂小结的常用方法,以期为提高数学教学水平的目的 。
二、课堂小结概述
课堂小结其本质是对一节课或一章课的概括性的说明,时间控制5-10 min,既要全面概述本节课内容,又要言简意赅,同时要遵循以下原则:(1)明确目的;(2)言语精炼;(3)启迪性;(4)思想性。
三、开展课堂小结的必要性
1.完善课堂信息
随着学生认知能力的提高,初中数学课堂的知识点增加,知识的难点增多,在正常教学结束后,学生接受的信息多而杂,很难做到层次分明、结构条理。在每节课结束的时候,采用简明扼要的语言、文字或图表对本节所学内容进行总结归纳,是对课堂信息的完善,不仅协助学生理清知识的结构层次,而且有利于学生知识体系的形成。
2.教学效果反馈
通过课堂小结教师不仅可以了解课堂的教学效果,而且可以了解学生的学习效果。数学教学的课堂小结是教学发现问题,解决问题的重要手段,通过学生的反馈信息,教师可以发现自己教学中存在的不足和缺陷,以便日后的改进;也可以发现学生学习过程中的疑点和难点,以便再次的讲解和示范,加深印象的同时,提高教学效果。
3.承前启后
初中数学知识前后联系紧密,具有系统性、连贯性,新知识作为旧知识的延续和扩展,新知识的学习需要旧知识作支撑,在初中数学学习中,学生往往忽略了新旧知识的联系,教师通过课堂小结,在巩固、归纳旧知识的同时,启迪新知识。
四、课堂小结的方法
1.归纳总结法。归纳总结法作为初中数学课堂教学中最常见的一种方法,一般是在课堂结束的五到十分钟内,教师将本节课的重点内容、教学思想进行总的概括,以图表、阐释、视图的方式展示给学生,学生在学习的过程中,发现自身的问题,教师再次的授业解惑。归纳总结法,为学生展示了整节课的内容,在突出教学中心的同时,也突出了重点。例如,在证明三角形全等的过程中,教师通过列举三角形全等的所有证明条件,学生通过选择的方式回答哪些条件可以证明三角形全等,哪些条件不可以;也可以延伸扩展到等腰三角形、等边三角形的全等条件。这样不仅有助于学生系统、全面的学习,而且有助于提高学生思维能力,促进教学效果的提高。
2.延伸拓展法。延伸拓展法具有激发学生兴趣、提高学生思维力的作用,是初中数学课堂教师必不可少的环节之一。通过问答的形式,教师启迪性提问,学生试探性回答的方式,在增加学生学习兴趣的同时,可以扩展学生对新知识的探究,在一定程度上开阔了学生视野。一节完整的课堂,应该以引导性问题开启,以启迪性问题结束,使学生在追逐中进步。例如,在学习有理数时,教师通过提问:大家这节课收获了什么,什么样的数属于有理数。有同学可能回答整数和分数统称为有理数。教师根据学生的理解,再进行深层次的提问:小数是否属于有理数。不断的通过提问,学生温习知识的同时,不断的激发学生的求知欲。
3.比较异同法。初中数学中有许多相似的概念,相近的结构,通过比较异同的方法,不仅帮助学生温习知识,而且有助于学生建立异同观念,寻找不同事物之间的差别和联系。把新知识和旧知识中的相似概念、原理、结构等放在一起,对比不同概念、结构、原理等之间的差异,不仅可以帮助学生发现不同概念、原理、结构之间的异同,避免混淆,而且可以发现彼此之间的联系,加深对知识的理解,有助于记忆。例如, 在学习《认识圆》时,学生容易混淆圆周角和圆心角的概念,教师可以分别列出圆心角和圆周角的概念,进行两者之间的比较,然后利用图示分别在圆中找出圆心角和圆周角,这样圆周角和圆心角的异同就清晰可见,以便于日后的灵活应用。
4.实践法。中学生正处于青春期,具有很强的动手能力,在初中数学教学的课堂小结中,可以预留一定的时间,作为学生实践操作的时间,学生在实践中,对知识的认识更加全面,更加深刻,而且可以增加学生学生的乐趣。例如在学习立方体时,可以通过指认生活中不同的物体,来总结不同立方体的结构特点。在学习对称图形时,可以指认生活中的实物,来总结对称图形的特点。学生在实践中学习,加深知识,体验快乐,提高教学效果。
5.学生自立法。由学生自己完成课堂小结,教师在上课前,指出由哪位同学完成课堂小结,或者以自荐的形式完成课题小结,这种简单易行的方法,有利于提高学生学习的自觉性和主动性。以学生为中心的课堂小结,学生还可以发现,自己学习中的不足,提高学生的积极性。
篇3
关键词 数形结合;分类讨论;函数思想;等价转化
数学思想是对人们在解决实际问题时所采用的数学方法和数学过程的概括和总结,是数学方法的灵魂,数学方法是它的具体表现形式,两者缺一不可,相耀生辉,因此,我们干脆将其统称为数学思想方法。数学思想方法在我们解决问题时,具有提纲挈领的作用和指导性的地位。因此,作为数学老师我们必须注重巧妙运用数学思想方法来分析和研究问题。笔者在这里结合多年的教学实践,对如何引导学生运用数学思想方法教学展开讨论和研究。文章将对初中数学比较常见的四种思想方法:数形结合、分类讨论、函数与方程、转化与化归展开讨论与研究。
一、数形结合探索
数学是对事物数量关系和空间形式描述和研究,数与形是数学最基本的概念。数形结合顾名思义就是运用形象的图像来描述和表达抽象的数学概念,该方法能让我们根据解题要求通过几何问题代数化解,代数问题几何描述达到将问题简单化的目的。数形结合思想可以兼抽象概念与形象思维而顾之,能及时取长补短、优势互补,在初中数学学习过程中有非常重要的指导意义。
例如,笔者在教学“一元一次不等式和一元一次不等式组”内容时,为了引导大家对不等式解集展开深入探讨,留下深刻印象,就采取了用直观形象的数轴来表达不等式的解集,让大家通过观察分析最终掌握不等式的解集是所有符合相应条件的数的集合。貌似简单的数学演示其实就是数形结合思想方法的实际应用。不信?您在给学生讲解一元一次不等式组的解集时,利用数轴来表达和描述效果更为明显。
三、函数思想方法
函数是初中数学中最重要的概念之一,它表达的是事物数量之间的关系。函数思想方法就是在解决相关数学问题时,巧妙借用函数的概念和性质通过分析、研究最终解决问题。当然,函数思想方法还可以和性质相近的不等式和方程式联系研究。初中数学学习过程中,教材对函数思想做了初步的渗透和安排,这里笔者通过代数式和不等式的角度来演示函数思想方法的应用:
例如,例如讨论方程x2-2x-k=0的解的个数问题可以这样变形:k=(x-1)2-1 因为k大于等于-1,因此如果k-1时,原方程有两个不相等的实数根。以上对代数式的理解和概括渗透着函数思想。
四、等价转化思想
等价转化思想是一种将不熟悉的或复杂的问题转化为熟悉的、容易理解和处理的问题的一种数学思想方法。初中数学学习中等价转化思想方法比较常用,它不但可以提升同学们在解题过程中的应变能力,而且有助于同学们养成多方位多角度立体思考问题的习惯。
例如,我们解二元一次方程组就需要削元转化为一元一次来得出答案。初中数学教学中,我们首先要引导学生通过最简单的消元和转换等基本技法来掌握和尝试转化思想的精髓。转化思想方法要求我们遵循熟悉化、简单化、直观化和标准话的原则,将数学问题及时转换成我们比较熟悉的方式来解答或者将相对繁琐的、复杂的问题转化为简单明了的问题,譬如解题过程中经常用到的从分式到整式、从无理式到有理式等。
数学课堂教学中,我们应该根据初中生的认知规律和知识结构特点,具体研究问题各要素之间的关联方式,进而找到合理的转化方法,一如我们在解题过程中经常在函数、方程和不等式之间进行的等价转化。掌握等价转化思想不仅有助于促进同学们知识的巩固和迁移,还有助于学生积极主动地参与知识探本溯源的学习过程,最终树立自主运用数学思想方法处理实际问题的意识。
数学思想方法是解决数学问题的根本准则和方向指导,它有利于学生通过科学的方法掌握知识,提升技能。随着教学实践的探索和发展,数学思想方法也会不断汲取新的营养,这就要求初中数学教师必须与时俱进,不断更新教学理念、改进教学方法来努力培养更加优秀的学生,追求完美的高效课堂。
参考文献:
[1]刘娟娟.上好课:问题与对策[M].华东师范大学出版社,2009.
篇4
一、直接代入法
直接代入法是当所求代数中有几个字母,已知条件就明确了几个字母的值,我们就采用直接代入法求代数式的值。直接代入法是最简单、最基础的求代数式值的方法。
二、求值代入法
求值代入法是由于所求代数式中字母的值没有直接告诉,但可以通过已知条件求出各个字母的值后再代入求代数式求值。
三、赋值代入法
赋值代入法是由于代数式中的字母没有明确告诉数值,但可以根据条件中的字母间的数量关系,赋予字母一个恰当的数值,使关系成立,再采用直接代入的方法求代数式的值。
四、变形代入法
变形代入法是通恒等变形改变已知条件或所求代数式的形式,使改变后的已知条件形式符合所求的形式,或者改变所求代式的形式符合已知条件形式,从而代入求值的方法。常用的方法有两种:
(一)代简代入法
代简代入法是把条件或代数式化繁为简,再代入化简后的式子求值的方法。此类方法在教材体现较多。
(二)整体代入法
整体代入法是由于代数式与已知条件存在某种关系,如倒数关系、倍分关系、互为相反数关系、平方关系等,根据这种关系对代数式进行恒等变形后,整体将条件代入变形后的代数式求值。
例如:若x2-3x-1=0,求代数式2x3-3x2-11x+8的值。
解:2x2-3x2-11x+8=2x•(x2-3x-1)+3(x2-3x-1)+11=2x×0+3×0+11=11
通过以上几个数学方法的教学,我们从教学中受到启发,初中数学教学过程中,我们不仅仅是指导学生进行演算的问题,关键是要进行思维训练。大科学家钱学森说过,人的聪明才智主要是通过思维训练来达到。钱学森还说过,思维是智慧的核心。在初中数学教学中,因此我们要结合数学教学积极地开展思维训练。以下我们可以举一些例子加以说明。
第一,在数学教学中,开展积极的集中思维训练。所谓集中思维训练,就是在一个集中的问题提出后,围绕这个问题,从多方面,多角度,多层次地展开思考。通过教师之引导,把这个问题让学生弄清楚,弄明白。比如:讲数学中的几何图形问题,当然也涉到计算问题。数学教师首先提出几何问题。这时,数学教师可以从画图说明,可以举出图形的具体实物,可以让学生上黑板去画出图形,也可以让学生举出图形的具体实物等等,让学生去理解什么是几何问题,集中解决学生对几何问题的认识。通过数学中集中思维的训练,培养了初中学生多个方面,多个层次对一个集中的重点问题之认识。
第二,在数学教学中,积极地开展发散思维训练。笔者认为,从一个总的问题出发,一个分支问题,一个小的问题去认识这个总的问题,问题让学生弄明白了,这就达到了发散思维训练之目的。圆是一个总的概念,总的问题。教师为了让学生解决认识问题,可以从圆出发,派生出无数问题,让学生一个小点,一个小点去认识。这些以圆为中心,分派出的无数个小问题,实质上就是发散思维。数学教师通过发散思维之训练,培养学生围绕一个问题一个点一个点的发散分析问题之能力。
篇5
所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识,是属于数学观念,比较抽象。所谓数学方法,就是解决数学问题的基本策略,是数学思想的具体反映,它是实施数学思想的手段。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。
在初中数学的学习中,要求了解的数学思想有:分类讨论的思想、数形结合的思想、方程函数的思想、转化的思想、整体代换的思想类比的思想等。要求理解或会运用的方法有:配方法、待定系数法、图像法、消元法、特殊值法等。其实思想和方法是不能截然分开的,初中数学中用到的各种方法都体现着一定的思想,而数学思想又是对方法的理性认识。因此,通过对数学方法的理解和应用以达到对数学思想的了解,是使思想与方法得到交融的有效方法。
数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识。由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高。如在学习有理数、三角形、四边形、圆周角,一元二次方程求根公式的推导等知识时,会涉及到分类讨论的思想。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题都具有明显的逻辑性、综合性、探索性,重点考察学生的思维条理性和概括性,所以在试题中占有重要的位置。分类讨论应遵循的原则:分类的对象是确定的,标准是统一的,不遗漏,不重复,分类讨论的一般步骤是:明确讨论对象,确定对象的全体确定分类标准,正确进行分类逐步进行讨论,获取阶段性结果归纳小结,综合得出结论;方程思想实现了由小学的算术法向初中代数法的转化,这是数学思想的一个重大转变。方程思想是指对于数学问题中的未知量和已知量之间的关系,用构建方程的方法来解决。我们能发现,许多较难的问题用方程都能迎刃而解;数形结合就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,数形结合的思想有利于把抽象的知识形象化。在初中数学的学习中,“数”与“形”是密不可分的,如借助数轴能很好地理解不等式及不等式组的解得问题,借助于图像能很好解决二次函数问题;转化的思想具体表现为从未知到已知的转化、一般到特殊的转化等。如圆中的角相等问题可以转化为弧相等来解决,“平行四边形的面积求法”的问题,通过探求解决问题的思想和策略,得到以化归思想指导将思维定向转化成求已知矩形的面积。这样以问题的变式教学,使学生认识到求解该问题的实质是等积变换,即要在保持面积不变的情形下实现化归目标,而化归的手段是“三角形位移”,还有可以将几何问题转化为代数问题来解决。
数学方法是分析、处理和解决数学问题的策略,掌握这些策略就很容易解决许多数学问题。如配方法:所谓配方,就是把一个代数式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简二次根式、解一元二次方程、证明不等式恒大于零、求函数的极值等方面都经常用到它;整体代入法,整体代入法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把比较复杂的数学式子看成一个整体,用它代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决:待定系数法,在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是求函数解析式中常用的方法之一。特殊值法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。图像法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图像法。图解法是解选择题常用方法之一。
篇6
初中数学的教学目的,一方面是让学生学习必要的数学知识,更重要的是通过数学知识的载体,学习一些数学思想方法。这是因为数学思想方法是数学知识与技能中蕴含的更深刻、更普遍的东西。具体的数学结果、适用的范围是有限的,而一个正确方法的运用,则可以产生络绎不绝的新结果。数学思想方法是促进知识的深化以及向能力转化,培养创新能力的桥梁。《数学课程标准》强调把数学思想方法作为基础,结合教学内容有计划地显化数学思想方法,并让学生用已获得的数学方法探索新问题,培养学生思维能力,去观察、分析、解决日常生活中的实际问题。因此,在初中数学教学中,我们需要关注数学思想方法的教学和学习,深入浅出地进行数学思想方法教学上的探索。
一、结合教学内容,有意识地渗透数形结合的思想
数和形是数学的两种基本表现形式,数是形的深刻描述,而形是数的直观表现。抽象的数学概念和复杂的数量关系,借助于图形可以使之形象化、具体化、简单化;复杂的几何形体也可以用简单的数量关系来表示。在解决实际问题时,数和形相互转化以得到解决问题的目的。因此,数形结合是一种最典型、最基本的数学方法。如在应用题教学中,画出线段图,把问题中的数量关系转化为图形,由图直观地揭示数量关系。这种数形结合的方法,不仅能活跃学生的思维,拓宽学生的解题思路,提高解题能力,促进思维的灵活性、创造性,获得最优化的解决方案,甚至可以激发学生的灵感,产生顿悟。
从数轴到平面直角坐标系,可以说数形结合的方法将数学推向了一个新的高度,利用坐标,用代数的方法研究几何问题。如函数图像的各种性质探讨,都是利用数形结合的方法进行研究的。平面直角坐标系的引入,真正架起了数与形之间的桥梁,加强了数与形的相互联系,成为解决数学问题的一个强有力的工具。
二、结合教学内容,有意识地渗透数学建模的思想
所谓数学模型,是指对于现实生活的某一特定事物,为了某个特定目的,做出必要的简化和假设,运用数学工具得到一个数学结构,由它提供处理对象的最优方法或控制。初中数学教学是以方程教学为主线的,因此初中数学教学实际上也可以看做为数学模型的教学。初中生的生活经验毕竟是有限的,许多实际问题不可能事事与自己的经历直接相联系。因而不能凭借生活经验把实际问题转化为数学问题进行解答,需要建立“问题情境-建立模型-解释、应用与拓展”的思想方法。
在方程(组)教学中,要让学生经历建模思想形成与应用的过程,要关注实际问题情境。现实生活中存在大量问题涉及未知数,这就为学习方程(组)提供了充分的现实素材,对方程(组)的解法也是在解决实际问题的过程中进行的,通过解决实际问题反映出方程方程(组)既来自于实际又服务于实际。明确方程(组)是解决含有未知数问题的重要数学工具。其中设未知数、列方程(组)是数学模型表示和解决实际问题的关键,而正确地理解问题情境,分析其中的数量关系又是设未知数、列方程(组)的基础。在教学中,要从多角度思考,借助图形、表格、式子进行分析,寻找等量关系,检验方程的合理性,最终找到解决实际问题的方案与结果。
三、结合教学内容,有意识地渗透转化迁移的思想
“从一种形式到另一种形式的转变,是数学科学最有力的杠杆之一。”在实践中,人们总是把要研究解决的问题,通过某种转移过程,归结到一类已经解决或比较容易解决的问题中去,获得解决问题的方法。转化迁移的思想方法是最常用的一种数学方法。如长方形、平行四边形、三角形、梯形、圆形等图形的面积计算都显化了转化迁移的思想方法。通过转化,把未知转化为已知,把复杂转化为简单。
转化这种变换又是可逆的双向变换,如用字母表示数、分数与小数互化,有时还需要交叉变换,如列方程解应用题。列一元方程困难转化为列多元方程可能就容易,而解多元方程最终还要转化为解一元方程,这种“列”与“解”的互化很好地体现了转化的数学思想。对于方程的认识具备一定积累后,要充分发挥学习心理学中正向迁移的积极作用,借助已有的对方程的认识,可以为学习不等式提供一条合理的学习之路。
三、结合教学内容,有意识地渗透统计的思想
统计主要研究现实生活中的数据,它通过对数据的收集、整理、描述和分析来帮助人们解决问题。根据数据思考和处理问题,通过数据发现事物发展规律是统计的基本思想。在教学中要特别注意,用样本估计总体是归纳法在统计中的一种运用。统计中常常采用从总体中抽出样本,通过分析样本数据来估计和推测总体。
在教学中,除通过具体案例使学生认识有关统计知识和统计方法外,应引导学生感受渗透于统计知识和方法之中的统计思想,使学生认识到统计思想是统计知识和方法的源头,正是这种思想指导下才产生相应的知识与方法。
篇7
【关键词】高中数学;化归思想;逻辑思维;案例解析
一、前言
高中数学的学习不同于初中数学,初中数学重视的是数学方法的教学,而高中数学则更重视数学思维的培养。高中数学的难度较高,且知识的综合性较大。缺乏一定逻辑思维和数学思想的学生在学习的时候会感到吃力,面对问题会感到无从下手。这种现象并不是个别的,而是普遍存在的。这就要求教师在教学中要有意识地培养学生的数学思想以及逻辑思维能力,化归思想就是其中一个重要而且常用的数学思想。
二、什么是化归思想
简单的来说,化归思想就是把未知问题化为已知问题,以转化为核心,化难为易、化繁为简。具体的来说,化归思想就是在解决数学问题时,结合已有知识以及有效的手段,将有待研究解决的数学问题转化为相对来说比较容易解决的问题。
这种思维方法在数学学习中的作用十分大,且在数学问题的解决中几乎无处不在。化归思想最基本的功能是将陌生的问题转化为熟悉的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为简单的问题。通过转换,使得问题便于解决。
想要灵活运用化归思想,首先要善于寻找事物之间的联系,学会用相互制约的观点来看待问题。只有善于发现事物之间的联系,才能通过联系运用化归思想来进行转化。这就要求教师在日常授课中有意识地引导学生将所学知识相互联系,寻求他们的共通点。
在解决数学问题时,化归思想具体可以表现为待定系数法、配方法、整体代入法等。
三、化归思想的运用原则
化归思想在数学中的作用大且广泛,但并不是任何情况都能使用化归思想。在使用化归思想解决数学问题时需要掌握以下原则:
1.熟悉化原则
将未知问题结合已有的知识以及解题经验,加以转化变为已知熟悉的问题,这就是熟悉化原则。熟悉化原则的例子很多,在解决基本初等函数的问题时,就常常使用代换法来将复杂的函数转化为较简单的函数进行计算。
2.简单化原则
3.直观化原则
直观化需要运用化归思想,将较为抽象的问题转化为具体的问题,使得问题难度下降。圆锥曲线中将图形用方程来表示,就是一个从抽象到具体的转化,使得抽象的图形可以通过具体方程的运算来求的相关数据。
4.和谐化原则
四、化归思想在高中数学中的运用
化归思想作为一种数学思维方法,在很多解题方式中都有体现。下面介绍几种常见的运用化归思想解决问题的数学方法。
1.配方法
2.分解法
分解法常常用于原问题较为复杂且可以分成若干小问题的情况下,利用分解法逐一解决小问题,最终解决整个问题。例如下面这个数列求和的题目,计算1/1x2+1/2x3+…+1/n(n-1)的和。这个数列求和的题目看起来十分复杂,让人无从下手。但是数列是按照一定规律排列的,所以这个题目是有规律可以遵循的。1/n(n-1)=1/n-1/(n-1)这个等式显而易见是成立的。我们利用这个等式将上述求和的式子进行分解,这样我们就可以将原式子转化为1-1/2+1/2-1/3+…+1/(n-1)-1/n。这样分解之后,我们很容易就可以得出最后的解为n-1/n。
化归思想在高中数学中的运用远远不止以上几种,在学习高中数学时,学生需要通过不断地练习来熟悉和巩固化归思想,在练习中通过不同的解题方式来体会化归思想的运用。
五、总结
通过上述案例的解析,我们可以很清楚的了解到化归思想在高中数学学习的重要性。可以说,化归思想在高中数学中是无处不在的。正确的理解和掌握化归思想对于高中生学好数学是十分有必要且十分重要的。正是由于化归思想对于高中数学学习的重要性,所以教师在授课过程中不能只注重于题目的讲解。更重要的是要教授给学生解题的思路和解题的思维方式。在讲解题目的过程中,引导学生去理解吸收化归思想,培养学生的逻辑思维能力。并结合课后适当的练习,让学生能够灵活熟练的运用化归思想。
参考文献:
[1]杨宇.高中数学教学中运用化归思想的案例分析[D].天津师范大学,2012
篇8
关键词:初中数学 数学思想 渗透
中图分类号:G63 文献标识码:A 文章编号:1003-9082(2016)02-0242-01
数学思想方法是初中数学教学的重要组成部分,是比数学知识传授更为重要的教学内容,因为知识的作用是有限的,而方法的作用往往能够涉及整个数学领域。正是因为其有着广泛的普遍适用性,有着超越知识层面,并且能够让人们在数学探究的征途上从未知到已知的可能性,因此在新课程改革中被赋予了相当的重要性。
事实上,2011年新颁布的《义务教育数学课程标准》,再一次将基本思想写入其中。当然令人瞩目的是初中数学还进一步提出了“基本数学活动经验”――其与数学思想方法也有着密切的关系。这样就将传统上的“双基”扩展为了“四基”,使得初中数学教学的内涵与外延都得到了进一步的丰富。
随着新一轮课程改革的开展与推进,人们越来越重视数学思想方法的渗透。那么,在初中数学教学中有哪些思想方法需要我们去重视呢?
其一是数学方法。顾名思义,这一类的思想方法与数学内容有着密切的关系,也可以认为是离开了数学知识就谈不上这些方法的运用。比如解方程中常常用到的配方法,其是通过将一元二次方程配成完全平方式,以得到一元二次方程的根的方法,其经典运用是一元二次方程求根公式的得出;再如换元法、消元法,前者是指把方程中的某个因式看成一个整体,然后用另一个变量去代替它,从而使问题得到解决。后者是指通过加减、代入等方法,使得方程中的未知数变少的方法。在复杂方程中运用这些方法可以化难为易。再如几何中的辅助线方法也是解决许多几何难题的灵丹妙药。
其二是普遍适用性的科学方法。例如我们数学中常用的归纳法,就有完全归纳法和不完全归纳法两种,数学上的很多规律其实最初都来自于不完全归纳法,因此在探究类的知识发生过程中,都可以用不完全归纳法来进行一些规律的猜想。再如类比、反证等方法,也是初中数学常用的方法,运用这些方法的最大好处是,可以让学生领略到在初中数学中进行逻辑推理的力量与美感。根据笔者的不完全调查,学生在进行推理后如果能够成功地解决一个数学难题,其心情是十分喜悦的,而最大的感受就是通过一环套一环的推理,能够顺利地由已知抵达未知。
其三就是我们常说的数学思想。我国当代数学教育专家郑毓信、张奠宙等人特别注重数学思想在初中教学中的渗透,多次著文要加强数学思想方法的教学。众所周知,数学思想与数学哲学有着密不可分的关系,很多数学家本身也是哲学家。因此,学好数学思想可以有效地培养哲学意识,从而让学生变得更为聪明。
例如典型的建模思想,其是用数学的符号和语言,将遇到的问题表达成数学表达式,于是就建成了一个数学模型,再通过对模型的分析与计算得到相应的结果,并用结果来解释实际问题,并接受实际的检验。一旦学生熟悉了这种数学思想并能熟练运用,将是初中数学教学的一个重大成功。
再如化归思想,其被认为是一种最基本的思维策略,也是一种非常基础、非常有效的数学思维方式。它是指在分析、解决数学问题时,通过思维的加工及相应的处理方法,将问题变换、转化为相对简单的问题,即哲学中以简驭繁的道理。
在初中数学教学中,思想方法的渗透一般可以分为两种形式:一是显性的教学方法,即向学生明确说明方法的名称,以让学生熟悉这些方法,并在以后的相关知识学习中能够熟练运用。这一思路一般运用在简单的数学思想方法中;另一个是隐性的教学方法,即在教学中只使用这种方法,但不向学生明确说明方法的名称,在后面知识的学习中有可能遇到,但总不以方法本身为目的,重点始终集中在某一个问题的解决上。
对于今天初中学生的身心发展特点而言,更多有价值的数学思想方法以渗透的方式进行教学是比较恰当的选择。作出这一判断的理由在于,十四、十五岁的初中生的智力发展落后于身体发育,还处在由形象思维向抽象思维过渡的阶段,因此相对比较抽象的数学思想方法一般并不容易从字面上给予理解,只能在运用中通过直觉思维建立一种类似于默会知识的能力。
那具体渗透又该如何进行呢?关键是要加强渗透意识,即在备课时就要考虑要教授的某一知识中有哪些思想方法可以对学生进行渗透,在这种思路下,数学知识就会成为数学思想方法的一个载体,通过对数学知识的学习,让学生在收获知识的同时感受方法的运用和思想的熏陶。
比如,在初一数学教学之时,我们可以向学生阐述数学的研究对象是数与形,在此基础上就可以渗透“数形结合”的思想。在之后的数学教学中,一旦遇到有“数”又有“形”的知识点,就要让学生在“形”中寻找“数”,在“数”中构建“形”。例如三角形知识中有三角之和为180°的关系,在直角三角形中有特殊角的三角函数值的关系,在全等三角形中有等量的关系,在全等三角形证明的过程中有很多逻辑的关系等。
再如对学生归纳能力的培养,我们知道所谓归纳,是一种从特殊到一般的思想方法。以确定抛物线开口方向为例,如何知道二次项前的系数是正还是负,那就需要通过配方等方法来解决。确定了这一点之后,我们可用描点法在坐标上作出抛物线。一个方程及对应的图往往并不能得出相关的规律,只有不同形式是同一个结果之后,我们才可以通过不完全归纳得到抛物线的有关规律。如我们可以让学生画出下面四个方程的图象:y=x2;y=3x2-2;y=-x2;y=-2x2+1。然后去归纳得出相应的规律,如二次项前的系数为正时开口向上,为负时开口向下等。在这一过程中,教师根本不需要提出“归纳”的字眼,就是引领学生去分析、去归纳、去发现。当学生熟悉了这种方法之后,在别的知识学习过程中,他们有可能说不出归纳这一词,但一定会运用这种方法。
篇9
关键词: 数学中考复习 有效复习 方法
中考复习是初中数学教学的一个重要组成部分,中考是对初中阶段教学效果的检验,学生中考成绩的好坏不仅取决于平时的刻苦与否,而且取决于是否在考前进行了认真、扎实、有效的总复习。数学教学内容繁多、知识点分散,复习时间短暂,无形之中增加了师生双方的精神负担和备考压力。教师希望最后的复习能为中考“锦上添花”,学生渴盼能在最后的复习中看到胜利的曙光,以优异的成绩结束初中数学的学习。因此,如何引导学生进行行之有效的数学中考复习,是我们所面临的最重要的问题。大家一直在探索“事半功倍”的崭新的复习训练模式,让学生变“要我复习提高”为“我要复习进步”。对此,我根据多年的教学实践和体会,就如何有效复习提出如下几点方法,与同行探讨。
一、注重数学重点知识的复习
1.关注基础知识与基本技能。
了解数的意义,理解数和代数运算的意义、算理,能够合理地进行基本运算与估算;能够在实际情境中有效地使用代数运算、代数模型及相关概念解决问题;能够借助不同的方法探索几何对象的有关性质;能够使用不同的方式表达几何对象的大小、位置与特征;能够在头脑里构建几何对象,进行几何图形的分解与组合,能对某些图形进行简单的变换;能够借助数学证明的方法确认数学命题的正确性。
正确理解数据的含义,能够结合实际需要有效地表达数据特征,会根据数据结果做合理的预测;了解概率的涵义,能够借助概率模型或通过设计活动解释一些事件发生的概率。
2.关注“数学活动过程”。
教师应关注学生在数学活动过程中所表现出来的思维方式,思维水平,对活动对象、相关知识与方法的理解深度,凡事探究的意识、能力和信心,等等;能否通过观察、实验、归纳、类比等活动获得数学猜想,并寻求证明猜想的合理性;能否使用恰当的语言有条理地表达自己的数学思考过程。
3.关注“数学思考”。
教师应关注学生在数感与符号感、空间观念、统计意识、推理能力、应用数学的意识等方面的发展情况。其内容主要包括:能用数来表达和交流信息;能够使用符号表达数量关系,并借助符号转换获得对事物的理解;能够观察到现实生活中的基本几何现象;能够运用图形形象地表达问题、借助直观进行思考与推理;能意识到作出一个合理的决策需要借助统计活动去收集信息;面对数据时能对它的来源、处理方法和由此而得到的推测性结论作合理的质疑;能正确地认识生活中的一些确定或不确定现象;能进行基本的观察、分析、实验、猜想和推理的活动,并能够有条理地、清晰地阐述自己的观点。
4.关注“解决问题能力”。
学生应能从数学角度提出问题、理解问题,并综合运用数学知识解决问题;具有一定的解决问题的基本策略;能合乎逻辑地与他人交流;具有初步的反思意识。
5.关注“对数学的基本认识”。
形成对数学内容统一性的认识(不同数学知识之间的联系、不同数学方法之间的相似性等);深化对数学与现实或其他学科知识之间联系的认识,等等。
二、掌握中考数学的复习方法
初中数学总复习是完成初中三年数学教学任务之后的一个系统、完善、深化和熟练运用所学内容的关键环节。重视并认真完成这个阶段的教学任务,不仅有利于学生巩固、消化、归纳数学基础知识,提高学生分析、解决问题的能力,而且有利于学生的实际运用,同时也能让基础较弱的学生对教材知识进行再学习的过程,从而达到查漏补缺的目的,提高学习成绩。中考数学复习的内容面广量大、知识点多,要想在短暂的时间内全面复习初中三年所学的数学知识,形成基本技能,提高解题技巧、解题能力,并非易事,因此,学生要采用合适的学习方法。下面我谈谈初中数学总复习的几个方法。
1.结合课标,认真钻研新教材,整理教材中的概念。
仔细阅读《考试说明》,归纳和梳理教材知识点,记清概念,夯实基础。细心推敲中考对知识点的不同层次的要求,细心推敲要考查的数学思想和方法有哪些,掌握消元、降次、配方、换元、待定系数法等学习方法,“特殊―般―特殊”“未知―已知”“数形结合”“把复杂问题简单化”等数学思想,这些思想和方法用哪些题目来体现应引起重视。数学≠做题,千万不要忽视最基本的概念、公理、定理和公式的记忆。特别是选择题,要靠清晰的概念来明辨对错,如果概念不清就会感觉模棱两可,最终造成误选。因此,教师要把教材中的概念整理出来,列出各单元的复习提纲。学生要通过读一读、抄一抄、记一记等方法加深印象,对容易混淆的概念更要彻底搞清,不留隐患。
中考试题立足基础,考查学生对基本概念的理解、基本技能的把握。因此在复习过程中学生要在心中梳理知识点,使之在大脑中成像,做到胸有成竹,重视概念的实质和概念之间的联系,在应用中加深理解。
2.重视数学方法的应用,强化数学思想的培养,提高答题速度和质量。
学生应着重做好以下三方面事情:一是将第一轮复习的各单元知识点、习题类型进行归类性的专题复习;二是学会对典型试题的拆分和组合,学会从多角度、多侧面来分析解决典型试题,从中抽出基本图形和基本规律方法;三是结合各类题的特点进行专项有针对性的训练,提高答题速度和质量,提高应变能力。各地考题都很重视数学方法,如换元法、待定系数法、构造法、反证法、因式分解法、代入法、坐标法等。而数学思想是以数学方法为基础逐步形成的运用数学方法来解决数学问题的一种自觉意识。因此在复习时,学生应加强对中、高档题目的训练,通过归类,采用“一题多解”“一题多变”“多题一解”来开拓视野,发展思维,通过独立练习,达到巩固复习结果的目的。
3.学会备考。
(1)学会思考。学生要养成独立思考的好习惯,不要过多地依赖同学和老师,遇到不会做的题应给足自己足够的时间进行独立思考,加深印象。
(2)精选精练、反思提高。学数学要做一定量的习题,而且要追求做题的质量。要精选精做,讲效果。对于老师精心组合的题、自己平时害怕的题、容易出错的题要精做,尽可能做到一题多解、触类旁通。学生要静下心来,通过学习回忆,从中悟出规律来。有所思,有所悟,便会有所发现、有所提高、有所创新,便能悟出道理、悟出规律、悟出灵感。
(3)编制错题集反复复习。数学考试成绩往往会因为某些薄弱环节大受影响。消除某个薄弱环节比做一百道题更重要。学生应给自己准备一个记录本,对一些典型题解、疑难、易错和易忘问题,以及一时解决不了的问题,等等,随时记录,以备在日常学习中加以解决。经常性地反思自己的错误,使自己的弱项变为强项,劣势变为优势,可以采取深入纠错的方法。
(4)要注意体会、归纳题目中的数学方法和数学思想。中考数学试题特别重视突出数学思想和方法的考查,初中数学中常用的基本方法有:配方法、换元法、待定系数法、观察法等。数学思想有:函数思想、数形结合思想、分类讨论思想、化归思想等。在中考复习中,学生要注意体会、归纳题目中的数学方法和数学思想。
4.调整好心态,培养兴趣。
首先,学生要调整好心态,在中考复习时避免因过度的紧张而给自己造成过多的压力。正确对待压力与挫折,正确看待成绩,增强自信,发挥学习的最佳效能。
其次,学生要避免对考试产生畏惧心理,甚至把模拟考试也当成负担。随着复习的深入,数学复习题的深度和广度也会增大,学生一次考试没考好或遇到不懂不会的问题是很正常的,如果一味地着急、焦虑,往往会一无所获。学生应把这些做错的题目和不懂不会的题目当成再次锻炼自己的机会,正确分析问题原因,考前发现同题越多纠正越及时,提高越快。
篇10
【关键词】数学思想;方法;教学策略;素质能力
【中图分类号】G430.21 【文章标识码】A 【文章编号】1326-3587(2012)10-0060-01
数学思想是数学中的理性认识,是数学知识的本质,是数学中的高度抽象、概括的内容。它蕴涵于运用数学方法分析、处理和解决数学问题的过程之中。下面我就数学思想在初中数学教学中的重要性、主要内容、教学策略等方面谈谈自己的看法。
一、初中数学思想方法教学的重要性
日本著名数学教育家米山国藏深深感到:许多学生在学校学的数学知识,如果毕业后没有什么机会去用的话,不久就忘掉了。然而,不管他们从事什么工作,惟有深深铭刻在头脑中的数学思想方法却随时随地的发生作用,使他们终身受益。可见在数学课堂中进行数学思想方法的教学,有利于学生的思维发展和能力培养。然而在传统的数学教学中,很多教师却只注重知识的传授,而忽视知识形成过程中的数学思想方法的教学,以至于阻碍了学生的发展。
二、初中数学思想方法的主要内容
初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化思想,数形结合思想,分类讨论思想,函数与方程思想等。
1、转化的思想方法:这是初中最常见、最常用的数学思想之一。它就是将需要解决的问题,转化为另一种相对容易解决的或已经有解决方法的问题,从而使原来的问题得到解决。初中数学处处都体现出转化的思想方法,如:代数式中加法与减法的转化,乘法与除法的转化,高次方程转化为低次方程,几何中添加辅助线等等,都体现出转化的思想方法。
2、数形结合的思想方法:它能抓住数与形之间的本质上的联系,以形直观地表达数,以数精确地研究形。从而使代数问题显得直观,几何问题显得精确。初中数学中,体现数形结合思想的地方很多,比如通过数轴,将数与点对应,通过直角坐标系,将函数与图象对应等等,通过形象思维过渡到抽象思维,从而加深对知识的理解和掌握。
3、分类讨论的思想方法:这种思想方法是对复杂问题中的各种情况进行分类,然后分别研究和求解。它的实质,是将整体问题化为部分问题来解决,以增加题设条件。分类是以比较为基础的,它能揭示数学对象之间的内在规律,有助于学生总结归纳数学知识,解决数学问题。
4、函数与方程的思想方法:这是数学中最重要的数学思想,它的本质是变量之间的对应。
用变化的观点,把所研究的数量关系,用函数的形式表示出来,然后用函数的性质进行研究,使问题获解。如果函数的形式是用解析式的方法表示出来的,那么就可以把函数解析式看作方程,通过解方程和对方程的研究,使问题得到解决,这就是方程的思想。
三、数学思想方法的教学策略
由于数学思想方法的内在性,给学生的理解和老师的教学都带来了一定的难度,因而在平时的教学中要讲究一定的策略,才会取得事半功倍的效果。
1、各个击破的策略。 数学知识中蕴含着丰富的数学思想和方法, 所以在课堂教学中对隐藏在各章节数学知识背后的思想方法要及时地提炼,使之明朗化。要让学生认识到这种思想方法的存在,并感受到这种思想方法在解题中所起的不可替代的作用,而且能在类似的情形下主动地加以运用。这样才能通过对具体的知识传授这一载体来突出相应的数学思想方法的教学目的。有时在一章或一单元的教学中,涉及很多的数学思想方法,就需要教师根据教材内容有意识突出一种或几种思想方法的教学,如在不等式单元教学中将会涉及函数方程思想、数形结合思想、分类讨论思想和转化思想等。
2、反复递进的策略。 学生对数学思想方法的认识是在反复接触、理解和运用中形成的。例如在讲数轴应用时,就开始初步涉及数形结合思想,学生要会借助数轴表示相反数、绝对值、比较实数的大小等,后来不断地通过对基本函数图象及其变换,平面解析几何等有关知识的学习,进一步加深了对数形结合思想的理解和应用,从而对数形结合思想方法的认识得到不断升华提高。又如分类讨论的思想,几乎每一章都会涉及到。因此在平时的教学中要注意到这种反复性,有意识地让学生在这种反复接触、理解、运用、体验中不断加深对这种思想方法的认识和掌握。
- 上一篇:关于小学教育的重要性
- 下一篇:环境质量概念