电力系统基础范文

时间:2023-06-11 08:35:31

导语:如何才能写好一篇电力系统基础,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

电力系统基础

篇1

关键词:电力系统基础;课程内容

作者简介:杨娟(1962-),女,湖南长沙人,长沙电力职业技术学院电力工程系,副教授。(湖南 长沙 410131)

中图分类号:G712?????文献标识码:A?????文章编号:1007-0079(2012)36-0055-02

为了使学生巩固“电力系统基础”课程中所学知识和技能,根据电力行业的特点,结合电力企业新技术、新设备、新工艺的应用和发展特征,针对电专业岗位群的能力需求,以职业能力培养为主线,结合国家职业资格鉴定(中级)的相关要求,设置、调整和优化了的以项目为导向、以任务驱动的电专业4门核心课程“变电运行”、“电气运行”、“电机运行与检修”和“电气设备检修”的学习需求。通过大量调研以及对4门核心课程“变电运行”、“电气运行”、“电机运行与检修”和“电气设备检修”、学生毕业设计、技能鉴定考证内容进行分析,整合教学内容,构建了以职业岗位能力为课程目标、以职业岗位标准为课程内容、能实现高端技能型人才培养、以项目教学为导向的任务驱动式高职“电力系统基础”课程内容。

一、“电力系统基础”职业岗位课程目标

根据电专业学生就业的电气值班员、变电站值班员、变电检修工、电机检修工核心职业岗位能力要求及电专业4门核心课程“变电运行”、“电气运行”、“电机运行与检修”和“电气设备检修”的学习需求,并考虑学生毕业设计、技能鉴定考证的需要,确定“电力系统基础”职业岗位课程目标。

1.发电厂及电力系统专业核心岗位工作分析与能力要求

发电厂及电力系统专业核心岗位工作分析与能力要求如表1所示。

2.“电力系统基础”课程知识目标、技能目标、素质目标

(1)针对发电厂电气值班员、电机检修工的知识目标:熟悉发电厂正常运行相关参数;熟悉发电厂设备巡视及主要设备的运行维护;掌握发电厂异常运行及故障运行分析。技能目标:能叙述发电厂正常运行方式下的相关参数;会根据相关参数对发电厂进行设备巡视及主要设备的运行维护与检修工作;会对发电厂异常运行及故障运行进行分析。

(2)针对变电站变电值班员、变电检修工的知识目标:熟悉变电站正常运行相关参数;熟悉变电站设备巡视及主要设备的运行维护;掌握变电站异常运行及故障运行分析。技能目标:能叙述变电站正常运行方式下的相关参数;会根据相关参数对变电站进行设备巡视及主要设备的运行维护与检修工作;会对变电站异常运行及故障运行进行分析。

(3)素质目标。通过“电力系统基础”课程的学习,使学生认识该课程内容对电力系统安全运行所担负的重大责任,培养学生高度的责任感及严谨细致的工作作风,培养学生的学习能力、工作能力、创新能力及团队精神,使学生具备电专业各核心岗位所具备的知识修养和职业安全意识。

二、“电力系统基础”项目导向、任务驱动课程内容

根据电专业学生就业的电气值班员、变电站值班员、变电检修工、电机检修工核心职业岗位标准,并考虑学生毕业设计、技能鉴定考证的需要,确定“电力系统基础”项目导向、任务驱动课程内容。

模块一:电力系统稳态运行

项目一:电力系统的结构

任务1:电力网的接线方式;任务2:电力系统中性点的接线方式。

项目二:电力系统的潮流分析

任务1:电力系统的额定电压;任务2:电力系统的等值电路;任务3:电力系统潮流特点;任务4:发电厂正常运行;任务5:变电站正常运行。

项目三:电力系统电能质量调整

任务1:电力系统频率调整;任务2:电力系统电压调整。

项目四:电力系统经济运行

任务1:发电厂经济运行;任务2:电力网经济运行。

模块二:电力系统故障运行

项目一:电力系统短路故障运行

任务1:电力系统对称短路故障运行;任务2:电力系统不对称短路故障运行;任务3:变电站短路故障运行。

项目二:电力系统非全相运行

任务1:单相断线运行;任务2:两相断线运行。

根据以上“以职业岗位能力为课程目标,以职业岗位标准为课程内容,以项目教学为导向的任务驱动式”的课程内容,结合火电仿真实训室及变电仿真实训室实现以项目为导向的“电力系统基础”课程内容的任务驱动教学,定能使学生学好电专业各核心课程,实现高职院校电专业学生毕业即能胜任电气值班员、变电站值班员、变电检修工、电机检修工等核心职业岗位,从而实现高职高端技能型人才培养目标。

参考文献:

[1]杨娟.变电运行[M].北京:中国电力出版社,2012.

[2]焦日升.变电站事故分析与处理[M].北京:中国电力出版社,2009.

[3]杨娟.电气运行技术[M].北京:中国电力出版社,2009.

[4]李火元.电力系统继电保护及自动装置[M].北京:中国电力出版社,

2006.

篇2

电力系统是关系我国国计民生的基础性行业,而继电保护被称为电力系统的哨兵,它通过装置反映电力系统元件的不正常和故障信号,动作于发信号和跳闸,能迅速、正确隔离电力系统发生的各种故障,避免大面积停电事故,确保电力系统安全、稳定运行。因此,应该从电力系统继电保护的运行经验出发, 对存在与电力系统继电保护系统的故障进行认真分析,形成对电力系统继电保护故障的深层次认知,把握电力系统继电保护故障的因果关系, 在运用好各种针对性技术和工艺的基础上,实现电力系统继电保护装置的稳定、可靠运行。

2 继电保护的常见故障

2.1 电压互感器二次回路故障

在继电保护系统中,电压互感器和电流互感器二次回路作为运行中必不可少的重要设备,其不仅是二次回路中非常薄弱环节,而且一旦发生故障所带来的后果也十分严重。在实际运行工作中,电压互感器二次回路故障通常会表现为以下几个方面:一是二次回路中性点存在着多点接地和未接地的情况,二次中性点虚接故障的存在,与变电站接地网具有直接的关系,但更多情况下则是由于接线工艺不合理而导致的。当二次未接地时,则会导致二次回路中各项电压达不到平衡的状态,从而导致阻抗元件及方向元件出现误动或是拒动的情况,而且在运行过程中想要对该故障进行排查也具有较大的难度,因此,需要在投运验收过程中多加注意;二是PT开口三角电压回路断线,这将会导致零序保护出现拒动;三是PT二次失压;导致这种情况发生主要是由于设备性能和二次回路存在不完善的地方,这是二次回路中较为常见的故障。

2.2 电流互感器饱和问题

在当前电力系统中,电磁式电流互感器还是各变电站最为常用的电流互感器,这就不可避免的会存在饱和问题,从而对继电保护正确动作造成较大的影响。短路作为电流互感器饱和问题发生的最主要原因,一旦饱和问题发生,则电流互感器一次电流则会全部转变为励磁电流,导致二次电流无法进行线性传变,断路器保护出现拒动,系统出现越级跳闸。

2.3 干扰和绝缘问题

在检测继电系统时,由于需要根据线路电路来对线路故障进行判断,但在实际检测工作中,由于一些现代化通讯设备会对检测带来一定的干扰,从而导致微机继电元件出现误动问题。由于微机继电系统具有较高的集成度,而且线路较为密集,在使用过程中会有大量的灰尘吸附在电路表面,从而导致新的导电通道在电路原有的连接点上出现,从而导致继电微机系统检测故障,使继电保护运行存在较大的安:全隐患。

3 继电保护故障的解决措施

3.1 回路拆除法

由于二次回路故障问题是电力继电保护系统很容易出现的问题,与此同时,有效的确定二次回路故障问题出现的位置是解决这一故障问题的关键部分。针对这样的情况,可以使用回路拆除法排除继电保护系统故障问题。例如,就是在检查电力继电保护系统的过程之中,首先按照二次回路的顺序进行对电力继电保护系统的拆除工作,在逐步的将拆除下来的部分安装回去,最终有效的找出故障存在的位置,解决继电保护系统故障问题。

3.2 短接法

为了有效的找出继电保护系统故障存在的位置,在进行故障检测的过程之中,可以将电力继电保护系统按照一个回路作为一个段,逐次的采用短接处理的方式,找出继电保护系统存在故障的位置,进而有效的解决继电保护系统故障问题。

3.3 替换法

替换法主要原理是将被怀疑有问题的元件替换下来,如果替换下来之后故障消失了则说明是该元件出现故障,如果故障没有消失,则说明不是该元件的问题,依此来判断该组元件的好坏,采用这种方法可以排除不可能情况,准确定位故障发生的范围。

3.4 对比参照法

如果电力继电保护系统出现故障的原因是由于安装的技术人员出现的技术失误,就可以使用对比参照法法排除继电保护系统故障问题。具体的来说,就是参照已经安装好的可以正常使用的继电保护系统的内部线路的基本构造,找寻出该继电保护系统之中存在的问题所在。

篇3

关键词:电力系统;继电保护;应用

中图分类号:TM7文献标识码: A

前言

随着科技的不断进步,继电保护技术得到了快速发展和完善继电保护技术经过不同的发展阶段,呈现出不同的存在形态。主要有电磁式、晶体管式、集成电路式和计算机辅助装置四种类型计算机网络技术的不断发展给社会各行各业的发展带来了蓬勃生机,有力地推动了各行业的飞速发展。在电力系统中广泛地运用计算机技术,极大地促进了电力系统的发展。

一、继电保护技术的特性及任务

(一)特性

随着国家经济的发展,电力充斥着人们生活的每个方面,甚至一些高端工业的发展也离不开电力系统的支持。而由于科技不断发展,电力系统也不断更新完善,即使这样,还是存在一些缺陷与不足,所以偶尔会发生故障,这就要用到了继电保护系统对电力自动化进行保护。继电保护技术之所以可以快速准确地发现电力系统中的问题,是因为继电保护技术中存在以下相关优秀特性。

1、选择性。与其他技术不同,继电保护系统可以选择较小范围内的故障元件,减少了无故障元件被连带误判的概率。当继电保护技术识别故障元件后,选择性特性立即发挥其优势,增强继电保护技术的科学性。

2、可靠性。可靠性是保证继电保护技术保护我国电力系统的基础。适中的可靠性可以保证故障元件不被漏检、不被误检,是继电保护系统运行的前提。

可靠性的基础是速动性,当检测到故障元件时,可靠性能使保护系统快速动作,发出警报,缩短了所需的维修时间。而可靠性的特性又类似于灵敏性,即可靠性不能过高也不能过低,过低会检测不到故障元件,使大面积的电力系统无法正常工作或者对其他元件带来损失。而可靠性过高有会发生误切事件,减少正常元件的使用寿命,对电力亦会造成损害。

3、灵敏性。灵敏性是继电保护技术合理化的基础,比其他保护装置更加适用于我国电力系统。只有继电保护灵敏的条件下,才能对故障元件进行快速判断,缩短相应发现时间,为维修人员的维修带来便利。

灵敏性有一部分是由灵敏系数体现出来的,并不是灵敏系数高的继电保护系统好,而是每套系统都对应其电力自动化系统,只有灵敏系数适中的系统才可以更好的保护相应电力系统。

4、速动性。顾名思义,速动性可以保证继电保护系统快速切除故障元件,保证无故障部分元件不受牵连,继续为居民或工业生产供电。减小停电范围,降低所需要检查故障元件的时间。

速动性与选择性二者相互独立工作,但是两者工作结合协调,使继电保护装置可以快速、准确的找到故障元件,不仅如此,更可以缩小了停电范围,保证了非故障的电力系统的继续工作,减少对正常元件的使用量,有利于工业与人民用电的正常与稳定。

(二)任务

1、当电力系统出现不正常运行状态时,根据不正常工作情况和设备运行维护条件的不同,或发出信号使值班人员能及时采取措施,或由装置自动进行调整(如减负荷),避免不必要的动作和由于干扰而引起的误动作。反应不正常工作状态的继电保护,通常都不需要立即动作,可带一定的延时。

2、当被保护的电力设备发生故障时,应该由该设备的继电保护装置自动地、迅速地、有选择地向离故障设备最近的断路器发出跳闸命令,将故障设备从电力系统中切除,保证无故障设备继续运行,并防止故障设备继续遭到破坏。

3、继电保护与自动重合闸装置配合,可在输电线路发生瞬时性故障时,迅速恢复故障线路的正常运行,从而提高供电的可靠性。

三、电力系统中继电保护的具体应用

(一)利用输配电线路进行接地保护

在配电线路中可以分为大电流的接地方式和小电流的接地方式,它们的区别主要在于其配电线路中中性点的接地方式不同。大电流接地方式的保护原理是:当配电线路发生接地故障的时候,大电流接地系统会及时地进行跳闸,从而有效的切断发生故障的设备;小电流接地方式的保护原理是:当配电线路中发生故障的时候,小电流接地系统不会立即切断故障线路,而是能够再持续的工作一段时间,与此同时发出警报提示信号。下面我们主要对小电流接地系统如何进行接地保护进行阐述

在通常的情况下,小电流接地系统中在发生单相接地短路故障的时候,对于负荷供电不产生影响。小电流可以选择下面几种接地保护方式:一是通过零序电压实施保护。在供电系统正常运行的时候,没有零序电压,并且三相电压是对称的,各自的相电压分别通过电压表显示出来。当信号继电器发出警示信号的时候,就说明配电线路中发生了单相的接地短路事故,因此在系统的各处会出现零序电压。在这种情况出现时,可以通过读取电压表的数值来进行判断,这时发生故障相的电压表的数值会降低,而没有发生故障相的电压表的数值则会升高。二是通过零序电流实施保护。在系统发生单相接地故障的情况下,通过对没有发生故障的线路和发生故障的线路进行比较可以看出,没有发生故障的线路中零序电流要小。在安装了互感器的线路方面,人们大多应用这种方式进行保护。三是通过零序功率实施保护。有单相接地故障发生时,发生故障的线路与没有发生故障的线路中零序电流的差别几乎很小,很难区分,在这种情况下,就可以进行区分保护,实现其对灵敏度的要求。

(二)电力变压器的保护

在电力系统中,变压器是非常重要的。变压器的正常运行能够保证供电的可靠性,同时也能保证电力系统输送电力有一个很好的稳定性。为了能够有效地防止因线路故障而引起的经济损失,我们需要对变压器实施必要的继电保护措施。

1、对变压器进行接地保护。对变压器进行接地保护的工作原理是:当配电线路发生故障的时候,把配电线路中的中性点进行直接接地,从而起到对变压器的保护效用。对变压器进行接地保护时,主要是借助于两段式的电流来实现的。

2、对变压器进行瓦斯保护。对于大型变压器的内部故障,我们一般主要采用瓦斯气体进行保护。瓦斯保护是一项比较重要的保护措施,并且具有很独特的保护优点。瓦斯保护的基本原理是:当变压器的油箱内部发生故障的时候,变压器油箱里的绝缘性材料和变压器油就会在故障电弧的推力下,进行分解并产生出瓦斯气体,瓦斯气体能够迅速而灵敏的将变压器中的开关断开,并发出报警的信号,从而实现对于变压器的

有效保护。

三、电力系统继电保护发展趋势

在未来继电保护技术将向计算机化、网络化、智能化、保护、控制、测量和数据通信一体化方向发展。随着计算机硬件的飞速发展,电力系统对微机保护的要求也在不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护,控制装置和调度联网以共享全系统数据,信息和网络资源的能力,高级语言编程等,使微机保护装置具备一台PC的功能。

在实现继电保护的计算机化和网络化的条件下,保护装置实际上是一台高性能,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆投资大,且使得二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。

结语

综上所述,继电保护是电力系统中一个重要的组成部分,继电保护系统不仅可以防止事故的发生和发展,限制事故的影响和范围,而且还可以确保电力系统安全运行,对保证整个电力系统的安全运行具有十分重要的意义。所以,随着科技的不断发展,社会的不断进步,对于电力的需求量不断的增长,现在企业中机械化程度越来越高,用电的机器设备更是不断增多,电力系统继电保护应用将会越来越广泛。

参考文献:

篇4

【关键词】电力系统;电气自动化;实施要点

随着经济与社会的快速发展,人们的生活水平不断的提高,各种电气设备被广泛的应用在社会生活与生产中,人们对电能的需求量不断的提高。电力系统作为向社会提供电能的重要组成部分,其运行质量直接关系到供电的安全性、可靠性与稳定性,因此电力系统越来越受到社会各界的关注。电力自动化技术是在电力电气技术的基础上发展形成的,其通过利用计算机网络形成了新的电气管和控制理论,具有现代电子技术、人工智能等技术的优势,能够为电力系统提供更好的服务功能。因此,值得将电气自动化技术广泛的推广和应用在电力系统中。

1 电气自动化在电力系统的实施要点分析

1.1 自动化监控技术在电力系统的实施要点

1.1.1 分层分布式自动化监控技术

分层分布式自动化监控技术在逻辑上划分为三层,即间隔层、通信层以及站级监控层,对于站级监控层,该层通过通信网络对间隔层进行信息交换以及管理;对于网络层,该层主要包括电缆网络、光纤光裸、通信管理机等部分,通过利用现场总线技术,实现传控制命令、传送数据、规约转换、数据汇总等功能;对于间隔层,该层主要由终端保护测控单元组成,利用面向电气间隔或者电气一次回路的方式进行设计,能够将保护单元以及测控单元就近的分布安装在一次设备、开关柜等设备的附近。分层分布式自动化监控技术的间隔层终端的占地面积小、可靠性高、组态灵活,并且能够就地安装,有效的降低了操作和控制难度,并且还降低了成本。同时,该种自动化监控技术系统采集的数据量相对较高,监控信息比较完整,运行维护方便,局部出现故障时并不影响其他模块的正常运行,满足现代电力系统的实际需求。

1.1.2 集中式自动化监控技术

集中式自动化监控技术通过将强电信号转变成弱点信号,采用4mA-20mA标准直流信号以及空接点方式,通过电缆硬接线把开关量信号、电气模拟量一对一的接入DCS的I/O模件柜中,以此实现对电气设备的监视与控制。该种技术的监控模式分为两种形式:远程I/O接入方式和直接I/O接入方式,前者是在距离主控制室较远并且数据较集中的电气设备现场设置相应的I/O采集柜,并通过通信方式和DCS控制主机连接,后者是把电缆连接到电子间集中组屏,两种方式具有相同的实现技术,本质上并没有区别。集中式自动化监控技术在电力系统中的应用优势主要表现为:硬接线技术成熟,相应速度非常快;电气量采用集中组屏的采集方式,设备的运行环境好,并且便于维护。同时,其缺点表现在以下几个方面:DCS系统采用按点收费的方式,投资相对较大;电缆的数量相对较多,电缆安装工程量非常大,尤其是长距离的电缆引进,很容易对DCS造成影响,导致系统检测的电气信息不准确。因此,电力系统在采用集中式自动化监控技术时,应该设置独立的电气监控主站系统,并做好电气运行管理工作,例如故障信息自动化管理、继电保护运行、事故追忆以及防误等工作。

1.2 PLC技术在电力系统中的实施要点

PLC技术是一种数字化的电子系统,是电气自动化技术在电力系统中技术应用的重要体现,其是专门为工业环境应用而设计的。PLC技术的主要职能就是帮助电力系统实现各部分指令的自动化采集、记录、编辑、计算等工作,显著的降低电力系统的能耗,提高电力系统的灵活性。PLC技术在电力系统中应用的实施要点主要包括以下几个方面:其一,PLC技术主要通过控制电力系统的流量、压力以及温度等实现连续的模拟闭环控制,以此实现对电力系统各个环节的有效调节与控制;其二,开关量控制,电力系统控制中应用最广泛、最多的是开关量的控制,PLC技术能够对输入以及输出信号的通、断进行自动化的控制,以此提高电力系统的生产效率,实现电力系统的自动化;其三,顺序控制,通常状况下,电力系统内部辅助系统的控制多为开关量控制以及顺序控制两种,随着国家对节能、减排重视程度的提升,提高效益、降低损耗已经成为现代社会生产的主要发展放线,通过将PLC技术应用在电力系统中,辅助电力工作,能够显著的降低资源的消耗量、废弃物的排放量,显著的提高电力系统的生产效益。

1.3 计算机技术在电力系统中的实施要点

随着计算机技术的快速发展,其在电力系统中的应用越来越广泛,能够更好的适应现代电力市场的发展需求,两者的相互融合能够更好的推动电气自动化技术的推广与发展,显著的提高电力系统的生产效率与效果。计算机技术在电力系统中的实施要点主要包括以下几个方面:

1.3.1 电网调度自动化实施要点

电网调度自动化是电力系统自动化的重要组成部分,电网自动化调度主要分为五个层次,分别为县级调度、地区调度、省级调度、大区调度以及国家电网调度,电网调度自动化主要依靠电网调度控制中心的计算机网络系统,将电网调度系统中的打印设备、服务器、发电厂、变电站终端设备、工作站等联系起来,实现对电网数据的实时采集、电力负荷的预测、状态估计以及电网调度运行的安全分析和监控。

1.3.2 变电站自动化技术实时要点

变电站自动化是依靠计算机技术实现的,是实现电力系统自动化、现代化必不可少的一个重要环节。变电站依靠计算机技术实现自动化,因此在实施的过程中应用充分的利用计算机技术,完全采用计算机光纤或者电缆代替传统的电力信号电缆,逐渐的实现变电设备的数字化、网络化以及集成化,最终实现计算机屏幕花、记录统计自动化,以此实现变电站计算机系统的自动化管理和控制。

1.3.3 智能电网技术的实施要点

智能电网技术主要是针对电力系统的全局进行控制的技术,是现代电力系统信息管理系统中最广泛的应用技术之一,涵盖了用户、输变电、配电、发电以及调度的各个环节。智能电网技术是现代自动化、数字化电网建设的全局智能控制技术,其创建的自动化电力系统,在一定程度上可以说是智能化电网的雏形,为我国智能电网的建设工作奠定了良好的基础。因此,电力系统在应用智能电网技术时,应该根据电力系统的实际需求,采用具备可靠性、双向性、实时性等特征的计算机技术,同时采用先进的现代网络通信技术,形成具有信息管理功能的管理系统,为我国建设智能电网做好准备工作。

2 结束语

总而言之,电气自动化技术已经不再局限于传统的机械和模拟基础上的自动化过程,已经逐渐的转变成依靠计算机技术、网络技术以及数字化技术的电气自动化技术,形成了更为先进的科技架构以及技术体系,显著的降低了电力系统的资源消耗量、废弃物排出量,提高了电力系统生产效率,对实现智能化、自动化电力系统的建设创造了良好条件,为基础电力事业的发展提供了可靠的体系和技术基础。

参考文献:

[1]董娜,李函霖.电力系统中电气自动化技术的探索[J].科技与企业,2011(7).

[2]屈建均.电气自动化技术在电力系统中的运用浅谈[J].新疆电力技术,2013(4).

篇5

关键词:继电保护;供电系统;常见故障;处理措施

前言

在当前电力系统中各变电站中会广泛的应用继电保护系统,继电保护是确保电力系统安全稳定运行的关键所在。在电力系统运行过程中,继电保护装置可以对电网的运行工况进行监测,对故障的位置和性质进行记录,从而为故障诊断提供有效的数据支持。

1 继电保护的作用和特点

1.1 继电保护的作用

在电力系统运行过程中,一旦有部件发生故障,则继电保护装置则能够自动、有选择的对故障元件进行隔离,使其从整个电力系统中切除掉,确保没有故障部分的安全、稳定运行。这不仅有效的避免了故障损害的继续扩大,而且也有效的避免了停电范围的增加。而且在继电装置保护范围内,对于出现运行异常的元件,继电保护装置能够及时发出报警信号,能够有效的减少跳闸动作指令,同时还能够提醒运行人员及时对异常元件进行排查,避免电力系统故障的发生。

1.2 继电保护的特点

1.2.1 装置可靠性高

继电保护装置其具有非常好的可靠性,不仅继电设备元稳定性较高,而且继电设备运行也开始越来越趋向于自动化。在当前微机继电设备运行过程中,设备中的元件的运行不会受到温度变化的影响,而且随着使用年限的增加,元件运行还呈现出较好的稳定性。目前在继电保护装置运行过程中,可以自动监测和分析设备元件的运行情况,有效的确保了继电保护系统运行的安全性和稳定性。

1.2.2 兼容性比较强

在当前微机继电系统设计时,为了能够更好的满足继电系统运行的需要,则对系统的兼容性在设计上都有所增加。在设计过程中利用减少设备的盘数来确保实现设备体积的最小化,同时还增加了继电保护设备的辅助功能,进一步对使用范围进行了拓展,能够在不同继电保护系统下进行稳定的运行。

2 继电保护运行中的常见故障分析

2.1 电压互感器二次回路故障

在继电保护系统中,电压互感器和电流互感器二次回路作为运行中必不可少的重要设备,其不仅是二次回路中非常薄弱环节,而且一旦发生故障所带来的后果也十分严重。在实际运行工作中,电压互感器二次回路故障通常会表现为以下几个方面:一是二次回路中性点存在着多点接地和未接地的情况,二次中性点虚接故障的存在,与变电站接地网具有直接的关系,但更多情况下则是由于接线工艺不合理而导致的。当二次未接地时,则会导致二次回路中各项电压达不到平衡的状态,从而导致阻抗元件及方向元件出现误动或是拒动的情况,而且在运行过程中想要对该故障进行排查也具有较大的难度,因此,需要在投运验收过程中多加注意;二是PT开口三角电压回路断线,这将会导致零序保护出现拒动;三是PT二次失压;导致这种情况发生主要是由于设备性能和二次回路存在不完善的地方,这是二次回路中较为常见的故障。

2.2 电流互感器饱和问题

在当前电力系统中,电磁式电流互感器还是各变电站最为常用的电流互感器,这就不可避免的会存在饱和问题,从而对继电保护正确动作造成较大的影响。短路作为电流互感器饱和问题发生的最主要原因,一旦饱和问题发生,则电流互感器一次电流则会全部转变为励磁电流,导致二次电流无法进行线性传变,断路器保护出现拒动,系统出现越级跳闸。

2.3 电源故障

继电设备的运行离不开电源,在继电设备运行过程中,一旦电源输出功率变小,则输出电压也会随之降低,从而对继电保护装置的正确动作带来较大的影响,导致继电器无法正确的动作。

2.4 干扰和绝缘问题

在检测继电系统时,由于需要根据线路电路来对线路故障进行判断,但在实际检测工作中,由于一些现代化通讯设备会对检测带来一定的干扰,从而导致微机继电元件出现误动问题。由于微机继电系统具有较高的集成度,而且线路较为密集,在使用过程中会有大量的灰尘吸附在电路表面,从而导致新的导电通道在电路原有的连接点上出现,从而导致继电微机系统检测故障,使继电保护运行存在较大的安全隐患。

3 继电保护运用中常见故障的处理措施

3.1 记录故障原因

在电力系统运行的过程中,继电保护所产生的故障形式较多,有些故障的原因比较复杂,为了给维修人员提供方便,现场的工作人员需要对故障的表现形式、原因以及后果进行详细的观察,然后记录在案,为维修工作提供有利的依据。故障原因记录是继电保护维修工作顺利进行的重要保障,能够确保维修工作的快速高效进行。工作人员在检查故障原因的过程中,应该对故障是否对继电保护系统产生影响进行详细的观察,进而做出正确的判断,避免维修人员浪费时间,提高维修的效率。

3.2 元件的参照替换

在继电保护运行中出现故障后,比较常用的方法有原件替换法和参照法。顾名思义,替换法就是更换出现问题的元件。在故障检查时,如果发现元件损毁的比较严重或者已经达到寿命周期而无法正常运行时,就需要用新的元件去替换故障元件。而参照法主要是进行对比分析,根据故障记录对出现问题的部分进行故障前后的对比,通过运行参数的不同找出故障的原因。参照法可以应用的范围较广,还可以对接线进行测试,然后将测试值进行对比,从而确保接线的正常运行。

3.3 提高设备抗干扰性

继电保护系统中很多元件的运行比较敏感,如果外界环境中的干扰信号较强,也会对设备的运行造成影响。所以为了减少故障的发生几率,可以提高设备的抗干扰能力,从而确保系统内部运行的安全性。可以从两个方面采取抗干扰措施,一方面为硬件抗干扰,主要是通过改变保护柜的材质,比如铁质保护柜将可以有效的屏蔽电场和磁场的干扰,但同时又可以确保运行装置与现场信号间的通讯。另一方面为软件抗干扰,在保护装置布线时,要确保信号电路之间的安全距离符合标准,减少系统内部的干扰。此外,可以降低屏蔽层对信号造成的阻抗,以便提高二次回路的抗干扰能力。

4 结束语

电力系统运行的可靠性离不开继电保护装置的正确动作,所以作为继电保护运行人员,则做好现场继电保护装置的故障排查工作,对电力系统的基础知识进行熟悉,掌握事故分析方法,确保继电保护设备性能的提升,能够对继电保护装置一些常见故障进行有效的排晒,有效的提高继电保护的稳定性和正确性。特别是当前继电保护技术也开始向微机化、网络化、智能化的方向发展,呈现保护、控制和测量等一体化的发展趋势,这就需要针对继电保护发展的新情况来提升继电保护人员自身的专业技能,从而及时对常见故障进行排查和处理,确保电力系统能够安全、稳定的运行。

参考文献

[1]薛春旭.电力系统微机继电保护交流采样算法研究[D].西安:西安电子科技大学,2012.

篇6

【关键词】储能技术;电力系统;应用;前景

随着经济的发展和科学技术的进步,我国的智能电网事业也获得飞速发展,通过新能源发电被广泛的利用起来。相关企业和科研工作者开始意识到储能技术的重要性。储能技术的类型丰富多样,可以应用到输变发用配各个环节,不管是它的功率,容量还是技术和响应时间,在性能上都存在差异,应用在电力系统中必须根据实际情况进行科学合理的选择,最大化的把储能技术的价值发挥出来。

1储能技术

1.1类别

按照能量的差别,我们可以把储能技术大致划分为下面几种类型:①基础燃料能量的存储,比如石油,煤和天然气;②中级燃料能量的存储,比如煤气,氢气,太阳能燃料;③对后续消费能量的储存和电能的存储,比如相变储能。笔者主要对电能储存技术进行分析和探讨。根据能量的形式,可以把电能存储氛围化学和物理两部分,其中物理储能又能分成电磁场储能和机械储能。

1.2机械储能

1.2.1抽水蓄能抽水蓄能的发电站一般情况下由上下水库,发电系统和输水系统构成,并且下水库和上水库之间是有落差的。当电力负荷处于低谷时,可以把下水库中的水抽入上水库,通过水力势能的方式存储能量;当负荷属于高峰阶段,再把上水库中的水引入下水库用于发电,把水力势能转变为电能。这项技术发展稳定,相对成熟,寿命在30~40年之间,它的储能容量,规模还有功率非常大,除了书库的库容外,不受其他条件的限制,一般处于100~2000MW范围内。同时,抽水蓄能也存在缺陷,它受制于外在地理条件,建造水库的地质必须符合相关要求。它的关键技术具体有工程地质技术,选择抽水蓄能电站的主要参数的技术,抽水蓄能机组技术。1.2.2压缩空气储能在燃气轮机技术的基础上出现了一种新的能量储存系统,即压缩空气储能系统。它的主要工作原理是:电力系统用电出现低谷时,通过富余的电量发动空气压缩机,通过压缩空气把能量储存起来;电力系统处于用电高峰时,释放出高压空气,给发电机正常工作提供能量支持。相关科研人员对于压缩空气储能系统的调研从未停止过,导致压缩空气储能系统的形式非常丰富多样,根据应用规模和热源的差异,把它划分成下面几种:①传统的利用地下洞穴和天然气进行储能的电站,一台机组的规模大于100MW;②新型压缩空气进行能力储存的系统,告别了地下洞穴和天然气的使用,可以把一台机组的规模控制在10MW以下。按照储能系统和其他热力系统是否可以耦合,又可以把它分成燃气蒸汽联合循环耦合系统,燃气轮机系统,内燃机系统和制冷循环耦合系统。具体而言,当前的空气压缩储能技术相对成熟,效率也比较高,可以达到70%,可以还是受到化石燃料和地理条件的制约。1.2.3飞轮储能通过旋转体即飞轮的运动的方式进行能量存储是飞轮储能的主要工作原理。存储阶段,在电动机的作用下,可以增加飞轮旋转的速度,把电能变成动能;释放能量的过程中,飞轮的转动速度会降低,电动机发挥发电机的作用,把动能变成电能。这种储能方式,转换能量的效率比较高,也不会对环境造成破坏,环保能力好,功率密度高,使用寿命长,但是它的自放电率相对高一些,而且存储能量的密度比较低。

1.3化学储能

化学储能主要利用化学反应,实现电能和化学能量的相互转换,进行能量存储。电池作为转换能量的主要载体,种类丰富多样,它的电化学反应和内部组成材料存在差异,但是却有着基本相同的内部核心结构,全是正负极,电解质和隔膜构成的。正极是电池内部高电势的一端,负极是电势低的一端。进行充电时,正极内的活性材料被氧化,失去电子,阳离子在电场和电解质的作用下来到负极,流失的电子顺着外电路的方向向负极移动,最终和负极内的活性材料相融合,产生还原反应。充电过程和放电过程是相反的。化学储能方式可以根据应用需求的不同灵活的配置能量和功率,摆脱了地理条件的制约,反应能力好,可以批量化生产和大规模应用。但是他也存在短板,比如电池的成本高,寿命短,都是需要日后进行改进完善的地方。

2储能技术在电力系统中应用的评价指标

能否让储能技术在电力系统中发挥出最大的功效,一方面受到它能否达到特定的等级和规模的影响,受到它能否和工程应用的设备形态相符影响,另一方面,也受到它自身的技术经济性和安全可靠性影响。要想在未来把储能技术广泛的应用到电力系统中,一定要保证它的规模可以达到兆瓦级/兆瓦时级;还要保证应用到电力系统中的储能系统,适合标准化和批量化的生产,方便日常的维护和控制;同时还要结合先进的科学技术,不断的完善电力系统中的储能技术,让它符合电力系统的发展需要和社会的发展要求,最大程度的发挥自身功能。此外,也要考虑它的技术水平和经济成本,这都是可以决定储能技术能否被广泛推广利用的因素,一定要重视,时刻谨记提高技术水平,节约成本。

3储能技术在电力系统中的应用现状

据实际情况看,电力系统中容量最大的储能装机还是抽水蓄能。在电力系统中应用抽水蓄能,可以起到调相调频,黑启动,事故备用,削峰填谷和电网调峰的作用,因为每一个国家电力市场和它的规模结构都存在差异,也会有不同的方法对抽水蓄能的运行和电价机制进行管理。举个例子,日本制定电价使用的是内部核算和租赁制;英国则专门针对抽水蓄能制定了电价机制和竞价模式,对抽水蓄能的交易和收入做出了明确的规定;美国不同的州拥有不同的电力体制和运行方式。具体包括租赁制,电网统一经营,参与电力市场竞争三种模式。我国则建立了相对完整的抽水蓄能管理和开发建设体系,并把它的建设和管理交由电网经营企业,由电网企业承担它一半的建设成本,剩下的分别由用户和发电企业承担。

4储能技术在电力系统中应用的发展前景

根据VLPGO的结论可以看出,中日美西班牙等国,都主张把太阳能和风能等清洁能源作为长期使用的化石燃料。不同的国家针对自身的电力系统特点,提出了不同的目标和政策,并推广落实。未来新能源将被大规模的开发,电网事业也会飞速发展,国家都认为储能技术定义为可以对市场需求进行快速反应和服务的产品,并且大力应用到电力系统中,受到电网公司的欢迎和认可。储能技术在电力系统中的应用,不管是今天还是未来,都具有不可取代的作用,它可以削峰填谷,接入大量的可再生资源,减少电网建设的投资成本,也可以给电力系统安全稳定的运行提供保障,也可以给市场带来新的发展机遇和经济效益。未来全球的储能市值将会出现前所未有的提升。虽然在电力系统中应用储能技术的前景是乐观和广阔的,但是也存在诸如,政策扶持力度差,没有明确的商业模式,成本高,缺乏系统的电价机制等问题,需要不断的努力,进行改善。综上所述,储能技术在未来,必然会成为转变能源结构,变革电力生产和消费方式的支撑性技术,环节可再生能源在发电过程中出现的随机波动和间歇性问题。在电力系统中应用储能技术,一方面,可以有效提高传统电网设备的运行效率和利用率;另一方面,它能够更好地解决电网中的如法故障,有效提升电能的质量,实现电力系统高效,稳定和安全的运行,使其能够满足社会发展的要求。因此相关科研人员需要充分重视储能技术的作用,从本国实际情况出发,结合先进的科学技术,对储能技术在电力系统当前应用中存在的问题进行解决,给其未来发展奠定基础。

参考文献

[1]国家电网公司“电网新技术前景研究”项目咨询组,王松岑,来小康,程时杰.大规模储能技术在电力系统中的应用前景分析[J].电力系统自动化,2013,01:3~8+30.

[2]骆妮,李建林.储能技术在电力系统中的研究进展[J].电网与清洁能源,2012,02:71~79.

篇7

关键词:储能技术 电力 系统 应用

随着我国经济的高速发展,我国电网的覆盖面积不断的扩大,用户对于电能的质量和可靠性的要求也就越来越高。然而我国能源分布与负荷密度的并不协调,现有的电网结构的薄弱造成装机容量难以满足峰值负荷、输电能力发展落后需求、复杂大电网暂态稳定的问题日趋的突出。随着储能技术的发展,尤其是最近几年来储能技术得到了突飞猛进的发展。

1、概述储能系统

电能储存有很多种,按照原理可以分为:以动能和势能为介质的机械储能,例如,抽水蓄能、压缩空气储能、飞轮储能等;直接以电磁能量的形式储存的电磁储能,如,超导电磁储能等;电化学反应为基础的化学储能,例如,超级电容器和各种蓄电池,如铅酸、镍镉、镍氢、钠硫以及液流电池等。

储能系统主要是由储能元件构成的储能装置和电力电子元件构成的能量转换装置。随着储能技术的发展,新型的储能技术和设备在电力系统中的应用,能够有效的满足用户的需求,削峰填谷,平滑负荷;能够提高新能源的使用,提高电力设备的效率,有效的降低供电的成本,提高电力系统运行的稳定性。

2、电力储能技术

2.1抽水蓄能电站

据资料显示,到2005年底,全世界有300多座抽水蓄能电站,其总装机容量达到120GW,年平均增长达到9.1%。在这一领域发展最快、装机容量最多的是日本,美国、意大利以及德国紧随其后,其中部分国家的抽水蓄能机组所占其总的装机比重高达10%。

在我国,截至到2005年底,全国的抽水蓄能电站一共有13座,装机的容量达到5854MW。而到2010年我国的抽水蓄能电站占所有发电机总量的比例已经达到2.6%左右。

2.2压缩空气储能电站

压缩空气储能电站是在1978年德国开始投运的。我国在2003年开始投入压缩空气储能技术。目前西安交通大学正在研究冷电热联供的新型压缩空气储能技术;华北电力大学进行了压缩空气蓄能系统的热力性能计算和优化,并对其进行经济性分析。此外,哈尔滨电力部门以及中国石油等也都在储气方面也取得了一定的成果。

2.3飞轮储能

目前,飞轮储能技术在许多的工业强国的大力的开发和研究下已经得到了很大的进展,并开始逐步的离开实验室,开始进行实际的试运行和应用了,并不断的向产业化和市场化的方向发展。

在飞轮储能技术的研究方面,我国的研究起步相对的较晚。但是在相关科研人员的努力下,已经在超导磁悬浮、高速电机以及功率转换等方面取得了较大的进步。

2.4超导磁能存储

超导磁能储能在日本、美国以及德国、芬兰、韩国等已经实现了实际系统的初步的应用,其功能能够达到0.3到10MVA之间,能够有效的维护电网的稳定性,极大的提高输电的能力和电能的质量。而我国在超导磁能存储方面也是取得了很大的成功,先后研制出了25KJ~1MJ的超导磁能存储系统。目前。中科院以及中国电科院和华中科技大学、浙江大学等正在研究第二代高温超导带材钇钡铜氧涂层导体超导磁能储能系统,以期能够实现低耗快速功率的变换,推动超导磁能储能系统的实际的应用。

2.5超级电容器储能

目前,电力储能的研究方向主要集中在液体电解质双电层电容器和复合电极材料/导电聚合物电化学SC。其中,美国、日本、德国以及韩国等都已经将超级电容器储能技术应用到实际的电网中,其的输出也达到几十MJ/数MW级。

在我国,防化院等也在开展超级电容器储能技术的研究,并在2005完成了用于光伏发电系统的300WH/1KW超级电容器。另外,还有相关的研究人员也正在研究基于超级电容器的分布式配网。

2.6蓄电池储能

在蓄电池方面,日本处于世界领先的地位,其的钠硫电池在2004就已经实现了总容量超过100mw,美国的12MW/120MWH钠硫电池系统也是其军事基地的备用电站。在流液电池的应用方面,美国、日本以及欧洲许多的国家相继将其应用到风电、调峰以及电能质量等方面。而我国从1995的全钒液流电池的研究后,已经成功的研制出了10KW级储能系统,并建立相应的电池实验室模型;在2008中国电科院成功的研发了用于风电场的100KW级储能系统。而在钠硫电池方面,上海电力公司研制出了50KW/1MW不同容量等级的钠硫电池系统,并将其应用到UPS/EPS,建立了相关的标准和规范,实现模块化和规模化的生产。

3、储能技术对电力系统的作用

储能技术在电力系统中的应用的有效性表现在很多的方面,下面主要介绍SMES储能、抽水蓄能混合式储能和CAES储能。SMES储能技术在电力系统中的应用有效的提高电网暂态的稳定性,抑制了低频振荡,增加了主干线路输电的能力。在大电网的模式下,一旦电力系统出现较大的扰动,其能够快速的做出反应,有效的减少和吸收扰动对于电网的冲击,抵制、消除了系统中的低频振荡、同步振荡以及谐振,从而极大的缩短了暂态的过渡过程,迅速恢复了系统的稳定性,提高系统的可靠性。

而抽水蓄能混合式电站和CAES电站,则能够满足电网的调峰、备用以及节约能源的需求,优化电源结构,改善电力系统电能的质量,同时提高了电力系统的经济性和环保型,保证了电网的安全运行。

总之,随着储能技术的发展,其逐渐的朝向储能方式混合化、转换高效化、能量高密度化、成本低,环境友好型方向发展,大大的提高了电力系统的能源利用率和经济性。

参考文献:

[1].田军 朱永强 陈彩虹.储能技术在分布式发电中的应用.[J].智能电网技术及装备专刊.2010(8):28

[2].程时杰 文劲宇 孙海顺.储能技术及其在现代电力系统中的应用.[J].电气应用2005(4):1

[3].张步涵 王云玲 曾杰.超级电容器储能技术及其应用.[J].水电能源科学.2006(5): 50

篇8

关键词:电力系统 继电器保护 问题 处理方法

中图分类号:TM7文献标识码: A

引言

随着电力系统的高速发展和计算机技术的进步, 越来越多的电力系统一方面提高和改善了我们的生活,另一方面也带来了不少问题,尤其电力系统的稳定性和安全性的提高,已经成为我们的当务之急,而继电器保护装置在此方面起到了很大的作用。继电保护装置是电力系统的重要组成部分,对电力系统的安全有效运行、防止事故发生等起着决定性作用。随着电力系统的发展,设备容量的不断增大,继电保护装置的正确性对保持电力系统的暂态稳定起着极其重要的作用,因此,认真分析研究电力系统继电器保护工作中常见的问题以及探讨相关的处理办法有着重要的意义。

一、继电保护技术的重要性

短路现象是导致电气设备不能正常运行的一个主要常见因素,其带来的后果是十分严重的,不仅会使元件损坏还会缩短元件的使用寿命甚至会威胁到人民的生命财产安全。要想将这种伤害降到最低,继电器保护技术可以完美地解决这个问题,它主要分为以下几个部分:测量、执行、逻辑。如果用电设备发生意外(如短路),继电器可以将该故障元件从电力系统中屏蔽出去,此过程快速、准确。这样就可以避免用电设备因故障而受到更多的伤害,同时可以保证其他正常元件的安全工作。

二、电力系统继电器保护的原理

电力系统继电器保护原理,依据反应的物理量的不同,保护装置可以构成下述各种原理的保护。

1、反应非电气量的保护

如反应温度、压力、流量等非电气量变化的可以构成装设在电力变压器的瓦斯保护、温度保护等。

2、反应-断电器量的保护

电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压相位角改变等现象。因此,在被保护元件的一端装设的各种变换器可以检测、比较并鉴别出故障时这些基本参数与正常运行时的差别就可以构成各种不同原理的继电保护装置。例如,反应电流增大构成过电流保护;反应电流与电压间的相位角变化构成方向保护;反应电压与电流的比值的变化构成的距离保护等。这一大类的保护是立足于被保护元件一端,对比两种运行状态的某一电气量的变化并依次特点构成保护,及反应一端电气量的保护。

3、反应两端电气量的保护

如果同时检测并比较在内部故障与外部故障(包括正常运行状态)两种工况下的两端电气量,可以发现它们之间有明显的区别,从而以这些差别作为判据即可构成反应两端电气量的保护。

三、电力系统继电器保护工作中常见的问题分析

1、 继电器触点发生故障

继电器的最重要的组成部分就是继电器触点, 而继电器的性能又受到触点的材料、所加电压及电流值、负载的类型、触点配置及跳动、大气环境、工作频率等的影响,如果其中任何一项因素不能满足预定值,就会出现触点间的金属电积,触点焊接,磨损,或触点电阻陕速增加等问题,这就严重的影响了电力系统的安全性和继电器接触的可靠性。

2、设备出现故障

继电保护装置是电力系统中不可或缺的一部分,是保护电力系统的基础和前提。一般设备有装置元器件的损坏、回路绝缘的损坏以及电路本身抗干扰性能的损坏,具体的表现为整定计算错误,这主要是由于元器件的参数值和电力系统运行的参数值与实际电流传输的参数值相差甚远,从而造成整定计无法正常工作。还有,设备很容易受到外界因素的影响,如温度和湿度。由于设备具有不稳定性,很容易由于温度和湿度的变化而造成定值的自动漂移,有时候也可能是因为设备零部件的老化和损坏造成的。再者,在电力保护系统中,装置元器件和回绝路缘的损坏也容易引起继电故障问题,这主要是在电线管道中三极管被击穿导致保护出口处异常,管道内出现漏电现象,导致整个电力系统内部电流过大,发射出一种错误的信号,在电流回流时导致回路中接地的开关频繁跳闸,于是就会停电,这就是绝缘被刺穿,造成电路中电流的混乱,容易短路或者发生故障。

3、工作人员故障检查技术水平不够高,操作不合理

在工作中不够细心,对系统内各项设备数值的读数观察不够仔细,导致读错设备整定器上的计算数值,导致继电保护故障,且对故障的检查技术水平不够,无法及时准确地发现故障段,从而造成大面积的电路故障问题,导致系统无法正常供电。或者是工作人员在操作时采用的方法不正确,在带电的情况下直接拔除插头,导致保护出口的动作,就容易造成保护装置的逻辑混乱,不能正常发生信号,整个系统就会接受错误的信息,无法正常运转,而且带电拔除很容易导致电源出现问题,长期这样的操作很容易烧毁电源。当工作电源出现问题时,电力系统保护出口处的动作过大,造成电路内波纹系数过高,输出的功率就不够,电压便会不稳定,当电压降低或者电流过大时,如果保护行为不恰当极容易出现一系列的继电保护故障。

四、加强电力系统继电器保护工作的措施

1、采用替换法来排除继电保护系统的故障

所谓替换法指的是用相同并良好的元件代替怀疑有故障的元件进行检验,进而判断元件的好坏,这也是快速缩小故障查找范围的一种有效方法。 通常情况下,当元件出现故障时,要用备用或暂时正在检修的并具有相同作用和功能的元件来进行替换, 这也是处理合自动化保护装置内故障最常用的方法。 替换之后如果继电保护装置恢复正常的运行状态,说明故障在换下来的元件内,反之则用相同的方法继续在其他地方进行检查。 这种方法在微机型继电保护装置的故障检查中比较常用。

2、 严格检查继电保护基本设施

基础设备的质量和使用的安全直接关系着整个保护系统,要对设备的采购和投入使用各个环节进行管理,尤其是把牢继电保护装置的投运入关口。继电装置的投运主要包括下面几个内容,装置的科研究性、初步设定模型、设计施工组织图纸、投入安装、试调、检查和最终的运行等。在可研究性和初步设定阶段,要根据有关的规定和电网运行情况制定安装完成后的管护方案,确保整个装置安装的安全和正常使用。当初步施工图纸设计出来后,技术人员要严格按照图纸施工,将装置安装到合理的地段,使之与原有的电力系统相匹配,如果技术人员觉得图纸有误,应该向设计部门和监理部门反映,及时纠正错误。这主要是由于很多图纸的设计人员没有参与实践,对实际情况的估计总会有些偏差,所以设备安装人员要及时发现问题。在试调和检查阶段,要有针对性保护配置的功能,全面检查设备各个零部件是否安装正确,在确保没有错误的情况下,才能进行试调,这样能保证工作人员的安全。只有试调和检查都没有发现问题时才能将整个设备投入使用中,这时继电保护工作还没有结束,还需要定期对整个保护系统设备进行检查,及时更换老化的零部件,注重电源处的检查,确保保护系统中电源不会遭到损坏。

3、提高工作人员的继电保护故障处理的技术水平

在继电保护故障处理工作中,往往有很多方法能及时有效地解决故障问题,其工作效率主要靠工作人员的技术水平、理论知识和实践经验,一个综合水平高、能力强,且具有丰富工作经验的技术人员,在出现故障问题时,一定能准确有效地处理和解决问题。所以要不断加强工作人员的继电保护障碍处理技术水平,将电力系统中继电保护故障及时清除,保证电力系统的正常运行。

结束语

总之,电力系统是与人们的生活息息相关的,我们必须切实做好其继电保护工作,确保电力供应正常进行,从而促进继电保护技术的发展与应用。

参考文献:

[1]杨莹.浅析电力系统运行中的继电保护故障处理[J].华东科技:学术版,2012(12).

篇9

【关键词】电力通信;故障;处理

一、故障表现

某天,某个变电站反映该站内有一个号码不通。由于该变电站包括一套局行政电话以及一套调度电话,存在的故障的是该变电站的局行政电话。其交换机处于局本部的行政楼里面,而分机利用马可尼CMUX2通讯设备PCM通过光传输系统输送到变电站。

二、故障分析

对该故障号码进行拨打时出现忙音,咨询变电站的工作人员获悉其余业务并未出现异常,并且调度电话也处于正常状态,初步判断为线路出现短路,或设备PCM存在故障。对于交换机的一侧音频配线架进行测量发现该号码所对应的话线电压是0,而正常情况的电压大约为45伏,因而初步判断线路出现短路,将交换机和设备PCM的连线断开,此时号码恢复了正常的状态,因而可以排除交换机存在故障。尝试拨通变电站内其余的行政分机号码,此时全都是忙音,此时对交换机和设备PCM之间的线路进行测量发现其电压都是0,可以判断出是设备PCM存在故障,然而还是难以确定是变电站内部还是本部设备PCM存在故障。通过终端登入通信设备PCM对其状态进行检查,发现此时交换板的端口出现了disable,而正常状态时应显示为idle;两兆信息中显示的信号为丢失,检查LTU板(2兆板),发现显示的是不存在。将MCC板拔掉之后发现LTU板,2兆中显示CRC出现了错误,其余的故障信息不变,检查通讯设备PCM所联接的上面一级设备SMA,并没有出现2兆告警,所以判断和通讯设备PCM之间并没有连接方面的问题,所以判断为通讯设备PCM出现故障。记录通讯设备PCM的数据之后,将CSC卡插拔并且数据在重新配置之后故障仍然存在,故障信息也没有出现变化。

三、故障处理

首先应当处理2兆的故障,再来处理电话的故障。将通讯设备PCM置换LTU板上面的硬件,发现此时2兆告警信号已经消失,而在交换板端口的状态显示的是idle。在音频配线架上面将一个电话机接到原来的故障号码,拿起话筒有拨号音,由于设备PCM为置换状态,无法实施拨号试验,但是按照已经出现的现象可以判断出设备PCM的故障已经消除,设备为正常状态,故障出现在2兆链的线路上。“先检查外部,再检查传输系统;先检查单站,再检查单板;先检查线路,再检查支路;先检查高级,再检查低级”是对SDH光传输系统进行故障定位的一个重要原则。(1)先检查外部,再检查传输系统:指的是在定位故障的时候,应当先检查外部的各种可能的因素,比如光纤是否断开、交换侧是否出现故障。(2)先检查单站,再检查单板:指的是在定位故障的时候,首先应尽量精确定位到哪一个站,确定是哪一个站之后再对单板进行检查。(3)先检查线路,再检查支路:指的是在定位故障的时候,应当知道线路板出现故障往往会引发支路板产生不正常得告警,所以,应当按照先检查线路,再检查支路的原则进行。(4)先检查高级,再检查低级:首先应当将群路告警进行分析并排除,再对支路告警进行分析并排除,或者首先应当对高级别的告警进行处理,比如主要和危急告警,这一类的告警对于通信造成了严重的影响,因此务必要立刻进行处理;再对低级别的告警进行处理,比如一般和次要的告警。尽管该原则是SDH系统故障定位的原则,但是PCM系统的与SDH系统的工作原理比较接近,所以同样适用于PCM系统。此次出现的故障是因为在施工时光缆被切断而引起的;交换板的全部端口显示为disable,是由于2兆链路出现中断造成的,也就是线路板出现故障造成支路板不正常告警;同时,2兆链路中产生CRC错误属于高次群的告警,交换板全部的端口显示的disable是低次群的告警,从而判断出该故障是一个比较具有代表性的故障类型。

四、故障处理总结

切断光缆之后仅仅行政电话产生中断,而调度电话仍然正常运行,其余的业务也正常,所以起初并未考虑到线路的故障,事实上这部分关键业务均为双向通道或采取了通道保护措施,但是行政交换系统只是普通业务而并无双向通道也并无通道保护措施,所以光缆被切断之后仅仅对行政电话造成了影响。检测电话线路的电压为0之后将注意力放在通讯设备PCM上,从而浪费较多的时间和精力,使得处理故障的时间大大增加。当故障产生的原因查明之后,向网管提出申请,将反向的备用链路接通,电话就可以立即恢复正常。

参 考 文 献

篇10

关键词:继电保护;22OKV以上;保护方式

继电保护主要是用来研究电力系统故障和危及安全运行的异常工作,从而进一步发现出对策的反事故自动化措施。因为要用继电器来保护电力系统和其他相关元件,所以称之为继电保护。继电保护工作是一项操作缜密、技术性强的工作,它具有很强的故障分析和处理能力。能够全面的了解继电保护故障以及积极采取应对的措施,能够进一步提高继电保护工作人员的工作效率,降低损失,从而保证了220KV以上继电保护工作稳定高效运行。

1 220kV 及以上电网继电保护原则

由于220kV及以上电网继电保护方式较多,所以在确定使何种继电保护方法的同时必须遵守一定的原则,只有在一个统一的规范要求下,才能更有效的体现电网继电保护效果。

220kV及以上电网的继电保护,必须满足可靠性、速动性、选择性及灵敏性的基本要求。可靠性由继电保护装置的合理配置、本身的技术性能和质量以及正常的运行维护来保证;速动性由配置的全线速动保护、相间和接地故障的速断段保护以及电流速断保护取得保证;通过继电保护运行整定,实现选择性和灵敏性的要求,并处理运行中对快速切除故障的特殊要求。对于300 ~ 500kV 电网和联系不强的220kV 电网,在保证继电保护可靠动作的前提下,重点应防止继电保护装置的非选择性动作;而对于联系紧密的220kV电网,重点应保证继电保护装置的可靠快速动作。

2 220kV 及以上电网继电保护方式分析

2.1 自动重合闸继电保护

自动重合闸装置是当断路器跳开后按需要自动投入的一种自动装置。从上表可以看出其正确动作率达到了99.75%,采用自动重合闸的继保护可以在提高供电的可靠性的基础上,保证电网系统并列运行的稳定性,并纠正断路器的误跳闸。下面来看一组数据,如表2 所示。

表2 220kv 及以上电网单相接地故障统计

从中可以看出,220kv 及以上电网单相接地故障率非常高,针对上表所描述的现象,可以通过自动重合闸继电保护,以提高其准确性。常用方式有单相自动重合闸和综合重合闸两种。

(1)单相自动重合闸要求在保证选择性的基础上并拥有足够的灵敏性。在动作时限的选择方面,除应满足三相重合闸时所提出的要求外,还应考虑:两侧选相元件与继电保护以不同时限切除故障的可能性和潜供电流对灭弧所产生的影响(图1)。时刻注意线路电压越高,线路越长,潜供电流就越大,潜供电流持续时间不仅与其大小有关,而且与故障电流的大小、故障切除的时间、弧光的长度以及故障点的风速等因素有关。单相自动重合闸在绝大多数情况下保证对用户的供电,并提高系统并列运行的动态稳定性。但在具体实践中需要有按相操作的断路器,重合闸回路的接线比较复杂,促使了保护的接线、整定计算和调试工作复杂化。为了弥补以上缺点,可以通过以下介绍的综合重合闸方式来解决。

图1 潜供电流对灭弧所产生的影响

(2)综合重合闸是指当发生单相接地故障时,采用单相重合闸方式,而当发生相间短路时,采用三相重合闸方式。实现综合重合闸回路接线时应考虑的一些问题:①单相接地故障时只跳故障相断路器,然后进行单相重合。②相间故障时跳三相断路器,然后进行三相重合。③选相元件拒动时,应能跳开三相并进行三相重合。④对于非全相运行中可能误动的保护,应进行可靠的闭锁;对于在单相接地时可能误动作的相间保护(如距离保护),应有防止单相接地误跳三相的措施。⑤一相跳闸后重合闸拒动时,应能自动断开其它两相。⑥任意两相的分相跳闸继电器动作后,应能跳开三相并进行三相重合。⑦无论单相或三相重合闸,在重合不成功后,应能加速切除三相,即实现重合闸后加速。⑧在非全相运行过程中又发生另一相或两相的故障,保护应能有选择性予以切除。⑨当断路器气压或液压降低至不允许断路器重合时,应将重合闸回路自动闭锁;但如果在重合闸的过程中下降到低于运行值时,则应保证重合闸动作的完成。

2.2 纵联保护

随着电力技术的发展,220kV 及以上电网纵联保护目前采用反应两侧电量的输电线路纵联保护,其工作原理如图2 所示。通过利用通信通道将两端的保护装置纵向联结起来,将两端的电气量比较,以判断故障在区内还是区外,保证继电保护的选择性。

图2 反应两侧电量的输电线路纵联保护原理

纵联保护一般分为方向比较式纵联保护和纵联电流差动保护两种,在从具体方式上来看主要有纵联差动保护、高频保护、微波保护、光纤差动保护等,在些方式之中,灵敏度整定都要不得小于2.0。由于各种方式的在整定时要求有所不同,在此就高频保护整定稍作概述。

在反映不对称故障的起动元件整定时,高定值起动元件应按被保护线路末端两相短路、单相接地及两相短路接地故障有足够的灵敏度整定,I2 力争大于4.0,最低不得小于2.0。同时要可靠躲过三相不同步时的线路充电电容电流,可靠系数大于2.0。低定值起动元件应按躲过最大负荷电流下的不平衡电流整定,可靠系数取2.5。高、低定值起动元件的配合比值取1.6 ~ 2.0。

2.3 零序电流保护

零序电流保护一般为四段式。在复杂环网中为简化整定配合,零序电流保护Ⅰ、Ⅱ、Ⅲ、Ⅳ各段均可分别经零序功率方向元件控制。如实际选用的定值,不经过方向元件也能保证选择性时,则不宜经方向元件控制。为了不影响各保护段动作性能,零序方向元件要有足够的灵敏度,在被控制保护段末端故障时,零序电压应不小于方向元件最低动作电压的1.5 倍,零序功率应不小于方向元件实际动作功率的2 倍。

方向零序电流Ⅰ段定值和无方向零序电流Ⅰ段定值,按躲过本线路区外故障最大零序电流整定。若本线路采用单相重合闸方式,尚应按躲过本线路非全相运行最大零序电流整定。零序电流Ⅱ段定值,若相邻线路配置的纵联保护能保证经常投入运行,可按与相邻线路纵联保护配合整定,躲过相邻线路末端故障。否则,按与相邻线路在非全相运行中不退出运行的零序电流Ⅱ段配合整定;若无法满足配合关系,则可与相邻线路在非全相运行过程中不退出工作的零序!段配合整定。零序电流Ⅱ段定值还应躲过线路对侧变压器的另一侧母线接地故障时流过本线路的零序电流。零序电流Ⅲ段定值,按灵敏性和选择性要求配合整定,应满足灵敏度要求,并与相邻线路在非全相运行中不退出工作的零序电流Ⅲ段定值配合整定。若配合有困难,可与相邻线路零序电流Ⅲ段定值配合整定。零序电流Ⅳ段定值(最末一段)应不大于300A,按与相邻线路在非全相运行中不退出工作的零序电流Ⅲ段或Ⅳ段配合整定。对采用重合闸时间大于1.0s 的单相重合闸线路,除考虑正常情况下的选择配合外,还需要考虑非全相运行中健全相故障时的选择性配合,此时,零序电流Ⅳ段的动作时间宜大于单相重合闸周期加两个时间级差以上。当本线路进行单相重合闸时,可自动将零序电流Ⅳ段动作时间降为本线路单相重合闸周期加一个级差,以取得在单相重合闸过程中相邻线路的零序电流保护与本线路零序电流Ⅳ段之间的选择性配合,以尽快切除非全相运行中再故障。线路零序电流保护的电流定值和时间定值可参照相关规范进行设定。

3 结束语