风险评估方法论范文

时间:2023-06-06 17:55:55

导语:如何才能写好一篇风险评估方法论,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

风险评估方法论

篇1

    关键词:电力企业,风险管理,定量风险评估

    0、引言

    电力作为高风险产业,不仅源于其公用事业属性,以及技术资金密集、供求瞬时平衡、生产运行连续等特征,同时电力项目投资额巨大、建设周期长、沉没成本高,而且,随着电力体制改革和电力市场建设进程的深入,市场主体越来越多,电力交易关系复杂,不同主体之间协调困难,电力行业规划建设、生产经营的不确定性加大、电力市场风险增加。根据“十一五”期间电力体制改革的任务,面对我国电力市场化发展的现状,增强风险意识,树立风险观念,加强风险管理将是电力企业的重要任务。本文在阐述了企业风险管理基本框架流程及其主要内容的基础上,提出电力企业定量风险评估的主要内容及方法,以期推动电力系统风险管理工作的开展。

    1、风险管理的主要内容

    风险作为客观存在,要求人们考察研究风险时,要从决策角度认识到风险与人们有目的活动、行动方案选择及事物的未来变化有关。风险的形成过程和风险的客观性、损失性、不确定性特征共同构成风险形成机制分析和风险管理的基础。

    人们一般对风险持厌恶态度,都想减小风险损失,追求风险与收益的均衡优化。风险管理的提出与发展与企业发展状况、社会背景密不可分。风险管理作为一门管理学科,首先在美国应运而生,之后传到西欧、亚洲、拉丁美洲。美国大多数企业都设置专职部门进行风险管理,许多大学的工商管理学院都开设风险管理课程。风险管理作为一门科学与艺术,既需要定性分析,又需要定量估计;既要求理性,又要求人性;不但需要多学科理论指导,还需要多种方法支持。

    源于风险意识的风险管理主要包括风险分析、风险评价与风险控制三大部份。根据风险形成的过程,风险分析需要进行风险辨识、风险估计。风险估计需要进行频率分析与后果分析,而后果分析又包括情景分析与损失分析。通过风险分析,可得到特定系统所有风险的风险估计,对此再参照相应的风险标准及可接受性,判断系统的风险是否可接受,是否采取安全措施,这就是风险评价。风险分析与风险评价总称为风险评估。为进行风险定量化估算,要进行定量风险评估(Quantitative Risk Assessment—QRA)。在风险评估的基础上,针对风险状况采取相应的措施与对策方案,以控制、抑制、降低风险,即风险控制。风险管理不仅要定性分析风险因素、风险事故及损失状况,而且要尽可能基于风险标准及可接受性对风险进行定量评价。对于以盈利为目的的工业企业也希望将风险损失价值化并给出货币衡量标准。风险管理就是风险分析、风险评价、风险控制三者密切相联的动态过程,见图1。

    2、风险管理的组织实施与基本流程

    为有效实施风险管理,企业应由专门的组织及相关人员按一定程序组织实施风险管理工作。据《幸福》杂志对美国500多家大公司的调查知,84%的公司由中层以上的经理人员负责风险管理。风险管理的趋势是董事会下属设立风险管理委员会全面负责公司风险管理,组织实施的流程是:①制定风险管理规划;②风险辩识;③风险评估;④风险管理策略方案选择;⑤风险管理策略实施;⑥风险管理策略实施评价。

    3、电力企业定量风险评估(QRA)

    电力企业QRA的建立与发展从内部来看,不仅已有可靠性分析、安全分析、质量管理、项目管理等各专业分析作基础,从外部而言有电力用户、政府与社会公众、咨询机构等众多相关主体的关注。电力企业QRA对企业的作用主要体现在:通过QRA有利于企业将风险水平控制在规定标准的风险水平之内,并符合最低合理可行原则;通过开展QRA可帮助企业全面识别风险,并按轻重缓急排序,以有助于管理者将精力、财力、物力集中于风险控制的重要紧急领域,使风险管理决策更为合理、效果更好、成本最小;通过对各种风险控制方案或安全改进措施进行QRA,使决策者对方案措施进行优劣选择,为公司提出决策支持。电力企业的风险将对其它企业和主体带来连带影响,并产生放大效应,电力系统安全、可靠、高效、优质是各行各业和政府管理部门共同的愿望。电力企业实施QRA具有现实意义。

    3.1  电力企业QHA的基本框架模式

    电力企业QRA是指在工业系统QRA的基础上,考虑电力系统的技术经济特点及运行规律,结合电力体制改革及电力市场化进程而以概率模型表征的全面风险管理理论方法。为便于实施风险管理,保证风险评估质量,满足风险评估过程各阶段的不同要求,构建如图3所示的适用于电力企业QRA的基本框架模式。在具体实施时,允许依实际情况而有所改变。

    3.2  电力企业QRA的主要工作内容

    (1)确定目标及范围。包括风险管理的目的与意义,待分析系统的设备配置、工作流程、资金、人员、管

    理、信息、地区、人文环境等,即确定QRA实现目标和实施条件等。

    (2)风险辨识。即找出待评价系统中所有潜在的风险因素,并进行初步分析,通过安全检查看系统是否达到规范要求。风险辩识的基本途径有历史事故统计分析、安全检查表分析、风险与可操作性研究(HZOPS)、故障模式与影响分析(FMEA)、故障模式影响及危急分析(FMECA)、故障树分析(ETA)、事故树分析(ETA)、风险分析调查表、保单检视表、资产风险暴露分析表、财务报表、流程图、现场检查表、风险趋势估计表等。为配合保险公司对出险事项的处理,可采用从下至上的归纳法、从上至下的演绎法及两者综合运用。针对特定风险,可选用基于系统平面布置的区域分析、隐含事件分析、德尔菲法及基于事故树分析的风险事故网络法等。风险辩识不只局限于系统硬件,还应考虑人为因素、组织制度等系统软件。  风险综合集成是指对所有风险按其特性类型分门别类加以汇总整理。因电力工业特点及电力市场化改革特点,把电力系统风险按厂网分开的行业结构进行分类。

    对于发电企业而言,主要有电源规划风险、报价竞价上网风险、供求平衡风险、市场力抑制风险、备用容量风险、信用风险、法律风险、项目风险、中介机构风险等。对于电网企业而言,主要有电网规划风险、电网融资风险、购电电价风险、电力交易转移风险、辅助服务风险、成本分摊风险、输电阻塞风险、输电能力风险、备用率风险、电力监管风险等。另外,电力企业还将面临电力可靠性、安全性、稳定性风险及电能质量风险等。

    风险综合集成后的初步风险分析是对已辩识出的风险进行初步分析评估,确定风险的等级或水平。风险水平低的可忽略不计或仅作定性评估,风险水平高的要在定性分析基础上,进行定量评估。

    (3)频率分析。即确定风险可能发生的频率,其方法主要有历史数据统计分析、故障树分析与失效理论模型分析。历史数据统计分析是根据有关事故的历史数据预测今后可能发生的频率。因此要建立

    风险数据库,既作为QRA的基础,又作为风险决策的依据。故障树分析作为一种自上而下的逻辑分析法,把可能发生的事故或系统失效(顶事件)与基本部件的失效联系起来,根据基本部件的失效概率计算出顶事件的发生概率。失效理论模型分析是在历史数据与专家经验的基础上,采用某种失效理论模型来计算风险发生频率。

    (4)风险测定估计。根据风险特性及类型,运用一定的数学工具测定或估计风险大小。常用方法主要有主观估计法、客观估计法、期望值法、数学模型法、随机模拟法和马尔可夫模型法等。

    (5)后果分析。即分析特定风险在某种环境作用下可能导致的各种事故后果及损失。其方法主要有情景分析与损失分析。情景分析通过事件树模型分析特定风险在环境作用下可能导致的各种事故后果。损失分析是分析特定后果对其它事物的影响及利益损失并归结为某种风险指标。

    (6)风险标准及可接受性。风险标准及可接受性应遵循最低合理可行(ALARP)原则。ALARP原则是指任何系统都存在风险,而且风险水平越低,即风险程度越小要进一步减少风险越困难,其成本会呈指数曲线上升。也就是说,风险改进措施投资的边际效益递减,最终趋于零,甚至为负值。因此,必须在风险水平与成本间折衷考虑。如果电力企业定量风险评估所得风险水平在不可接受线之上,则该风险被拒绝,如果风险水平在可接受线之下,则该风险可接受,无需采取风险改进措施;如风险水平在不可接受线与可接受线之间,即落人ALARP区(可容忍区),这时要进行风险改进措施投资成本风险分析或风险成本收益分析。

    分析结果如果证明进一步增加风险改进投资对电力企业的风险水平减小贡献不大,则该风险是可接受的,即允许该风险存在,以节省投资成本。ALARP原则的经济学解释类似投入要素的边际收益递减规律一样,风险与风险措施投入间的风险曲线也呈边际收益递减规律。  3.3  电力企业QRA常用方法

    根据电力企业QRA的工作内容和实现要求,结合电力企业本身特点,电力企业QRA常用的方法主要有:安全检查表即实施安全检查的项目明细表;故障模式与影响分析技术和故障模式影响分析与致命度分析(FMEACA)技术;风险与可操作性研究技术;事件树分析技术;基于概率影响图技术、人工智能、专家系统、可靠性工程技术期望值法、风险主观、客观估计法、模糊评估法等。

篇2

关键词:石油化工危险化学品辨识方法风险评估

中图分类号:X937 文献标识码:A文章编号:1672-3791(2012)03(A)-0000-00

1 石化企业危险化工工艺概述

1.1 石油化工工艺的危险性

化工工艺是指通过原料处理、化学反应、产品精制等化学生产方法,将原材料转变为产品的过程,这些过程通常需要相应的操作条件要求,并需使用特定的仪器和设备,使材料发生物理学上或化学上的变化,而危险化工工艺就是指在化工生产过程中,可能导致中毒、火灾或爆炸等安全事故的工艺。石油化工企业的生产过程主要是将石油、天然气等原材料,通过相应设备使其进行一系列的物理变化或化学反应,其工艺普遍具有连续性强、操作复杂的特点,原料、产品中包含大量有毒、有害、易燃、易爆、高腐蚀性的物质,且反应多是在高温、深冷、高压等特殊环境下进行的,因此反应装置的运行、检修、运输、安装等环节也普遍存在危险性。

1.2 石化工艺危险源的具体分析

(1)危险化学品。国务院颁发的危险货物品名表与危险化学品名录中,将危险化学品分为爆炸品、压缩与液化气体、易燃液体、易燃固体及自燃固体、氧化物及过氧化物、以及毒害品和感染性物品等几大类。可以说,这些化学品在石化生产中都有所涉及,其中一些还是重点石化工业的主要原料与产品。以其中的主要危险气体而言,最为常见的就包括液化石油气、氢气、氨气和硫化氢气体等,液化石油气作为一种从油气田或石油炼制中获得的碳氢化合物,可以作为重要的化工原料或燃料使用,但它同时也是一种易燃易爆气体,并具有很强的挥发性且极易受热膨胀,在大量被吸入人体后,还会导致窒息中毒等问题;氢气作为工业原料广泛应用于石化工业的各个领域,生产中需加入氢气通过去硫和氢化裂解来提炼原油,但气体具有无色无味、燃烧火焰透明等特性,因此发生泄漏时,通常很难被察觉,一旦液氢外泄至空气中,就有可能与空气混合引发燃烧爆炸事故;而其他常见的氨气、硫化氢气体等,也各具可燃性、腐蚀性等危险,必须妥善管理,加强预防控制。

(2)反应装置的危险性。石化生产设备的危险性主要来自其生产原料、产品、以及相关工艺条件,催化裂解、常减压蒸馏、延迟焦化以及汽油加氢等工艺中,设备的安装、运行,及维护都面临一定的安全风险。以催化裂化装置为例,该装置主要包括反应器和再生器、加热炉和辅助燃烧室、裂解余热锅炉、油气分离器、气分装置等。生产过程主要包括原料油催化裂化、催化剂再生和产物分离3个主要工艺流程,以原油蒸馏所得的馏分油为原料,在热和催化剂的作用下发生裂化反应,以获得轻质油品和液化气等产品,其原料与副产品、产品均易于与空气形成爆炸性气体,在生产过程中产生的硫化氢有毒,且易泄漏,具有中毒危害。故整个装置具有易燃、易爆、有毒等危害特性。此外,工艺中的高温、高压等工艺条件和装置自身的缺陷等也构成了生产过程中的危险性因素。

2 重视风险评估加强安全管理

要全面控制石化企业化工工艺中的危险性因素,就必须建立安全生产数据库,以计算机技术、通信技术等现代科技手段为支撑,通过完善的风险评估系统实现生产全过程的危险源辨识、风险评价、安全方案设计、费用计算等一系列高效管理工作。

2.1 危险源辨识

应根据不同企业的具体生产过程对其工艺中各物质与装置的固有危险性、危险物质容量、温度、压力、操作方式、反应放热与腐蚀性等多个项目分等级赋值并进行累计计算,所得的危险程度再结合其风险指标、危害程度及后果、控制方案等建立完备的资料数据库。以危险物质容量为例,该指标是针对工艺装置中各种反应物的含量,参考《危险化学品重大危险源辨识》或《压力容器中化学介质毒性危害和爆炸危险程度分类》等标准进行分级,含量的计算应以反应物的反应形态为标准,有触媒的反应还应去掉触媒层所在的空间。在计算机的自动识别和控制程序设计中,还应完善系统中的查询、保存、修改等功能。

2.2 安全评价

石化生产的安全评价具有多目标、多属性的特点,单一的评价方法并无法全面反映评价对象的特征、危险程度,因此应根据不同的评价对象,提供多种评价方法再进行优化。评价方法包括定性评价和定量评价,预评价、中间评价和现状评价,工厂设计的安全性评价、安全管理的有效性评价、人的行为安全可靠性评价、作业环境和环境质量评价以及物质的物理化学危险性评价等,实践中应将多种方法相结合,并引入行为矫正技术,模糊数学理论、层次分析法、风险指数法等,提高评价的科学性。

2.3 其他管理内容

其他管理内容包括方案设计与评估、数据管理、预算管理等。要确保安全辨识与评价的可靠、实用,必须对包括生态环境污染等内容在内的危险辨识及控制、工艺路线的科学性、作业的安全性、以及工程进度计划等方案进行综合评估;而针对企业的未来发展规划,数据库应具有运行稳定、更新快、可扩充的性能,预算管理则应根据实际风险特点,合理配置安防费用,降低企业的经营成本。

3 结语

能源需求量的增大带动了我国石油化工产业的快速发展,但也同时促使企业在激烈的竞争中不断扩大规模、提高技术工艺水平和自动化水平,但由于这些行业涉及的危险物品与危险装置种类多、范围广,并广泛分布在石化生产全过程的各个环节中,因此也带来了重大的安全风险。目前我国的危险化工工艺的安全保障系统在风险辨识方面仍处于起步阶段,且未形成通用性的评价方式,因此相关工作人员必须在不断总结经验教训的基础上,结合理论分析,参考专家的咨询意见,建立有针对性的评估指标体系,以科学的管理方法,实现石化企业的安全生产。

参考文献

[1] 赵来军, 吴萍, 许科. 我国危险化学品事故统计分析及对策研究[J]. 中国安全科学学报, 2009, (07).

[2] 付师兵. 石油化工工艺设备检修过程中火灾事故成因分析及安防措施[J]. 江西化工, 2011, (01).

篇3

关键词:BOT项目;业主风险;风险评估;风险控制

中图分类号:U412文献标识码: A

1.1 BOT项目风险评估的目的及方法

项目风险识别是项目风险管理中的第一步,是基础和重要组成部分。其任务是确定何种风险事件可能影响项目目标,并将这些风险的特性整理成文档。

风险评估就是在风险识别的基础上,分析和评价损失对项目的既定目标的影响程度,通过对由风险识别获得的资料和数据的处理,得到风险后果发生的概率、严重程度和大小,为选择应对措施,进行正确的风险管理决策提供依据。

风险评估的目的是:对项目中各种各样的风险分析、比较,找出主要风险和次要风险;挖掘项目风险间的内在联系;进行项目风险的量化研究,进一步量化已识别的风险发生概率和后果,减少风险发生概率和后果估计中的不确定性,为风险应对提供管理策略。

风险评估是为了确定风险的存在对项目本身造成的影响和后果,风险评估方法一般可以分为定性、定量、定性与定量相结合的三类,而有效的项目风险评估方法一般采用定性与定量相结合的系统方法。常用的项目风险评估方法有:层次分析法、决策树法、主观评分法、模糊风险综合评估法等。

在高速公路BOT项目运营中,可能遭遇的风险带有很大的模糊性,本文结合风险的这一特性,采用模糊数学中的模糊综合评判方法对高速公路BOT项目运营中业主风险进行量化分析评估。

1.2 BOT高速公路项目运营中业主风险评估指标体系

1.2.1 BOT高速公路项目运营中的业主风险因素

通过对高速公路BOT项目运营中业主的风险进行分析,作为业主高速公路BOT项目运营中的风险与其他阶段存在同样多的风险,通过一系列的资料收集和分析,依据广泛性、代表性、准确性相结合的原则,把高速公路BOT项目运营中存在的各种风险因素归纳如下表:

1.1 BOT高速公路项目运营中业主常见风险

环境风险

气候自然灾害风险

政策风险

法律风险

金融风险

外汇风险

利率风险

通货膨胀风险

市场风险

价格风险

交通量转移风险

管理维护风险

管理风险

维护风险

1.2 业主风险模糊综合评估模型的建立

在基于各参与方的高速公路BOT项目运营中业主风险评价指标体系中,由于各指标的影响因素各不相同,除少数可以通过统计方法获得,大量的指标则只能采用专家评分法。对于这样的评价问题,运用模糊数学的方法,即模糊综合评估法(Fuzzy Comprehensive Evaluation,简称FCE)可以得到较好的解决[1]。

模糊评估方法[2]是把模糊数学应用到判别事物和系统优劣领域的新方法,根据给出的评估标准和实测值,经过模糊变换后对事物或系统作出综合评价。

模糊评估方法的特点主要表现在:

(1)模糊评估方法可以不直接依赖于某一项指标,也不过分地依赖于绝对指标,而是采取比较的方法,这样可以避免一般数学评价方法中,由于标准选用不尽合理而导致的评价结果的偏差。

(2)评估指标的重要程度通过权数加以体现,但允许在权数选择上有一定的出入,而不至于改变最终的评估结果。另外,在技术处理上,有效地避免了累积误差的影响。

(3)模糊评估中算子的选择和隶属函数关系的确立,使各项参与评价的非量化指标间建立了有机联系,使评估结果能够更好地反映评估对象的整体特征和一般趋势[12]。

由于高速公路BOT项目运营中业主风险因素多,仅采用单级模糊综合评判,当因素众多时权重难以恰当分配,因素的层次也难以考虑,故本文采用二级模糊综合评判数学模型。

为了能够准确、有效、综合地评估高速公路BOT项目运营中业主风险,使评估结果能够为各项目参与方提供谈判、决策参考,根据本文对高速公路BOT项目运营中业主风险评估指标的划分,用模糊数学综合评判法对高速公路BOT项目运营中业主风险进行评估的内容步骤如下:

① 确定影响因素及其层次,建立评估因素集

本文将高速公路BOT项目运营中业主风险作为因素集,按其属性将风险分成4类,分别是环境、金融、市场和管理维护风险,记为U={U1,U2,U3 ,U4}。Ui中又含有n个子因素,记为Ui={Ui1,Ui2, …,Uin},(i=1,2, 3,4) 如图4-1所示

② 建立评估集

评估集是对评判对象可能作出的各种评估结果组成的集合,不论因素层次有多少,

评估集只有一个。这个评估集适用于全部BOT风险因素。通过评估集给定评价的基准,表示为

V={V1,V2,…,Vp}(4-1)

其中VK(K=1,2,…,P)为总评判的第K个可能的结果。

选择因素集和评估集的原则是:既要全面又要抓住主要矛盾。这样既可以更好的模拟人们的思维,又可以避免一些不必要的麻烦。

按照评估集的原则,把BOT的业主风险程度划分为5个等级:低风险V1;较低风险V2; 一般风险V3; 较高风险V4; 高风险V5 。

③ 建立评估因素的权重集,并修正指标的权重

在我国目前,采用BOT法对于风险评估中,应用专家评估居多,但若直接请专家给出各项指标的权值,结果可能受专家们的主观因素影响太大,从而影响科学性。权重是因素重要程度的定量表示,其合理性直接影响到评价结果的准确性,为了弱化主观因素的影响,本文采用层次分析法(AHP)确定专家给定的指标权重值。

层次分析法[3](Analytic Hierarchy Process,简称AHP)是美国运筹学家萨蒂(T.L.Saaty)于20世纪80年代提出的,是一种定性与定量分析相结合的多目标决策分析方法。它可以将无法量化的风险按照大小排出顺序,把它们彼此区别开来。其步骤为:构建递阶层次结构;按表4.2根据知识、经验和判断,从第一个准则层开始向下,逐步确定各层诸因素相对于上一层各因素的重要性权数,建立的两两比较矩阵:以表4.3所示为准,检验矩阵的一致性。

表2.1利用层次分析法进行业主风险比较的1-9级标度描述

标度 定义

1 i因素与j因素同样重要

3 i因素比j因素略重要

5 i因素比j因素较重要

7 i因素比j因素非常重要

9 i因素比j因素绝对重要

2、4、6、8 上述两判断级的中间值

倒数 若i因素与j因素比较,得到判断值为aji=1/aij, aii=1

表2.2一致性指标

N 1 2 3 4 5 6 7 8 9

RI 0.00 0.00 0.58 0.96 1.12 1.24 1.32 1.41 1.45

根据每1层次中各个影响因素的重要程度,分别赋予相应的权数。

第1层次评估指标的权重集W={W1,W2,W3,W4},且满足:

(4-2)

第2层次评估指标的权重集:Wi中n个子因素,记为A={ai1,ai2,…ain},{i=1,2,3,4},且满足:

(4-3)

为了使专家意见的筛选更为科学,从而使指权重确定的更为合理,对多个专家所分配的权重进行聚类分析与权重修订,过程如下:

用层次分析法处理得出来的权重矩阵如下,其中Wij指第i位专家对第j个指标判断后经层次分析法处理后得到的权重和重要程度.m表示专家的人数,n表示指标的个数.

W= (4-4)

为了判断矩阵中各专家所得权重的离散程度,故需计算各权重间的相似系数并由此组成相似系数矩阵。相似系数Rij和相似矩阵R如下:

(4-5)

(4-6)

其中Rij指专家i与专家j权重结果的相似程度:由式(4-4)可知,Rij越小,则相似程度越小。n表示指标权重的维数,亦即所评价指数的个数。m表示专家意见的总数,即参加权重评估的专家总人数;显然,Rij=1,Rij=Rji 。

在剔除离异点集中离异程度大的权重时,本文根据聚类分析的原理采用了一种简化的方法,它与现有的方法具有相同的精度,但计算简单、原理直观,更适合在实践领域内应用:

(4-7)

(4-8)

其中,Pi表示相似系数矩阵中每一行之和,它表示第i个专家判断所得出的权重意见与其他专家群体评估所得权重意见的偏离程度,相似系数之和越小,则此专家意见距离其他专家意见越“远”,偏离程度越大。P表示相似系数对行求和形成的一列。

通常来说,聚类分析所要解决的问题是把很多的元素按照相似原则划分为若干小集合,目的在于分类而不是淘汰某个集合[4]。本文的聚类分析则侧重于找出偏离专家群体综合意见程度最大的“离异”专家意见。

最后用偏离程度的量化指标来衡量各个专家意见,通过公式(4-8)确定偏离程度。也就是说,当Di大于某一阀值时,这个意见应该被排除掉。

%(4-9)

式中:Di―第i个专家的相似系数与最大相似系数的偏离程度。

Pmax―相似系数矩阵中的最大值。

在BOT项目风险评估的实践中,淘汰的专家太多,就失去了群体决策评估的作用。淘汰专家太少,则又使个别与群体评估权重偏离程度大的专家意见影响评价结果。根据经验,应用聚类分析淘汰专家的比例应在20%-30%为好[5]。

④ 确立隶属关系,获得模糊评判矩阵。

请专家或相关管理人员组成的风险评估小组,根据给定的评价基准对项目风险进行评价。这种评价是一种模糊映射,即使对同一个风险的评定,由于不同评价人员可以作出不同的评定,所以评价结果只能用对第i个因素做出第j评价尺度的可能程度的大小来表示。这种可能程度称为隶属度[6],记作rij。

由此得到模糊评估矩阵

(4-10)

Rij―对因素Ui中第i个评价子因素作出第j级评价Vp的隶属度,j=1,2,…,n;

P=1,2,…,m 。

⑤ 模糊综合评估

根据模糊评估矩阵,模糊综合评判集为:

(4-11)

B为U中所有因素的综合评判结果,它表示评判对象按所有因素评判时,对评判集中第K级的隶属度。再由最大隶属度原则或加权平均法定出最终结论。

⑥确定评估等级。按照已经制定的评估尺度,进行计算,这种评定是一种模糊映射。

将评估等级取成列矩阵V,风险评估结果最后数值结果为:

S=B×V (4-12)

参考文献

[1]傅鸿源. BOT项目风险评价方法的研究[J]. 系统工程理论与实践, 1995, (10): 55-58

[2]宋冬梅. 基于模糊理论的BOT项目风险评价[J]. 建筑管理现代化, 2005, (4): 54-56

篇4

Abstract: Mudslides risk assessment and warning research is the main research direction and frontier exploratory topic in disaster area at home and abroad. This paper made a brief review on mudslides risk assessment and warning research in recent decades, discussed some existing problems and the development trend at present in this field.

关键词: 风险;定性评价;定量评价;滑坡泥石流;小区域尺度

Key words: risk;qualitative evaluation;the quantitative evaluation;landslide debris flow;small regional scale

中图分类号:P694文献标识码:A文章编号:1006-4311(2010)20-0247-01

1风险性评估回顾

滑坡泥石流灾害在自然灾害中,是最重要灾害类型之一,具有分布地区广、发生频率高、运动速度快、灾害损失严重等特点。国外普遍重视城市滑坡泥石流灾害的评估研究,俄国、日本和美国等国的相关专家、学者、科研院所以及政府机构等均对滑坡、泥石流等地质灾害的风险评估、预测预报等进行了较为系统的研究。涉及各单项评估评价研究文献较多,主要集中于滑坡泥石流灾害的风险分析与制图。自二十世纪八十年代以来,几乎所有受滑坡泥石流影响严重的国家、地区的城市都开展了综合性地质灾害损失预防和管理,其共同特点是选择示范试验区或流域进行风险性评估,这种非工程性措施的减灾效果已普遍得到认可。

自1994年以来,对自然灾害承灾体易损性研究日益引起国际上的普遍关注,城市综合减灾研究成为跨世纪中国最值得关注的保障技术之一。二十世纪九十年代以来,GIS技术与地质灾害空间预测数学模型方法的结合成为地质灾害研究的热点领域。GIS 技术使泥石流风险评价的空间数据集成化更简便、分析速度更快、精度更高,促进了该领域快速发展,相关研究大量涌现,具有代表性的是意大利学者A. Carrara 系统总结了近年来滑坡(含泥石流) 风险制图的技术方法和存在的问题。目前泥石流风险评价工作关键在于GIS 专家、统计专家和地学工作者共同对相关空间数据获取、处理和分析,开发可靠性强的评价模型。我国开展泥石流风险评价研究起步较晚,例如刘希林讨论了泥石流风险区划的易损度计算方法。

滑坡泥石流经济损失评估日益引起各国政府部门和学术界的广泛关注。伦敦大学皇家学院地理系A.Hansen(1984)教授完成的滑坡危险性分析,成为滑坡泥石流风险评价的重要成果。近几年,许多学者对自然和经济易损性作了深入的研究并对多种灾害的易损性建立了分析体系和评价方法或模型,并将它们用于指导高风险地区的防灾救灾。

2预警研究发展

二十世纪七十年代,前苏联学者弗莱施曼[1]提出泥石流空间预报、时间预报和规模预报的概念,开展了天气气象学方法的泥石流发生预报的试验,编制出泥石流工程预测图等,并于1980年出版专著《泥石流形成规律和预报》。与此同时,日本[2]也于1981年出版《滑坡、崩塌、泥石流预测与对策》专著。

中国在二十世纪八十年代开展了区域泥石流的预测预报方法研究,很多学者和研究机构,基于不同的学科背景和不同的研究视角以及不同的问题领域,对中国的滑坡、泥石流等地质灾害调查评价与监测预警进行了探讨与实践,系统地总结了滑坡泥石流预测预报的基本理论与方法,阐述了新思维,积累了经验。在地质灾害中,滑坡、泥石流特别是降雨型滑坡、泥石流的风险评估及其预测预报,在地质灾害频发的后发达的山区省份中尤其具有特殊意义。针对后发达省区的滑坡、泥石流等地质灾害的风险评估及预警研究,已有学者开展了定性或半定量的研究,他们的研究工作和初步成果成为我们从事此项研究的重要基础。例如谭万沛(1994)出版专著《暴雨泥石流滑坡的区域预测与预报》,唐川(1995)出版《云南省滑坡泥石流重点区域预测预报与评价方法研究》。

此外,近十几年来,“3S”技术应用于滑坡泥石流预报测预等方面的研究成果也很多,如Hergarten et al. (1998),Nagra jan, R. et al.(1998),Aldo Clerici et al.(2000),Mandy LinebackGritzner et al. (2001)等。

3讨论

3.1 由于滑坡泥石流灾害损失评估问题的复杂性和评估对象的多样性,特别是涉及山区城市的特殊性,因此有很必要进一步探讨适合山区城市滑坡泥石流灾害特点的损失评估方法,并在实际应用中不断完善,逐步提高其评估水平和实用性,使这项工作更加规范化、科学化。

3.2 我国学者的研究主要集中在国家和大区一级尺度,对各地区的灾害防控具有一定的宏观指导意义。具体到小尺度区域时,由于地质和环境条件的复杂多样、社会经济的差异以及居民生产生活方式的不同等,造成理论成果与实践的脱节,理论服务实践的初衷无法实现,严重制约特定区域的灾害防治和社会经济的和谐可持续发展。针对小尺度区域的滑坡、泥石流等地质灾害的风险评估与预警研究亟待开拓和系统研究。

3.3 可借鉴钱学森院士创立的“从定性到定量的综合集成法”为方法论工具,关注安全、生态、经济、可持续的风险评价、管理与预警系统研发。在地理信息系统平台上,综合使用系统动力学等各个学科的基本研究方法,进行时间和空间对偶分析,更能准确把握问题的实质,找到问题的根源,从而进行跨多学科和多领域的系统分析和情景分析,提出更具针对性的对策建议。

3.4 滑坡泥石流易损性表示“潜在最大损失”,是时间和空间的复合函数,随时间变化和区域的不同而不同,因此易损性评价应该进一步强调易损性增长率的分析。对于处于经济欠发达阶段以及地质环境条件复杂的区域, 由于城镇人口和经济规模急剧上升,城镇范围不断扩大,地质灾害频发,易损度随着财产和人口的增加而快速增大。因此,滑坡泥石流潜在最大损失中,人员损失的比重很大,财产损失占国内生产总值的比重也很大。

参考文献:

[1](苏)C.M弗莱施曼著,姚德基译.泥石流形成规律和预报[M].科学出版社,1980.

篇5

一、现有软件项目风险管理模型分析

软件风险管理是一种软件工程实践,包括过程、方法和工具,并利用这些过程、方法和工具去完成持续评估风险、确定风险优先级、实施策略处理风险工作。现有软件项目风险管理模型包括:(1)BarryBoehm理论。20世纪80年代,软件风险管理之父Boehm认为,软件风险管理这门学科的出现就是试图将影响项目成功的风险形式化为一组易用的原则和实践的集合,目标是在风险成为软件项目返工的主要因素并由此威胁到项目的成功运作前,识别、描述并消除这些风险项。他将风险管理过程归纳成两个基本步骤,即风险评估和风险控制。其中风险评估包括风险识别、风险分析、风险排序;风险控制包括制定风险管理计划、解决风险、监控风险。(2)SEI(软件工程研究所)的CRM(持续风险管理)模型。SEI提出的CRM模型要求在项目生命周期的所有阶段都关注风险识别和管理,它将风险管理划分为识别、分析、计划、跟踪和控制5个步骤,并采取不同的策略。(3)Riskit方法。如果组织在项目早期采用系统化的风险管理过程和技术,那么组织就有能力避免很多问题。Riskit方法能提供这种系统化的风险管理过程和技术,它由Mary-land大学提出的,旨在对风险的起因、触发事件及其影响等进行完整的体现和管理,并使用合理的步骤评估风险。对于风险管理中的每个活动,Riskit都提供了详细的活动执行模板,包括活动描述、进入标准、输入、输出、采用的方法和工具、责任、资源、退出标准。Riskit风险管理过程在项目生命期内,这些活动可以重复多次。(4)SofiRisk风险管理模型。SoftRisk模型是由Keshlaf和Hashim提出的,它基于这样一种观念:记录并将注意力集中在高可能性和高破坏性的风险上是进行风险管理的有效途径。这样可以节省软件开发过程中的时间成本和人力成本,并可有效减轻风险的破坏性。此模型确保在软件项目进行中持续地进行风险管理。(5)IEEE风险管理标准。IEEE风险管理标准定义了软件开发生命周期中的风险管理过程。该风险管理过程是一个持续的过程,系统地描述和管理在产品或服务的生命周期中出现的风险,包括计划并实施风险管理、管理项目风险列表、分析风险、监控风险、处理风险、评估风险管理过程等。(6)CMMI(软件能力成熟度模型集成)的风险管理过程域。CMMI是由SEI在CMM基础上发展而来,并在全世界推广实施的一种软件能力成熟度评估标准,主要用于指导软件开发过程的改进和进行软件开发能力评估。风险管理过程域是在CMMI第三级一一已定义级中的一个关键过程域。CMMI认为风险管理是一种连续的前瞻性的过程。它要识别潜在的可能危及关键目标的因素,以便策划应对风险的活动并在必要时实施这些活动,缓解不利影响,最终实现组织目标。CMMI的风险管理被清晰地描述为实现三个目标,每个目标的实现又通过一系列的活动来完成。(7)Microsoft的MSF风险管理模型。MSF的风险管理认为,风险管理必须是主动的,它是正式的系统的过程,风险应被持续评估、监控、管理,直到被解决或问题被处理。

二、面向企业全面成本计算模型的风险管理策略

结合企业全面成本计算理论和软件项目的风险管理内容,笔者通过对国家科技攻关项目“模型驱动的异构系统集成框架与基于SOA的数据交换平台技术”进行分析,建立一种面向企业全面成本计算模型的风险管理策略。

(一)基于网格体系的企业全面成本计算模型ETCM以客户价值与企业利润最大化为目标,面向产品全生命周期,通过成本企画确定目标成本,并将成本筑人到产品的设计与制造过程;在广度上,面向企业整个供应链,通过作业成本管理确立成本计算模型,优化供应链中的增值作业;并通过层次分析(AHP)方法、企业资源计划(ERP)或系统预测确立EAD模型(费用与作业关联矩阵)和APD模型(作业与产品关联矩阵)等成本分配率模型。在计算过程中,ETCM计算模型涉及合作伙伴各种高度异构、动态分布的信息平台。以Web服务为运行平台,采用面向服务的体系架构,建立图1所示兼容硬件平台、遗留信息系统和知识资源的全面成本管理体系结构,实现对企业整个供应链资源的有效组织和管理,帮助企业在整个供应链范围内,准确计算产品成本信息,辅助决策。

ETCM模型的体系结构由基础支撑平台层、集成化容器层、企业成本相关业务逻辑表示层、业务建模层、企业门户应用层、网格应用层构成。以硬件、系统软件和Internet为基础平台,在容器层建立支持业务运行的Java和功能组件、网格服务和Web服务组件,通过企业业务逻辑表示层实现网格高层应用功能的逻辑表达。企业业务逻辑表示层在企业业务过程编排与工作流技术的连接与管理下,将Legacy(遗留系统)、MTC(微软组件)、E-JB(企业Java组件)、Web服务和网格服务封装成不同领域内的商务应用(如企业物流、财务、人力资源、制造资源、全面成本管理、客户关系管理),并通过企业咨询与诊断、企业业务过程需求分析、业务流程建模、业务流程再造和业务流程持续改进等功能为企业提供实施网格应用的方法论指导。门户应用层为用户提供用户界面和一致的访问接口(如基于Web的服务门户)。应用层在Web服务和网格服务基础上提供网格制造系统高层应用,这些系统不局限于协同环境中的全面成本管理,还可应用于电子商务和电子市场、商务协同、制造协同与供应链协同等领域。容器层提供遗留系统容器、Web应用容器、Web容器以及网格服务容器等分别处理和封装来自合作伙伴或企业内部不同软硬件应用平台和操作系统的成本相关的业务应用。遗留系统容器集成与处理基于业务功能的商务应用,Web应用容器为EJB、Java Bean、MTC、CCM(CORBA组件)等企业级服务器组件提供安全运行环境与管理机制,Web容器为JSP(Java页面)、Servlets、ASP(Active页面)等

Web组件提供安全运行环境与管理机制,网格服务容器集成基于Microsoft,Net、J2EE(Java 2 Enterprise Edition)的Web容器和Web应用容器及Legacy容器,为网格服务与Web服务提供相应执行环境、服务组件执行周期、事务以及安全与服务质量的管理,并支撑Web服务组件的开发、部署、调试和运行,解决了协同环境中异构成本信息的共享与集成问题。

(二)面向ETCM计算模型的风险管理策略 通过对国家科技攻关项目 “模型驱动的异构系统集成框架与基于SOA的数据交换平台技术”的分析,结合上述企业全面成本计算理论的复杂性以及传统软件项目风险管理的主要内容和策略,笔者建立一种面向企业全面成本计算模型的风险管理策略模型,如图2所示:

在图2所示的风险策略管理模型中,理论基础是一个开放的概念,多受益于其他学科,包括风险和风险管理的定义、风险管理模型等体系结构。风险管理模型形成指导性的框架结构,核心风险管理步骤通过引入风险实体的概念和面向目标辨识、评估风险的思想,针对不同企业的计算环境提供不同的风险处理思路。技术基础包括风险定量计算、风险决策支持、风险预测及模拟等相关的风险决策和预测技术。决策树帮助大多数风险项确定相关的解决方案,例如,图形化的评审技术或随机型决策技术(GERT)是在计划评审技术(PERT)和关键路径法(CPM)之后发展起来的随机型网络技术,通过将不确定性引入计划,使系统状态不能全部列举出来,使得任何一种状态都不能完全代表系统的真正结果,增强了节点的逻辑判断功能,且数学模型可以使用计算机仿真来实现。在GER技术基础上,风险评审技术(VERT)从单纯考虑计划的时间因素发展到全面考虑计划中的时间、费用和效益因素,可以对计划进行更全面的分析和评价。

篇6

Abstract: Hierarchy complexity is proved be a source of project risk in order to recognize project risk objectively after the relationship between project risk and hierarchy complexity is discussed. A new risk evaluation model is proposed, in which the hierarchy complexity is used as the criterion and project scale is considered. To investigate risk diffusion mechanism of individual project in project portfolio, mutual effects among projects and classification of project portfolio is analyzed. A model for cooperative project portfolio that quantitatively depicts its risk diffusion mechanism with logistic mapping is proposed. Strategies for reducing complexity risk of cooperative project portfolio were put forward after a case study about the diffusion model.

关键词:项目;项目组合;复杂性;风险

Key words: project;project portfolio;complexity;risk

0引言

如何正确地认识项目的风险来源并对风险的大小做出合理的评估,使项目能有效抵御风险,是项目管理者们在项目运行之前面临的主要问题。面对于实际问题的需要,学者们在风险来源的识别和风险大小的评估方面做了大量的研究[1-6],研究的对象涉及建筑、软件开发、电子商务等众多行业,研究成果给出了不同行业的项目风险来源并建立了多种风险评估方法。这些研究的成果为不同行业的项目管理者的风险管理提供了较好的思路指引和方法指导。

从目前的研究来看仍然存在着有待进一步讨论的地方,其中较为突出的一点就是大部分研究中都认为技术和市场是风险的主要来源,并就这两个方面建立评估方法。技术风险主要是考虑项目所采用的技术与外界的成熟技术相比是否落后,如果项目拟采用的技术处于先进水平,成本是否过高,项目团队是否有能力完成;市场风险则是考虑项目产品的性能是否能满足市场的需求,项目产品的规模是否符合市场规模。所以市场和技术两方面的风险均来主要来自于项目外部环境。从哲学决定论的角度来看,外部因素对事物的发展具有很大的影响,但并不是决定性因素,内部因素才是事物发展决定性因素。对项目而言,外部的需求和技术状况影响着项目的运行,但项目是否能成功达到预期目的,项目内部的运行效率问题才是关键,项目内部的风险是不能忽略的风险。对于风险的评估,通常会建立一套指标体系,然后通过专家的意见获取风险的发生概率和后果影响。这种评估模式目前较为普遍,但笔者认为主观性太强而使得应用面不广,而且实际中不易操作。如果能以项目自身的某一客观表现来反映项目的风险并利用客观数据评估其大小,那么这种风险评估模式既能较为客观,也比较容易实施,对于项目内部风险,项目复杂性的研究为我们提供了思路。

Mohan.V.Tatikonda和Stephen.R.Rosenthal[7]将项目复杂性定义为“一个项目所包含的任务的性质、数量以及范围”,而且认为对于产品开发项目而言,项目的复杂性特征主要体现在所使用的技术的相互依赖程度、项目目标对于开发者而言的新颖程度以及项目目标的困难程度,这三个特征都与项目的不确定性相联系,而且项目的复杂程度与项目的成果成反比关系。Rajesh Kumar[8]等研究了能源开发项目的复杂性,认为能源项目由于项目开发人员、政府、金融机构、设备提供商、子项目承包商以及项目股东等多个利益相关者存在,所以具有结构上的复杂性,而这种结构的复杂性又导致了项目开发人员与各方人员之间相互协商的复杂性,如果项目各方之间的协调出现问题,则很可能会在项目各方的风险分担方面产生障碍从而使得项目失败。蒋国萍和陈英武[9]对软件项目的复杂性及其计算方法作了探讨,认为软件项目的复杂性有两大来源,一是环境的复杂性如用户组织结构的复杂,用户对软件项目的理解和支持以及应用环境的复杂性等。二是软件项目的产品-软件本身的复杂性,这种复杂性主要是软件结构的复杂性和算法的复杂性。Willams.T.M[10]认为项目的复杂性来源于项目的结构复杂和不确定性。这些研究表明,项目的复杂性不仅都是由于项目任务、组织结构以及项目相关利益者的众多而产生,更为重要的是这种复杂性都会影响到项目的实施而带来风险,而且项目组织结构的复杂性被认为是项目复杂性的组成部分之一。项目组织结构的复杂与否是项目本身的一种特征,是一种外在的表现,但这种外在表现的实质是一种风险。因为如果组织结构复杂或者臃肿,各部门的协调性差,那么项目运行就可能会显得无序,好的技术人员、充分的财务资源会被大量的无效行为所消耗,这种现象在实际中是较为普遍的现象,虽然这种情况与工作人员的素质有密切关系,但与组织结构不无关联。因此我们认为组织结构是项目内部产生风险的一个来源,这种风险可能并不像技术、资源等那样被项目管理者所认识、重视,但是客观存在的。因此,我们用组织结构的复杂性作为项目内部风险的衡量尺度并对其定量化。

当单个项目扩展为多个项目的项目组合时,每个项目的实施都涉及到人、财、物等多个方面,项目之间还可能在这些方面相互交叉影响[11],所以研究个体风险与组合风险之间的关系对于认识项目组合整体的风险是必要的。目前对于个体与组合的风险关系的研究成果主要集中于金融投资(如股票、证券)组合领域,由于金融投资的风险主要来自于市场的波动,服从一定的概率分布,所以金融投资组合风险的研究均以概率论作为方法基础,研究具有成熟的方法论指导而且成果也较多。对于实体项目的风险而言,除了市场风险,其它诸如技术、组织结构等风险不具备服从概率分布的条件,如何定量刻画项目个体风险与项目组合风险的关系就成为一个难点,关于这方面的研究目前也较少。鉴于此,本文以项目组织结构复杂性风险为对象,利用logistic映射刻画项目个体的组织结构复杂性风险在协作型项目组合中的扩散机制,以期能为项目个体与项目组合的风险关系的研究提供一个思路。

1基于组织结构复杂性的项目风险评估

由于复杂性在管理中的研究历史并不长,关于管理复杂性的计算也主要集中在企业管理系统度量这一层次,所以对于项目复杂性目前也仅仅是一些概念和定性的描述,具体的计算方法目前较少,能查到的相关文献也仅有文献[9]。

在对企业系统复杂性的度量中,等[12]认为作为复杂度的一个基本方面,复杂度在一定程度上可以不确定性的测度即熵(Entropy)来表示,同时指出复杂模型难以建模和求解,因此利用容易获取的宏观量的宏观综合方法来度量组织的复杂性更具普适性,而一个非常重要的宏观量就是熵,所以利用宏观信息熵来处理复杂系统具有广泛的适应性。在复杂性计算中,宋华岭等做了较多的研究。他们定义了管理熵,提出从管理信息、功能和结构三个维度来讨论企业管理系统的复杂性,以熵作为管理系统复杂性的度量,定义了管理力和管理功,并在此基础上建立了企业系统在三个维度上的复杂性的度量模型以及整体复杂度度量模型[13]。这些模型主要根据于力学和物理学中的“力”和“功”的内涵将管理系统的复杂性视为管理者的管理力和管理功的结果,并利用“力”和“功”计算方法来建立管理系统复杂性的计算模型。此外,他们将理论应用到了煤炭企业中,对煤矿生产工艺的复杂性以及煤矿生产系统的结构的复杂性建立了定量化计量模型[14,15]。从这些研究来看,对于企业复杂性度量主要是针对管理系统的复杂性,其度量方法主要是利用系统的熵来反映系统的有序程度,从而衡量管理系统的复杂程度。

组织结构的复杂性是管理系统复杂性的一个方面,对项目复杂性的研究也指出了项目组织结构的复杂性是项目复杂性的主要来源,所以对于项目的复杂性的计算,组织结构复杂性是一个必要的计算量。文献[15]建立管理系统组织结构复杂性的计算方法,这种方法是针对企业的组织结构而言,而且是就复杂性本身而言,没有将复杂性看作是风险源。对项目而言,规模(一般以投资额度衡量)与风险是密切相关的,相同的风险值,规模大的项目的风险往往也被视为高于规模小的项目。所以我们在文献[15]的计算方法的基础上加入规模因子,即将多个项目的规模加总,然后将各个项目的规模除以总规模,就得到各个项目的规模因子,以体现“大投资,高风险”这一逻辑。以Wi表示利用文献[11]计算出的项目i的组织结构复杂性熵值,以Fi表示项目i的投资规模,则基于组织结构复杂性的项目i的风险评估模型Ci为:

C■=W■×■(1)

2项目组织结构复杂性风险在协作型项目组合中的扩散机制

2.1 项目组合中项目间风险的相互影响对于项目组织结构的复杂性,每个项目都有相对独立的组织结构,所以单从组织结构本身而言项目的组织结构的复杂性是没有相互影响的。但是正如前文所述,组织结构的复杂性的实质是项目风险,而风险是会在项目间相互影响和传递的,所以由于组织结构的复杂性带来的风险会由于个体之间的相互影响而在组合中扩散、传播。但组合的风险与项目个体的风险的关系是怎样的呢,是项目个体的风险之和还是等于组合中项目风险的最大值,或者是其他的关系,这些问题都是值得进一步讨论的。

项目间的影响不同,对项目组合带来的风险也是不同的,所以要评估由于项目个体之间的相互影响而对项目组合带来的风险,首先就需要明确项目间可能存在的影响关系。郭鹏等借鉴生物种群的相互关系对项目间的相互影响作了分类,得到了一个较为完备的分类集[16]。这个分类集将项目间的相互影响分为三类:一项目间相互合作而得以完成,项目间具有上下游关系,称为协作型项目组合;二是项目间相互竞争相同资源、技术或者市场,称为竞争型项目组合;三是项目间不存在共同的资源、技术或者市场,基本上没有影响,称为无关型项目组合。下面分别探讨三类项目组合中项目个体的相互影响对项目组合整体的风险产生的影响。

2.1.1 协作型项目组合中项目的相互影响协作型项目组合中项目的在产品或者信息方面发生了直接作用,也就是一个项目的产品或信息是以其下游项目的产品和信息为基础,上游项目的产品数据、成本以及工期等方面都会直接影响下游项目的产品转换过程,因此,我们不能认为项目之间由复杂性带来的风险是相互独立的。从实际的角度考虑,如果项目的产品数据与下游项目的需要有一定但合乎规定的差距,下游项目将上游项目的产品作为输入的话,那么下游项目所受到的影响不会是上游项目产品数据本身的差距,而可能比这个差距更大,这样就可能造成下游项目产品合格但上游项目以此为输入的产品却不合格。当然如果两个项目之间具有较好的协调性的话,比如相互之间订立了一致的标准,相互建立了良好的对话机制,那么这种差距也会由于良好的协调性而被消除。由此我们认为,协作型项目组合的复杂性及其风险来源于两个方面:一是项目个体本身的复杂性;二是项目之间的协调性。项目个体的复杂性越大,那么会造成项目组合的复杂性越大;二项目之间的协调性越好,项目个体的复杂性也可能被抵消而使项目组合的复杂性降低。

2.1.2 竞争型项目组合中项目的相互影响竞争性项目之间的主要影响来自于对资源和市场的争夺,也就是对项目资源的输入和项目产品的输出的竞争,而在项目内部转化过程,即把项目资源转换为项目产品的过程中是没有相互影响。前文已说明,项目组合中项目个体的组织结构的复杂性是项目个体的外部特征,并不会直接在项目之间相互作用的,而是通过由此形成带来的风险而相互影响。这种风险带来的后果可能是产品数据的混乱,成本的增加,工期的延长,因此,风险的后果主要是在内部转换过程中形成的并影响内部转换过程。而从管理角度来讲,项目组合中项目的管理是相对独立的,只有当各项目在内部转换过程中存在相互影响时,项目的风险才会传递和扩散。竞争性项目组合的项目个体产品之间并没有相互连接,也就是说一个项目的产品转换过程与另一个项目没有直接联系,因此我们认为竞争性项目组合的项目个体的复杂性所产生的风险并不会在其他项目中传递或放大。但组合中项目的复杂性并不是没有影响的,项目组合中的每个项目的收益和风险都对整个项目组合的收益和风险产生贡献,而在竞争性项目组合中,项目之间在产品生产过程中没有上下游的关系,那么规模越大,收益越大的项目的收益的确保,风险的控制对于整个项目组合的收益和风险越重要。所以我们认为竞争性项目组合的复杂性主要取决于项目的规模,也就是说,识别项目组合中规模最大的项目的复杂性并采取措施降低其复杂性是控制项目组合整体复杂性的关键。

2.1.3 无关型项目组合中项目的相互影响由于无关型项目组合中项目之间在产品生产过程中也没有直接的关系,所以无关型项目组合的复杂性也类似于竞争型项目组合的复杂性。

2.2 基于Logistic映射的项目组织结构复杂性在协作型项目组合中的扩散机制协作型项目组合包含了具有上下游关系的多个项目,每一个项目既是下游项目的客户,也是上游项目的服务者,互为因果关系,因此风险会在项目之间传递甚至扩散。由于项目在产品、信息方面的相互传递,每个项目的产品都会被其下游产品的所影响并影响其上游产品,所以一个项目的复杂性小的改善或者恶化通过在组合中的传递可能会引起整个组合的复杂性的改善或者恶化,项目组合的输出对输入敏感,会产生蝴蝶效应。作为社会经济子系统,项目及其组合是开放的,项目的运行要与外界(包括项目组合的其他项目)进行物质和信息的交换,同时环境的变化所带来的经营机遇、经营目标和核心资源的变化也会给项目及项目组合产生不确定性,由于市场是不可逆的,所以项目变化也是不可逆的。由此可以看出,合作型项目组合具有多要素、多层次、不确定等特征,其复杂性必然会对项目及项目组合的实施产生深刻影响。

任佩瑜等[17]提出管理耗散和管理耗散结构的概念,并给出了管理耗散结构的前提条件。从这些前提条件来看,协作型项目组合是典型的管理耗散结构,耗散是与“开放”相对应的,开放系统之所以更为复杂,原因在于它既要考虑系统内部,又要考虑系统外部,因而这类系统中产生混沌往往更为容易。Logistic映射是一维非线性映射,这种映射在研究耗散结构中的传递和扩散作用具有普遍而且广泛的适应性。因此,本文采用Logistic映射描述协作型项目组合中项目个体由于组织结构的复杂性而产生的风险在其下游项目中的扩散作用,进而提出合作型项目组合的动态风险模型。

系统演化是驱动力与耗散力相互竞争的结果[18],所以影响项目组合组织结构复杂性的的不仅仅是各项目内部复杂性,项目之间的协调性也是形成整个组合复杂性的关键因素,每个项目的复杂性也不仅取决于其内部的复杂性还要受到上游项目的复杂性的影响。因此我们认为在合作型项目组合中,复杂性是按照信息、产品在各项目中的传递流程扩散的。

设协作型项目组合中有n个项目在产品或者信息存在相互传递,产品或信息顺序通过n个项目。第i个项目的组织结构的复杂度为ei,总复杂度为En,由Logistic映射:

xn+1=uxn(1-xn)(xn∈(0,1),u∈(0,4),n=1,2,3……)(2)

可得项目i的复杂性在第i+1个成员中的扩散量为:

di=uiEi(1-Ei)(3)

第i+1成员的复杂性为:

Ei+1=ei+1+di=ei+1+uiEi(1-Ei)(4)

由于项目个体的复杂性是逐级扩散的,所以协作型项目组合中项目组织结构复杂性风险的扩散为:

En=en+dn-1=en+un-1En-1(1-En-1) (n=2,3,4……)

E1=e1(5)

对(5)有:

①ei(i=1,2,3,……n)是大于零的实数并且可以利用文献本文第2节的方法计算。

②本文的主要目的是探讨项目的组织结构复杂性潜在的风险在项目组合的传递和扩散作用,因此只考虑组合中项目产品或者信息的传递过程顺序的上下游项目的复杂性之间的关系,处于同一层次的项目之间的复杂性的计算由于没有直接的相互影响,所以可以通过加和方式来完成,在此不做详细论述。

③u是一个具有现实意义的重要的参数,其含义和计算方法在下文中详细讨论。

u是描述上游项目组织结构的复杂性在下游项目中的扩散的参数。而这种扩散的存在是由于合作所产生的。项目组合中的项目个体是为了实现共同的目标和利益而进行合作,项目之间的关系是否协调对项目组合有着重要的意义。如果项目之间合作不协调,即使每个成员的复杂度都很低也可能提高项目组合整体的复杂度;相反,如果成员之间协调性好,那么项目内部的复杂度会在成员之间良好的协调中得以抵消。协调度是指系统之间或系统要素之间在发展过程中和谐一致的程度,描述了系统内部各要素或子系统间协调状况的好坏,体现系统由无序走向有序的趋势。从协同论的观点来看,系统走向有序的机理不在于系统现状的平衡或不平衡,也不在于系统距平衡态有多远,关键在于系统内部各子系统间相互关联的“相互作用”,它左右着系统相变特征和规律,协调度正是这种系统作用的量度。所以此处将u定义为项目组合内相互作用的项目间的协调度。

相互作用的成员构成了一个二元系统。二元系统协调度的计算是通过两者之间的输入、输出关系来界定的。如果成员A的输出是成员B的输入,则AB之间的协调度[11]为:

协调度=(6)

为避免协调度为无穷,规定二元系统的协调度在(0,1)内取值,即令当(6)中的分母为零时协调度为1,分母最大时为零。式(6)是一个概念性的公式,具体的计算方法可文献[19]。

从(4)看出,影响项目组合的复杂度En的因素包括ei和ui。由于实际中的项目的复杂度可能出现[0,1]内的任意值,所以讨论每个项目复杂度与En之间的关系是没有意义的,而探讨ei之间和ui之间的差异对En的影响则能对实际中项目组合的构建和复杂度的降低提供参考;另一方面,在处于项目组合的最下游成员对其下游项目的影响,其复杂度会在组合中的所有项目中传播并影响En,因此探讨最下游项目的复杂度大小与En的关系是有必要的。

2.3 仿真以包含10个项目的协作型项目组合为例

以向量:c1=[0.2,0.21,0.21,0.19,0.2,0.195,0.21,0.21,0.21]表示ui的差异较小,极差不超过0.01

以向量:c2=[0.1,0.002,0.9,0.8,0.03,0.5,0.001, 0.05,0.73]表示ui的差异较大,而且没有任何分布规律。

当ei差异较小,极差不超过0.02时时分两种情况:

(1)e1较大,以e1=0.7为例。以向量:v1=[0.7,0.71,0.72,0.715,

0.71,0.72,0.716,0.72,0.71,0.7]表示e;

(2) e1较小,以e1=0.002为例。以向量v2=[0.002,0.002,0.018,

0.0019,0.0021,0.0022,0.0018,0.0019,0.0017,0.0018]表示e。

当ei差异较大时同样分上述两种情况:

(1)e1较大,以向量v3=[0.7,0.001,0.03,0.051,0.15,0.08,0.007,

0.045,0.015,0.15]表示e

(2)e1较小,以向量v4=[0.002,0.001,0.03,0.051,0.15,0.08,

0.007,0.045,0.015,0.15]表示e

对上述的u、v两两组合,进行模拟得到表1的结果。

从表1可以得出:1)在各种组合下,协作型项目组合的风险普遍比组合内各项目的风险大。2)从组合(1)、(5)得出:如果协作型项目组合内每个项目的风险较大时,那么无论项目之间的协调度好坏与否,都会使项目组合的风险增大;3)从组合(3)、(4)、(7)、(8)得出:在各项目之间的协调度相同的情况下,协作型项目组合风险的演化会趋于定值,e1的大小对En没有影响;而在ei相同时,组合内各项目之间的协调度不一致时的En(0.3184)较成员的协调度一致时的En(0.1552)大。4)在所有的组合中,组合(2)即当项目内部风险较小,项目之间的协调性较好时项目组合的En最小;

此外,在仿真中还发现,改变前6个ei或者ui时,协作型项目组合的En均趋于定值,而以相同幅度改变第6个以后的某个ei或者ui时,组合的En都会发生变化而且变化的幅度愈来愈大。

ei是各项目的内部行为,作为协作型项目组合而言是无法控制的。而ui则是项目组合整体行为,是投资主体能够采取措施降低的。因此对整个项目组合而言ui是一个重要因子。在项目组合的风险最小的组合(2)中固定e,变化ui,测试En得到表2的结果。

从表2可以看出,当ui在区间(0,3.0)内取值时,En随ui增大而增大;当ui大于3.0时,En的变化不再具有规律性甚至出现负数。

由此可见协作型项目由于成员项目个体的复杂性在组合内部扩散使得项目组合的风险具有动态性,从而使得组合较单个项目更为复杂。

从仿真结果得知,要降低协作型项目组合整体的风险,需要降低各个项目的风险和提高项目之间的协调度,并且项目之间的协调度要一致。

对于项目个体的风险,项目组合虽然是一个投资主体,但各个项目的运行和管理是相对独立的,投资主体不会对各项目的风险直接控制,因此可以在构建项目组合时对各项目设计相近而且复杂性较小的组织结构。对于成员之间的协调度则是投资主体可以采取措施控制的。从协同论的观点来看,系统整体要得以存在和保持,就不能让其中的各个组成部分独立地各行其是,而要求它们相互配合,协同工作。一个好的系统必须包容和代表各个成员的利益,为他们提供所需要的东西和“保护”。而对于成员来说,只要还“生活”在这个系统之中,要得到系统的“保护”和其他成员的支持,就必须服从系统给与的约束,接受其他成员的作用。所以,要降低协作型项目组合的复杂度,则应当:

(1)首先就要为项目组合制定共同认可和遵守的“公约”,如果有谁违反就要受到相应的惩罚,这样使项目组合中的各项目的行动方向趋向一致,避免由于各项目之间的协调度不一致导致项目组合风险加大。

(2)各项目为实现投资主体的利益最大的目标而组合,项目之间并不是简单的供求关系而是利益共同体,相互间的信任、共同的信念是项目组合得以维系的根本。所以作为项目组合的投资主体应着力建设企业文化并使这些文化能在项目的实施过程中起到团结协调的作用。

(3)合作型项目组合中各项目之间会产生信息、物质甚至人员的交换和流动,因此如果各项目在地理上是分散的,那么就须要建立低成本,快速的物流系统,高效实用的物流方案,降低成本,提高效率。

(4)充分利用通讯和计算机技术建立通畅的信息交流平台,并将各项目的信息归结到投资主体所能掌握的一个平台上,这样就有利于各项目的信息交流的通畅,避免由于信息表达形式的不同而引起误解,同时也有利于主体及时了解各项目的运行情况。这也是目前企业中做得较多的信息化工作。

3结论

项目风险不仅仅包括技术、市场等外部影响因素,项目内部的运行效率是项目达到预期目的的决定性因素,因此对于来自不能忽略项目内部的风险。项目的组织结构的复杂性虽然是项目自身的一种外在表现,但这种外在表现会对项目的运行效率产生影响,因此将项目组织结构的复杂性作为项目的一个风险是有必要的,同时以组织结构的复杂性作为这种风险的度量方法也能使风险评估定量化。对于项目组合而言,项目间的相互影响不同,项目组合的风险也就不同,尤其是对协作型项目组合而言,组合中的项目个体的组织结构复杂性风险会在组合中传递、扩撒,项目组合具有耗散系统的性质,所以用Logistic映射反应协作型项目组合中项目组织结构复杂性风险的扩散机制是适当的,当然这种定量刻画是否精确还有待进一步研究。

参考文献:

[1]A.Fiordaliso, P.KunschA Decision Supported System Based On the Combination of Fuzzy Experts Estimates to Finacial Risk in High-level Radioactive Waste Projects[J] Progress in Nuclear EnergyVol.46, No.3-4,pp.374-387,2005.

[2]V.Carr, J.H.M.Tah A Fuzzy Approach to Construction Project Risk Assessment and Analysis:Construction Project System[J] Advance in Engineering Software 32 (2001):847-857.

[3]Ibrahim.A.Motawa, Chimay.J.Anumba,Ashraf.El-HamalawiA Fuzzy System for Evaluating the Risk of Changes in Construction Projects [J] Advance in Engineering Software 2006 (37):583-591.

[4]Wendy.L.CurreA Knowledge-based Risk Assessment Framework for Evaluating Web-enabled Application Outsource Projects[J] International Project Management 2003 (21):207-217.

[5]P.N.Sharrat, P.M.ChoongA Life-cycle Framework to Analyse Business Risk in Process Indurstry Projects[J] Journal of Clearner Production 2002 (10):479-493.

[6]Wen-Ming Han,Sun-Jen HuangAn Empirical Analysis of Risk Components and Performance on Software Projects[J] Journal of Systems and Software 2007 (80):42-50.

[7]Mohan.V.Tatikonda, Stephen.R.RosenthalTechnology Novelty,Project Complexity,and Product Development Project Execusion Success:A Deeper Look at Task Uncertainty in Product Inovation[J] IEEE Transactions on Engineering Management Vol.47, No.1, pp.74-87.

[8]Rajesh Kumar, U.Srinivasa Rangan, Carlos RufinNegotiating Complexity and Legitimacy in Independent Power Project Development[J] Journal of World Business, 2005 (40):302-320.

9]蒋国萍,陈英武.基于证据推理的软件项目复杂性评估[J] .计算机工程与应用 2005(2):4-7.

[10]Willams.T.MThe Need for New Paradigms for Complex Project[J] International Journal of Project Management 17(1999):269-273.

[11]刘亚旭,汪应洛.具有不对称性风险交互效应的R&D项目组合选择方法[J].系统工程,2007,25(2):18-21.

[12],盛华毅,现代系统科学学[M].上海:上海科学技术文献出版社,2005.

[13]宋华岭,刘全顺,刘丽娟等.管理熵理论-企业组织管理系统复杂性评价的新尺度[J].管理科学学报,2003,6(3):19-27.

[14]宋华岭,李金克,于红等 薄煤层煤矿生产车间特殊开采生产技术的复杂性评价[J].中国管理科学,2007,15(1):80-87.

[15]宋华岭,金智新,白希军等.矿井生产系统结构复杂性评价[J].煤炭学报,2005,30(3):403-408.

[16]郭鹏,曹朝喜,杨娅芳 基于种群生态学的竞争项目组合风险决策模型[J].工业工程,2006,9(6):70-75.

[17]任佩瑜,张莉,.基于复杂性科学的管理熵、管理耗散结构理论及其在企业组织与决策中的作用[J].管理世界,2001,(6):142-147.

篇7

【关键词】 大数据审计; 物联网; 云计算

物联网建设的本质不是“互联互通”,而是远程智能控制,而能够沟通感知层、网络层与应用层,实现远程智能控制的只有大数据。因此,确保大数据的真实、可信与安全便成为物联网建设的核心任务。大数据审计是实现这个任务的重要工作之一。基于这个背景,本文介绍了大数据审计的目标、审计的依据、审计内容、企业三层审计制度等内容。

一、大数据风险暴露:物联网建设数据风险规避的需要

物联网的发展使企业从“小数据时代”进入“大数据时代”,而这些巨量的非结构化为主的大数据的处理只有云计算技术(或平台)才能够实现。因此,当业务和数据从传统的信息系统环境转移到“云”上后,数据与业务的安全、操作合规、业务持续、数据真实、安全、可信等是企业信息化考虑过程中除了效率和成本之外的核心问题。虽然云服务提供商会考虑如何为用户提供安全、可信的云计算解决方案,但用户必须考虑如何确保自己的信息资源的可信与可控。大数据风险不仅具有传统网络环境下的风险,还具有云环境下的风险。

(一)传统网络环境下的大数据风险

1.大数据暴露在“第三只眼”的风险

由于网络的虚拟化、无边界、流动性等特征,数据及其系统面临较多的安全问题。黑客的入侵、恶意代码的攻击、拒绝服务攻击、网络钓鱼或敏感信息外泄等,如:网络中的病毒、木马、恶意软件对公司数据或系统的监测、攻击,导致公司的数据或系统不能够正常运转与应用;数据在网络、服务器、存储、平台到应用的过程经常遭到泄露和被第三方窃取的问题,特别是公司内部员工恶意利用实体的方式,接触备份敏感数据,或是利用在系统上的权限,存取第三数据,窃听重要会议机密,获取商业机密;系统内部自然、人为因素导致数据或系统不能够正常运作;由于火灾、地震等自然因素,或硬件与软件运行过程的正常与不正常因素,导致数据或系统不能够正常运作。

2.数据质量问题导致数据的误用

“与有形产品不同,垃圾的数据只能产生垃圾的信息。”由于在大数据过程中经常出现数据不准确、不完整、不及时等数据质量的问题,因此,在数据分析处理的过程中必须确保大数据的质量。

3.数据被人为操纵的风险

数据分析的目的是解决企业业务问题、提升业务决策。由于业务的理解因人而异,业务决策的目标也因人而异。数据分析所应用的数据和模型不同,分析的结果也将会不同。也就是说,数据分析如果不能够客观,将会产生被人为操纵的风险。因此,企业必须通过审计杜绝那种自私的操纵统计数据的做法,并增强注重客观性的企业文化。

(二)大数据暴露于云计算平台下的风险

1.大数据暴露于服务供应商的风险

在物联网、云计算环境下,企业的数据置于企业边界之外的公共共享网络上,并且数据的所有权、管理权及使用权发生了分离——企业用户失去了对数据资源的直接控制,直接面临着用户与服务提供商的安全 问题。

2.数据暴露于共享平台上租户的风险

在物联网、云计算环境下,企业数据经常处在与其他客户共享的情况中,许多数据加密也未能防止数据泄露,且必须进行资源隔离,特别是对数据休眠期间的安全隔离。由于企业数据的信任边界审计,许多数据虚拟化技术未能确知托管于什么地方,这些动态变化的信任边界要求逻辑层的访问控制和授权管理得到审计与信任。

3.数据暴露于企业业务变化的风险

企业数据会由于企业需求变化、投资变化、监管策略变化从一个云平台迁移到另外一个云平台,数据兼容性和互操作性、各个平台的统一合规标准等需要审计,确保数据的安全、可靠与可信。

二、大数据审计:物联网建设的制度保证

企业传统信息化系统存在于企业内部,是相对封闭的信息系统,只有少量的Web应用、邮件系统等需要的业务系统暴露在外,企业只需要在出口部署安全设备、设置高颗粒度安全访问控制策略、内部规范管理、提供操作性较强的安全防护措施就能够确保企业的信息安全问题。然而,在物联网、云计算时代,企业数据从业务分布处理向可快速分发、快速迁移的计算资源整合,对网络安全方案提出更高的要求,包括高性能要求、性能弹性扩展、全面的可靠性保障、虚拟化和可视化要求、立体式的安全防护等。

因此,物联网和云计算的技术特征和商业模式决定了用户在使用云计算服务时,难以控制数据和业务的风险,必然导致对数据安全、隐私保护、合规水平等问题的担忧。因此,更合理的方式应该基于持续性专业监控和专业分析,对云计算应用作出客观、公正、综合的评价。大数据审计正是扮演这样一个角色。

大数据审计是传统信息审计的发展,它仍然是“收集并评估证据以决定一个计算机系统是否有效做到保护资产、维护数据完整、完成目标,同时最经济地使用资源。”随着物联网的建设,大数据大审计是企业内部控制、信息系统治理、安全风险控制等不可或缺的关键手段。

大数据审计定位为物联网建设中大数据风险的综合治理,它保持独立性,以第三方客观的立场对物联网建设中大数据进行检查和评价,不仅保护建立在“云”上物联网业务和“云”中大数据安全,而且对大数据处理过程中的效果、效率、可靠以及合规等风险隐患提出审计意见。

三、大数据审计的标准规范

与会计审计遵循《审计准则》一样,大数据审计需要有一套共同遵循的审计规范。物联网、云计算快速发展带来大数据审计的需要,各国政府、协会或民间组织也积极关注并推行大数据审计的规范。一般说来,大数据审计主要存在于信息审计或云计算的审计规范之中,当前国外主要信息审计的相关标准如下:

信息系统审计与控制基金会在1996年制定的IT治理模型(COBIT),是国际公认的、权威的安全与信息技术管理和控制的标准,也是国际上通用的信息系统审计的标准之一。它的宗旨是跨越业务和IT控制之间的鸿沟,建立一个面向业务目标的IT控制框架。特别是最新的COBIT5.0版本中,被称为“一个治理和管理企业IT的业务框架”。它是IT技术人员、用户、企业管理人员和IT审计师之间的桥梁。

美国国家标准与技术学院(NIST)不仅了被广泛引用的《云计算定义》,还了《联邦信息系统和机构的信息安全持续监测》(ISCM)报告,通过持续监测,保持其对信息安全、漏洞和威胁的警觉。

美国云安全联盟CSA在2009年12月了《云安全指南》。它涵盖了“云计算重点13个区域的安全指导”,从云用户角度阐述了可能存在的商业隐患、安全威胁以及推荐采取的安全措施。

ISACA是国际信息系统审计协会在2010年推出的云计算管理审计、保证程序(Cloud Computing Management Audit/Assurance Program),规定审计过程中使用的工具、模板以及流程。同时,ISACA还在程序中规定了审计过程中应该关注的审查点以及遵循的标准,从而保证审计师能够完整、真实地记录有关数据。主要关注云计算治理的影响、服务供应商以及客户之间的合同履约、云计算控制的具体问题等。如数据审计的审计目标是:为云计算服务提供商的客户提供对服务提供商内部控制的有效性和安全性评估;识别客户组织其他与服务提供商的接口是否存在内部控制缺陷;评估客户的质量和能力情况与服务提供商的内部控制项相关的证明。

其他的信息审计标准还有欧洲网络与信息安全局的《云计算风险评估方法论》、ISO27001等等。

在我国,由于物联网与云计算等信息化发展相对落后,至今尚未有大数据审计的标准,可以参考的主要有2008年五部委共同颁布的《企业内部控制规范》和2009年银监会颁布的《商业企业信息科技风险管理指引》。

四、大数据审计的框架体系

大数据审计与会计审计一样,也包括制定审计目标、确定风险领域、制定审计计划、设计审计程序、执行审计计划以及出具审计结果和管理建议。由于篇幅的限制,本文提出的大数据审计框架体系是由大审计目标维、审计制度维、控制对象维等构成的三维立体体系。具体如图1。在下文中主要介绍大数据审计的目标、审计制度维、审计对象维等具体的内容。

(一)大数据审计的目标:大数据审计的目标维

1.对大数据的安全性发表意见

物联网及云计算的运用下,网络的虚拟化、无边界、流动性等特征,数据及其系统面临较多的安全问题。例如:商业机密被第三方所利用、商业机密或个人隐私的数据被公司内部别有用心地“恶意”利用、自然灾害等意外情况的发生等。因此,大数据安全是大数据可靠、有效使用的前提。为了有效保护系统和数据安全,做好灾害预警等,数据审计对于数据安全和物联网的建设有着至关重要的意义。因此,大数据审计首推对大数据的安全性发表意见。它不仅要对提供大数据服务供应商的安全可信性发表意见,同时也包括对服务提供商本身的可信性发表意见,对企业内部的大数据收集、处理等过程的数据安全性发表意见。

2.对大数据来源和数据质量的可靠性发表意见

大数据获取过程中对数据的处理,是为后续流程提供高质量数据的基础,因此,如何获取数据以及对数据如何处理,对后续高效高质量的数据分析起着至关重要的作用。

大数据审计的目标是确保大数据质量的准确性、完整性、一致性、时效性、可信性以及可解释性。具体而言,当采集的源数据存在数值缺失、空值、冗余、错误、格式不一致、含义不清等问题时,审计人员应当进行数据整理、加工,剔除错误或偏离期望的值,以提高审计分析的准确性和效率;保证数据不缺属性,确保数据完整性;使数据之间不存在差异,相互可内洽,达到数据的一致性;数据的“新鲜感”——及时送达数据确保数据的时效性;在整个数据整合过程中,统计出有多少数据是用户依赖的,以测数据的可信性;最后,也是最重要的,是保证数据容易被理解,以达到其可解释性。

3.对大数据分析的有效性发表意见

通过数据产生、数据获取、数据存储、数据分析、数据可视化,最后到达数据结果,是业务部门数据操作的整套流程,也是检验数据是否合理、有效性的最重要一步。大数据往往被深埋在非常大型的数据库中,且往往包含多年的历史数据,同时数据量和搜索工作量都非常大。数据分析的有效性不仅取决于数据质量,也取决于数据分析的合理性。数据审计必须对数据分析的合规性是否达到数据分析效果进行审计。大数据审计人员通过开展数据分析,科学高效地确定项目、编制方案、实施审计、出具报告,从而确保数据的准确性和有效性。

(二)数据分析过程:大数据审计的对象维

数据分析过程是数据审计架构的对象,是解决大数据审计的源头。根据大数据生命周期业务流程,大数据审计需要对如下大数据分析业务环节的数据安全性、可靠性、有效性进行审计:数据源分析、数据获取、数据存储、数据分析、数据共享、数据可视化等大数据分析过程。具体如图2。

1.数据源分析

物联网、云计算中的数据源头为企业外部数据和企业内部数据。为确保企业数据安全性、可靠性及数据分析的有效性,必须对数据源进行分析安全性等审计。如:审计数据存储的可信度,审计数据的完整性、数据的可靠性、数据的一致性等分析;数据格式分析;数据更新方式分析等等。

2.数据获取

数据获取过程是指物联网通过云计算平台获取数据的过程,主要包括数据整合、数据清洗、数据转换、数据加载等业务过程。由于云环境下数据平台上有多租户的出现,必须明确数据的权属。这个过程要确保数据安全、可靠,有效使用的制度主要有对数据分类并对数据进行标识、分配权限。同时,针对不同数据进行分级,制定数据加密等安全策略。

3.数据存储

物联网和云计算环境下的数据必须保证所有的数据包括所有副本和备份,存储在合同、服务级别协议和法规允许的地理位置。建立数据访问控制;进行数据加密,建立内容发现制度,确保数据安全审计工作有效进行;要求对数据进行数据等级区分,分开存放;如果存在数据共享,应该对访问权限进行严格精细化控制,并可以实时监控和提供审计措施。

4.数据分析

大数据分析实务中避免数据遭到任何哪怕是轻微的泄漏,以避免侵害到数据拥有者和数据相关者的利益。大数据审计要审核企业是否可以通过日志文件或基于的工具对数据分析活动进行有效监控;企业是否制定数据安全的应用逻辑;企业是否制定基于数据管理解决方案的对象级控制制度;企业是否进行多份、异地备份方式进行数据备份,防止数据丢失、意外的数据覆盖和破坏,必须保证数据可用。

5.数据可视化

数据可视化是指计算机图形学、图像处理技术和office办公软件,将数据或数据分析结果转换成图形、图像、表格、文件等形式,并可进行交互处理。数据可视化是为了洞察分析数据表述的问题,找出问题的答案,发现关系性规则,进而发现在其他情况下不易发觉的事情,弥补现有科学分析方法的不足。大数据可视化审计是审查数据可视化是否表达事情的原来面目,是否扭曲了事物实际情况;审查数据可视化是否泄露了信息,是否有利于事情的表达等。

6.数据共享

企业大数据主要通过云平台进行数据的共享。因此,大数据审计要审查企业是否设定安全的数据共享应用逻辑;是否制定数据分析解决方案的对象级控制制度;是否有基于数据内容的数据保护;涵盖如电子邮件、网络传输、数据库、文件和文件系统是否有加密解决方案。

(三)三层审计制度:大数据审计的制度维

目前审计按审计内容可分为企业管理层面审计、流程控制审计和面向运营环境整体的三层审计。其中:企业管理层面控制审计主要关注整体的IT治理,合规、云战略和规划;流程控制审计主要关注云运营流程中内嵌的相关安全控制,以保证数据或系统的完整性、准确性、有效性和访问控制;运营环境整体控制主要关注与数据中心运营相关的管理控制,包括基础设施和流程、信息安全、业务持续性管理和灾难恢复、事件响应等方面。

本文认为,按参与审计的主体分,大数据审计制度还应当建立业务人员自查、部门经理审查、审计部门审查的三级审查制度,步步推进,层层把关,确保大数据的安全、可靠、有效性。各个审计主体依据大数据审计标准,对大数据业务操作流程进行审计,确保大数据的安全性、可靠性与有效性。限于篇幅,不展开 讨论。