量化投资与分析范文

时间:2023-06-04 10:02:08

导语:如何才能写好一篇量化投资与分析,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

量化投资与分析

篇1

(一)传统证券风险量化指标的理论源头

传统的证券风险分析当中必然会同一个与之如影随形的概念联系在一起,那就是收益,同时,在西方传统的经济学当中风险和报酬存在着这么一个函数关系,甚至在一些传统的经济学课本上作者为了简化两者之间的关系,将两者简单的归结为一个完美的线性关系,即风险与收益之间是一对一的数学关系,并且存在着这样一个逻辑:风险越大,报酬或者收益也就越大,反之亦然。即使是稍微尊重事实一些的经济学教材也运用了高等数学当中线性回归的方法将两者的关系从非线性回归为一对一的线性关系。除了学界对于风险的分析是从报酬或者收益出发的以外,在国外或者国内的民间也有类似的对于两者关系的表达,例如我国有句老百姓口中经常说到的“富贵险中求”就是对两者的关系的简单认识。因此,传统证券风险分析的源头明显是来源于对于报酬的分析。

(二)传统证券风险量化指标的数学方法的应用

传统的证券风险理论认为证券的总风险=可分散的风险+不可分散的风险,其中可分散的风险主要指的是个别证券自身存在的风险,而不可分散的风险则是指市场风险,下面笔者介绍一下传统证券风险量化的两个重要的指标――标准差与贝塔值。

第一,标准差。传统证券风险理论认为个别证券的风险可以从单个证券的报酬率为起点进行分析。财务投资专家从高等数学当中引入了一个衡量证券报酬率的波动性量化分析的指标――标准差来进行对单项证券风险的判断,进而判断出相同期望报酬率和不同期望报酬率时对于不同投资的选择。测算的步骤如下:第一步,确定各种市场需求下各类需求发生的概率;第二步,计算出期望报酬率,其实质上是对于各类市场需求下的报酬率的加权平均数。第三步:根据标准差的数学公式计算出标准差,σ=[Σ(ri-?)2×Pi]1/2其中ri是第i只证券的报酬率,?是期望报酬率,Pi是第i只证券的报酬发生的概率。结论是在期望报酬率相同的时候,标准差越大证明该证券波动越大,风险也就越大,反之亦然。在期望报酬率不同时引入了另外一个概念即离差,由于基本原理也是根据标准差衍生而得,在此不再赘述。[1]

第二,代表市场风险的贝塔值。我们在第一点中提到的标准差主要衡量的是单项证券的风险,而贝塔值的引入主要是考虑到了证券组合的风险构成当中不可分散的风险即市场风险。而贝塔值的测算公式从数学的角度来说实际上是利用了标准差的升级版公式即协方差,协方差主要是衡量了两组数据之间的相关程度,以此来判断证券组合的报酬率与市场报酬率之间的数理联系,进而判断出不可分散的风险。理论上贝塔值的计算是βi=(σi /σm)ρim,其中βi第i个证券组合的市场风险程度,σi,σm分别第i个证券组合的标准差与市场证券组合的标准差,ρim代表第i个证券组合的报酬与市场组合报酬的相关系数。实际当中β系数可以通过将股票报酬对市场报酬做回归得到,拟合得到的回归线的斜率就是证券的β系数,即β=Ri /Rm。[2]

二、价值投资理念下风险与报酬的关系

价值投资理念是华尔街之父本杰明格雷厄姆所创立,在其传世之作《证券分析》当中明确提出了有关投资与投机概念,其中论及投资界老生常谈的收益与风险的问题时结论与传统证券风险分析有着本质的不同,格雷厄姆明确指出收益与风险之间不存在着数学关系,并且认为证券的价格与收益并非取决于对于其风险的精确数学的计算,而是取决于该证券的受欢迎程度,而这种受欢迎程度本身包含了投资者对于风险的认识,但很大程度上还受到如公众对公司和证券的熟悉程度,证券发行与购买的容易程度等。[3]并进一步指出,无论是理论上还是实际当中,对投资风险进行精确的计算都是不可能成功的,现实当中并没有所谓的期望报酬率的概率经验表,即使存在也是基于对于历史数据的分析得到了,而历史数据之于未来决策的有用性或相关性的大小还有待考证,其研究范围不同于保险公司对于保单的精确测算,例如人寿保险能够明确的了解年龄与死亡率之间的关系是明确的。而证券的风险与报酬之间的关系则没有如此的确定。[4]

三、价值投资理念下传统证券风险量化分析的反思

以上笔者对于传统的证券风险理论与量化方法以及价值投资理念下关于风险与收益的关系进行了论述。笔者认为,价值投资理念下有关论述对于我们重新审视证券投资中风险因素的衡量有着非常重要的意义。

首先,笔者认为,标准差的计算过程本身就存在着无法避免的瑕疵,这一个公式至少有两个基本假设,第一,计算的人必须能够客观的预测出各种市场情况发生的需求概率,并且准确的在各种概率下发生的报酬率;第二,假定历史数据对于未来的投资决策具有确定的相关性。但是在现实生活中根本是无法预测的,这种算法实质上是硬将自然科学当中的数学模型强加到社会问题的研究当中,不可否认的是,目前来说大量的社会问题是无法通过数学来量化的,因为证券的风险当中不仅仅只有报酬因素的影响,还有各种在不同市场条件下的因素决定的,而这些因素又相互的的影响和动态的变化。因此,标准差的方法受到了质疑,后续的离差率、β值的计算自然也就没有了根基。

其次,β值的测算除了上述由于标准差的非客观性导致的不确定性的缺陷以外,笔者也针对实操当中第二种公式进行分析,β的第二种公式是β=Ri /Rm,从公式上来看,存在着明显的逻辑上的可疑性,单个股票的收益率假如大于市场整体的收益率,则该只股票的风险就比市场风险大?这个观点在《证券分析》当中就已经被很好地反驳了,在此,笔者只需要举一个例子就足够反驳这一个观点,伯克希尔哈撒韦上市公司每股截至2017年6月5日是249660美元,每股收益率如果从上市之初可以用天文数字来形容,并且这家公司经历了无数次大大小小的金融危机,依然以远远超过市场平均的业绩笑傲群雄,难道说他的风险要远远大于市场?这家公司是以价值投资的理念进行风险评估和投资的。因此,笔者认为中国的证券行业乃至我们有关的证券专家和学者们有必要从价值投资的理念来重新审视目前证券风险量化的指标在实际当中的效用。

篇2

2011年7月1日,本刊正式引入《今日投资66》专栏,介绍今日投资66的选股逻辑、方法以及挑选出的股票。今日投资66(简称I66)是利用量化投资方法挑选出的一个66只股票的组合。其实早在2005年中今日投资就推出了I66,过去几年累计收益率达到16倍,远超同期市场不到3倍的涨幅。为什么直到今日我们才大张旗鼓地推出I66呢?原因其实很简单,因为市场环境。量化投资近几年在中国快速发展,其投资理念也越来越多地获得认同。

股票市场上形形的各种分析方法总结起来可以归类为三大流派:数量分析、基本面分析和技术分析。关于这三大流派孰优孰劣的争论已经持续了近百年,三方各执一词,百年争论下来也没有争出个结果来。当今世界也是这三种流派大概各占三分之一的格局。而A股市场显然尚未跟上,量化投资远远没有达到三分之一的市场占有率。

第一部分:什么是量化投资

量化投资在海外的发展已有30多年的历史,其投资业绩稳定,市场规模和份额不断扩大、得到了越来越多投资者认可。事实上,互联网的发展,使得新概念在世界范围的传播速度非常快,作为一个概念,量化投资并不算新,国内投资者早有耳闻。但是,真正的量化基金在国内还比较罕见。那么,何为量化投资?

康晓阳:量化就是符合投资常识的投资逻辑和策略

接下来会发生什么?

深圳市天马资产管理有限公司是国内最早开发量化投资模型的资产管理公司,致力于量化投资工作接近十年。作为国内量化投资的“开山鼻祖”,深圳天马的董事长康晓阳先生如下介绍量化投资:

大家看到这个图,鱼跳起来了,风在刮,接下来会是什么?日本发生的9级大地震!2011年3月7日我看到一个报道,有50条鲸鱼在搁浅沙滩,就在发生地震那个县东部的海岸,有的死了,专家解释这些鲸鱼集体迷路了。作为一个地震专家或者学者,其实他们的经验没有告诉他这50条鲸鱼搁浅沙滩跟地震有什么关系。到底有没有关系呢?我们知道5•12四川大地震之前发生了同样的事情,很多癞蛤蟆过马路,这跟地震有什么关系?

投资做股票有两类,讲很多种策略,无外乎就是买你自己喜欢的和买市场喜欢的,买自己喜欢和买市场喜欢的背后逻辑就是找影响股价的要素。

量化是什么?做投资,最终的分析停留在数据上,既然是数据,就可以标准化、固化。从你自己的角度买自己喜欢的东西,其实也可以量化,每个人都有对美的标准,但并不是符合这个指标,你就一定喜欢。如果有一个海选,把符合你喜欢特征的人放在你面前你去选,就可以量化。

鲸鱼搁浅在沙滩上,根据历史数据统计就会发现这个事情跟接下来要发生的事情有什么关联。把人的行为逻辑影响股价所有的要素进行综合分析,预测下一个市场喜欢的东西或者喜欢的策略是什么,简单一句话,量化就是符合投资常识的投资逻辑和策略。就股票来讲,投资标的的数据和因素量化,再用一些模型统计的方法把选出来的标的进行优化,最后成为投资组合,这就是量化的基本逻辑。用数理的方法把你的投资逻辑或者市场的投资逻辑固化,只要有投资逻辑的思想或者策略,都可以量化。

就股票而言,有很多种方法,有价值型股票,分析方法无非是那几种,只是大家的标准不一样,量化的东西可以设一个相对宽松的东西,初选之后再优化,比如成长型股票,肯定关心盈利、收益。选出来10个、20个、50个甚至100、200个股票,然后配比重,怎么优化组合,根据你的风险和预期收益率反推回来怎么优化,最后得出一个比重,哪只股票应该投多少。有些是成本交易,比如套利,什么情况下出现一定条件的时候提示你。

要真正做到量化,首先要有一个基本的理论模型。你要觉得什么样的股票表现好,什么样的股票你愿意投资,这就是量化的基本逻辑。但是,有了这个逻辑之后还不够,还要有复合型人才,因为量化投资不光要懂得投资股票,还要懂得数理分析。打个比方,虽然我很懂股票,但我不懂数理分析,很多计算机模型也不懂,更不懂编程序,要真正做到量化投资,就必须有复合型团队。为什么这么多年华尔街学金融工程、数理、物理的人大受欢迎?因为他们可以用统计工具。前段时间我在英国的一所大学和一些专门做模型分析的教授交流,我发现他们想的东西更加复杂,基本上把市场上任何的东西都想要量化。

我理解,就是去跟踪你的投资逻辑,它只是帮你实现你想法的一种工具。另外还要有高质量的数据,因为,你通常看到的东西和市场本身存在的东西可能并不一样。如果把鲸鱼放到海滩上,这作为数据化,统计过去2000年有多少次鲸鱼搁浅在海滩发生,假如有真实的数据,就可以研究出跟地震的相关性。要懂数理统计工具,建立模型就是纪律,不能改变,改变就不是模型。有人说看到今天不行,换一下,那就不是模型了。我们看过一个电影,造出来的机器人最后自己都控制不了,那就是模型。如果造出来的机器人自己能控制,那不是模型。人为什么能挣得到钱,为什么还要量化?传统是靠个人经验的,而且你看到、听到的东西都是有限的。量化有什么好处?它可以把你知道的东西在整个森林中搜索。计算机是不知疲倦的,晚上你在打鼾,计算机还可以工作。你的模型是你建的,你很理性的情况下建的模型,市场情绪变了,它不会变,那时候你不可能去改模型,所以它不会受情绪的影响。

华泰联合:实现投资理念与策略的过程

国内研究机构中涉足量化投资较早并多次获得新财富最佳分析师评选金融工程第一名的华泰联合证券金融工程团队如是说:

数量化投资是利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程。与传统定性的投资方法不同,数量化投资不是靠个人感觉来管理资产,而是将适当的投资思想、投资经验、甚至包括直觉反映在量化模型中,利用电脑帮助人脑处理大量信息、帮助人脑总结归纳市场的规律、建立可以重复使用并反复优化的投资策略(经验),并指导我们的投资决策过程。

本质上来讲,数量化投资也是一种主动型投资策略,其理论基础在于市场是非有效或弱有效的,基金经理可以通过对个股、行业及市场的驱动因素进行分析研究,建立最优的投资组合,试图战胜市场从而获取超额收益。然而一些定性的投资者却并不太认可定量投资,他们认为,定性研究可以将把股票基本面研究做得很深入,从而在决策深度上具有优势。然而,在当今市场上,信息量越来越大且传播速度极快,单个分析师所能跟踪的股票数量开始显得越发有限,也因此错过了许多优秀的投资机会,可谓是拥有深度的同时错失了广度。量化投资正好弥补了这一缺失,通过使用强大的计算机技术,它能够实时对全市场进行扫描,并依仗其纪律性、系统性、及时性、准确性以及分散化的特点最大概率的捕获战胜市场的投资标的。

事实上,在海外市场,我们看到越来越多的定量与定性完美结合的成功案例。通过向量化模型中加入分析师对未来主观判断的观点(定性的观点),再结合来自于历史规律检验的观点(定量的观点),定量与定性的优势便能得到充分的发挥和融合。我们相信,这也将是未来量化产品发展的主流方向和趋势。

结论

量化研究作为一种研究方法,其本质是使用统计学、数学和计算机工具改进研究效率,使得我们能够在更短的时间、更大的视角领域下,依靠清晰的研究逻辑,获取更为有效和操作性以及复制性更强的研究成果。量化研究的本质是一类发现市场规律的方法体系,其基本功能是认识市场和解释市场,并以做到预测市场为目的。

量化投资简单来讲,它以模型为主体,使用大量数据,并且在很大程度上用电脑这样的投资方式;其以科学性和系统性著称,并将在严格的纪律化模型制约下,紧密跟踪策略,使运作风险最小化,并力争取得较高收益。

第二部分:量化投资在蓬勃发展

量化投资在世界的发展史

美国市场有200多年,从证券市场开始,也有快400――500年了,但是量化的发展是上世纪50――60年代的事。首先有一些理论模型,没有理论模型支撑很难做到量化的东西。

数理化投资于上世纪50~70年论上发芽

Harry Markowitz在上世纪50年表一系列关于投资组合“均值―方差”优化的论文,这使得投资者可以定量化风险,并把风险和预期回报放在一个理论框架下统一考虑;

WilliamSharpe在1964年发表CAPM模型,此模型显示个股的预期回报和个股的风险及市场的预期回报成正比;

Steven Ross在1976年发表APT模型,此模型显示个股的预期回报可以表示成一系列非特定因素预期回报的加权平均,此模型为量化投资者指出了很实用的研究框架;

Black-Scholes在1972年发表关于股票权证的定价模型;

Fama和French在1993年发表三因素模型,此模型显示个股的预期回报由三个因素(市场,个股的市值,个股的市净率)决定;

此后很多研究者做了非常多的实证研究,并发现了一些对个股将来回报有预测作用的因素:比如市盈率,市净率,资产回报率,盈利一致预期,中长期价格动能,短期价格反转等。

数理化投资从上世纪70年代末开始实际运用

Barclays Global Investors(BGI)于1978年创立了全球第一只数量化投资策略基金,到被BlackRocks收购之前BGI以14000亿美元的规模,高居全球资产管理规模之首。

SSgA(道富环球投资管理公司)和 GSAM(高盛国际资产管理公司)为首的一大批以数量化投资为核心竞争力的公司已经成为机构资产管理公司中的“巨无霸”。

“詹姆斯•西蒙斯创办的文艺复兴科技公司花费15年的时间,研发基于数学统计理论的计算机模型,借助该模型,西蒙斯所管理的大奖章基金,从1989 年到2009 年间,平均年回报率高达35%,较同期标普500 指数年均回报率高20 多个百分点,比“金融大鳄”索罗斯和“股神”巴菲特的操盘表现都高出10 余个百分点。

在国外。其他采用量化投资的公司没有获得惊人的表现,并非是量化方法不好,而是他们还没有构建出更好的模型以及正确的策略。作为量化投资的大行家和受益者,西蒙斯承认有效市场的套利机会极少而且会趋同小时,然而,仍然有无数转瞬即逝的很小的机会存在,在证券市场,那些很小的交易,都会对这个庞大的市场产生影响,而每天都会有成千上万这样的交易发生。这个市场看似杂乱无章,却存在着内在规律,而量化操作自从诞生以来,无疑成为捕捉这些规律的一把利器,为海外投资者屡建奇功。

CQA(教育产品内容与数据测试)数据统计:在2002年-2004年三年间,量化产品的平均年收益率为5.6%,比非量化产品的平均年收益率高出1%。从信息比率来看,量化产品为0.37,非量化产品为0.06。此外,量化基金的运作费率相对更低,例如传统产品费率为0.6%,主动量化产品费率在0.45%-5%之间。

理柏(LIPPER)数据显示,2005年到2008年之间,87只大盘量化基金业绩表现好于非量化基金,增强型量化基金在2005年和2006年更是大幅跑赢非量化基金。但2007年和2008年除市场中性基金外,所有基金业绩下滑很快,其中双向策略和大盘量化基金表现差于非量化基金,而增强型和市场中性量化基金表现则优于非量化基金。

量化投资在中国的发展现状

研究力量不断壮大

目前大部分券商研究所都配有金融工程研究小组,成员超过5个的不在少数。根据2010年11月份的《新财富》最佳分析师榜单,国信证券金融工程小组人数有12人,为目前人员配备最多的量化投资研究团队。其他入选金融工程前五名的研究小组中,申银万国8人,华泰联合、安信证券各5人,中信证券4人。

数量化方面的研究报告数量也是逐年增加。据不完全统计,2008-2010年相关报告数量分别有52、142、794篇,今年上半年就达到了633篇,逐年递增趋势非常明显。不过,和2010年研究报告10万多份的总量相比,数量化研究的广度和深度还有很大提升空间。

量化产品初露锋芒

天马旗下的产品中,现有两个信托产品采用量化投资策略,分别是新华―天马成长,和平安―Lighthorse稳健增长。

此外,上投摩根、嘉实、中海基金、长盛基金、光大保德、富国基金、南方基金等都有量化产品推出,但是量化基金的比例还是非常小。即便在2009年,全年新发基金超过100只的情况下,新发的量化基金也仅有4只,数量在2009年的新发基金市场中仅占3%。与指数基金、普通股票基金相比,量化基金可谓是基金市场上的稀缺资源。

2011年,在国内紧缩政策与国外动荡局势的影响下,A股市场呈现结构性震荡上扬的格局。随着市场轮动的提速及内在容量的扩大,精选个股的难度日益加大。在此背景下,定性投资容易受到投资者情绪影响,而定量投资则能够通过计算机的筛选,帮助投资者克服非理性因素,在充分控制风险的前提下应对市场万变。以“人脑+电脑”为主要构建的量化基金逐渐显现投资优势,今年量化基金异军突起,整体表现不俗。截至4 月6 日, 9 只具有完整业绩的主动型量化基金平均收益率为0.64%,超越同期股票型基金和混合型基金-1.39%、-3.08%的净值增长率。其中,“元老”光大保德信量化核心基金收益率达5.19%。此外,南方策略、中海量化策略、长盛量化红利、长信量化先锋、上投摩根阿尔法、华泰柏瑞量化先行基金也均取得正收益,分别达到4.12%、3.28%、2.60%、2.13%、0.77%和0.16%;仅嘉实量化阿尔法和华商动态阿尔法收益为负,分别为-4.48%、-7.94%。此外,从以往披露的公开信息可以发现,国内量化基金多侧重价值因子,也契合今年低估值大盘蓝筹股领涨的市场格局。

第三部分:解读量化投资

在西蒙斯崛起之前,判断型投资完全占据着主流地位,因为当前全球投资界的三大泰斗当中,无论是价值投资的巴菲特、趋势投资的罗杰斯,还是靠哲学思维的索罗斯,都是判断型投资的代表。但随着西蒙斯的声名鹊起,量化投资开始受到投资大众的重视并呈现出蓬勃的发展态势。但需要指出的是,世界上没有万能的投资方法,任何一种投资方法都有其优缺点,量化投资当然也不例外。定量投资成功的关键是定量投资这个模型的设计好坏,设计的好坏主要由模型设计者对市场的了解、模型构建的了解和模型实践经验来决定的。

量化投资的决策体系

量化基金的成功运作必然依托一个完整而有效的量化体系用来支撑,该体系是数据获取、数据处理、资产配置、组合管理到全程风险控制等诸多环节的有机结合。

我们借鉴海外量化基金运作架构的诸多优点,并结合华泰联合金融工程资深研究员的看法,旨在提供一个适合中国市场特点的量化基金运作架构体系。该体系综合考虑了定性及定量两大主要选股思路,在风险可控下,充分发挥量化投资的优势。

此架构包含以下几个主要层次:

1. 数据提供:量化体系的底层一般是数据接入端口,数据来源于外部数据提供商。

2. 数据预处理:由于中国A 股市场历史较短,数据质量一般,特别是早期的数据较为不规范。因此,在输入模型前必须对数据进行全面的清洗,从而增强数据的有效性和连续性。

3. 资产配置:资产配置是量化基金的核心。不同的投资者具有不同的投资理念,即不同的资产收益率看法。因此,通过构建差异化的因子配置模型来实现差异化的投资理念则充分展现了量化投资的优势和精髓。举例而言,我们可以开发针对不同市场状况(如牛市、熊市、震荡市和转折市)以及不同投资风格(如保守、激进和中庸)的量化模块。这些模块就类似于儿童手中的玩具积木,一旦投资决策委员会确定了战略和战术配置比例,接下来要做的就是简单的选积木和搭积木的过程。模块化投资严格的遵循了投资思路,从而将量化投资的纪律性、系统性、及时性和准确性展露无遗。

4. 投资决策:宏观经济政策对中国A 股市场的表现影响较大,也就是我们常说的“政策市”。针对这一现状,综合考虑定性和定量的宏观判断对于我们选择合适的基金仓位及资产组合将十分必要。一方面,结合宏观及行业分析师对于未来宏观经济的预判以及个别性事件的分析,另一方面,考察既定的一系列量化择时指标和宏观经济指标的最新动向,从而能较为全面的提出投资建议。

5. 组合管理:在对于宏观趋势、战略和战术资产配置的全面考量之后,留给基金管理人的工作将是如何实现在交易成本,投资风险以及组合收益三者之间的最大平衡。

经典量化投资模型综述与评价

目前,由于计算的复杂程度和对速度的要求,量化投资的交易过程通常是由电脑自动来完成的,可在某些方面电脑依然不可能替代人脑。投资若要取得成功,就需要顶尖的大脑来罗织数据、发现规律、编制最快最好的电脑程序;此外,量化投资所使用的模型在用了一段时间之后就会慢慢失效,因为越来越多的“山寨版”会出现,因而需要不断发现新的模型以走在这场军备竞赛的前列,而此时需要的就是配备精良、高速运作的人脑。由此可见,模型在量化投资的整个体系中居于核心地位。近几十年来,西方理论界与实务界均诞生了不少量化投资模型,大力推动了量化投资的发展,这其中又大致可分为三大类:传统的基于经济学意义的模型(structural model)、现代的基于数学、统计学意义以及计算机原理的模型(statistical model)、程序化交易模型。以下就这三者分别予以介绍。

(一)传统的基于经济学意义的模型

这种模型虽然用到了一些数学与统计学的工具, 但其核心思想与前提假设仍然是围绕经济学或金融学原理而展开的。例如,B-S 模型与二叉树模型提供了金融产品定价的新思路,因而也衍生出了所谓的以选择权为基础之投资组合保险策略(option-basedportfolio insurance,OBPI),如欧式保护性卖权(protective put)策略、复制性卖权(synthetic put)策略和一些持仓策略―――买入持有(buy-andhold)策略、停损(stop-loss) 策略、固定比例投资组合保险(constant proportion portfolio insurance,CPPI) 策略、时间不变性组合保障(timeinvariant portfolio protection,TIPP)策略、固定组合(constant mix)策略与GARP(Growth at a Reasonable Price)策略等。

(二)现代的基于数学、统计学意义以及计算机原理的模型

与上述模型相比,这种模型“量化”的倾向愈加明显―――淡化甚至忽略经济学或金融学背景,基本上只是依赖先进的数学、统计学工具与IT 技术构建模型,进而确定投资策略。模型中应用的具体方法主要包括参数法、回归分析、时间序列分析、极值理论、马尔科夫链、历史模拟法、蒙特卡罗模拟法等等。

(三)程序化交易模型

随着金融市场的日益复杂化, 越来越多的复杂交易策略被设计出来,这些交易策略很难通过传统的手工方式执行,于是程序化交易应运而生。程序化交易是指按照预先编制的指令通过计算机程序来完成交易的方式,可以分为决策产生和决策执行两个层面:前者是指以各种实时/历史数据为输入通过事先设计好的算法计算得出交易决策的过程,而后者是指利用计算机算法来优化交易订单执行的过程; 也可以从交易频率的角度,分为高频交易和非高频交易。程序化交易使得复杂的量化交易策略得以实施,优化交易指令的执行,解放人力使之把精力更多地集中到投资策略的研究上, 最重要的是能克服人性的种种弱点与障碍从而保证绝对的“客观性”与“纪律性”。然而,这种交易方式也引起了诸多争议,如对速度的过高要求会造成市场的不公平、巨大的交易量可能会增加市场的波动性、容易产生链式反应、为了盈利可能会制造人为的价格而降低市场的有效性等等。

量化投资的主要策略

增强型指数基金:策略的主要目的还是跟踪指数,希望用量化模型找出能紧跟指数但同时又能小幅超越的组合。

非指数型量化基金:能利用绝大多数好的投资机会,而不需去管组合是否能紧跟指数。

多―空对冲基金:买入模型认为能表现好的股票, 卖空模型认为会表现差的股票。有时可能净多仓, 有时可能净空仓。此策略在对冲基金中很流行。在A股市场中能卖空的股票不多,所以一般只能用期指去对冲。

市场中性的多―空对冲基金:买入模型认为能表现好的股票, 卖空模型认为会表现差的股票。在任何时候净仓位为0,同时在各行业上,大小盘风格上的净仓位都为0。此策略在对冲基金中也比较流行。此策略的波动率非常小,在国外一般会加入杠杆。

130/30基金:一般共同基金采用,即买入130%的多仓, 卖空30%的空仓。

程序化高频交易:利用期指或股价的日内波动进行高频买卖。有些策略是找价格模式,有些是利用交易所规则上的漏洞。

可转移Alpha:主要用在增强型指数基金上,具体是用期货来跟踪指数,一部分多出来的钱投资于风险比较小的能取得绝对正收益的策略上。

市场择时/行业轮动/风格轮动:用数量化模型预测市场/行业/风格的拐点

量化投资和传统投资的比较

天马资产首席数量分析师朱繁林博士表示,量化投资区别于定性投资的鲜明特征就是模型,对于量化投资中模型与人的关系,大家也比较关心。可以打个比方来说明这种关系,我们先看一看医生治病,中医与西医的诊疗方法不同,中医是望、稳、问、切,最后判断出的结果,很大程度上基于中医的经验,定性程度上大一些;西医就不同了,先要病人去拍片子、化验等,这些都要依托于医学仪器,最后得出结论,对症下药。

医生治疗病人的疾病,投资者治疗市场的疾病,市场的疾病是什么?就是错误定价和估值,没病或病得比较轻,市场是有效或弱有效的;病得越严重,市场越无效。

投资者用资金投资于低估的证券,直到把它的价格抬升到合理的价格水平上。但是,定性投资和定量投资的具体做法有些差异,这些差异如同中医和西医的差异,定性投资更像中医,更多地依靠经验和感觉判断病在哪里;定量投资更像是西医,依靠模型判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。在每一天的投资运作之前,会先用模型对整个市场进行一次全面的检查和扫描,然后根据检查和扫描结果做出投资决策。

传统的定性投资强调的是基金经理的个人经验和主观判断,相对来说强调基金经理的单兵作战能力。而量化投资主要是用来源于市场和基本面的模型指导投资。

量化投资可以最大限度地捕捉到市场上的机会。而传统的定性投资受到研究员,基金经理覆盖范围的限制。

量化投资借助模型进行投资,比较客观和理性,更不会受市场和情绪影响。

量化投资的可复制性更好。传统的定性投资易受到基金经理,资深研究员人动的影响。

其实,定量投资和传统的定性投资本质上是相同的,二者都是基于市场非有效或是弱有效的理论基础,而投资经理可以通过对个股估值,成长等基本面的分析研究,建立战胜市场,产生超额收益的组合。不同的是,定性投资管理较依赖对上市公司的调研,以及基金经理个人的经验及主观的判断,而定量投资管理则是“定性思想的量化应用”,更加强调数据。

国内量化基金投资风险分析

(一)量化模型质量产生的投资风险

投资模型本身的质量,是量化基金最核心的竞争力。专业人士以为,对于中国这样的新兴市场,量化投资的关键是能否根据市场特点,设计出好的投资模型。然而,已有的量化基金中,大多简单地利用国外已公开的模型,或是用基金公司自有的一些简单模型,在考察市场的有效性上普遍比较欠缺。如中海量化策略和南方策略优化在行业权重配置中均采用的Black-Litterman(BL)模型。这种模型现是华尔街主流模型,亦是高盛公司资产管理部门在资产配置上的主要工具。然而,在国内市场信息搜集等方面局限性较大的情况下,该系统到底是否有效,是否仅是基金公司体现其“专业性”的一个由头,还有待观察。

(二)基金经理执行纪律打折扣所产生的道德风险

好买基金研究中心的一份报告指出,大部分量化基金在择时、行业配置和资金管理等方面并没有采用量化模型,更多的是基金经理的主观判断。观察这些量化基金的契约和季度报告可以发现,基金要么不进行择时,要么根据主观经验进行择时,这在很大程度上无法体现出模型选股产生的效果。

(三)数量化模型滞后产生的风险

量化基金效果如何,无法脱离资本市场环境的成熟度。量化模型的运用有重要的前提条件,是必须在一个相对成熟稳定的市场中运行,这种市场环境下基于历史数据设计的模型才可能延续其有效性。国内股市曾经大起大落,市场结构和运行规律都发生过质变。在这种情况下量化模型有可能跟不上市场本身的改变,严格的量化投资也难以适应变化。这或许是这种舶来品水土不服的一大原因。可以说,早期的A股市场并不适合量化投资理念,而随着市场逐渐成熟,量化投资的优势才开始逐渐显现。近两年量化投资基金数量成倍增加,也是对这一趋势的反映。

篇3

揭开定量投资神秘面纱

与定性投资不同,定量投资更多关注“数字”背后的意义,依靠计算机的帮助,分析数据中的统计特征,以寻找股票运行模式,进而挖掘出内在价值。

李延刚总结了定量投资的三大优势:首先是理性。定量投资是对于基于基本面定性投资方法和工具的数量化统计性总结,它在吸收了针对某种投资风格和理念的成功经验的基础上,以先进的数学统计技术替代人为的主观判断,并能够客观理性地坚持,以避免投资的盲目性和偶然性。“完全的数量化分析过程将极大地减少投资者情绪的影响,避免在市场极度狂热或悲观的情况下做出非理性的投资决策,因而在牛熊市的转换中具有很强的自我调节性。”

其次,全市场覆盖。定量投资可以利用数量化模型对垒市场的投资标的进行快速高效的扫捕筛选,把握市场每一个可能的投资机会,而定性投资受人力精力的限制,显然无法顾及如此广的覆盖面。

此外,数量化投资更注重组合控制和风险管理。数量化的个股选择和组合构造过程。实质上就是在严格的约束条件下进行投资组合的过程,先从预先设定的绩效目标的角度来定义投资组合,然后通过设置各种指标参数来筛选股票,对组合实现优化,以保证在有效控制风险水平的条件下实现期望收益。“换言之,数量化投资模型能够很好地体现组合收益与基准风险的匹配和一致,”李延刚解释。

定量投资是否适应中国市场

“谈到定量投资,不得不提量化投资领域中的传奇人物――詹姆斯・西蒙斯。”李延刚并不掩饰其对这位投资大师的崇敬,“他不仅是世界级的数学家,也是最伟大的对冲基金经理之一。他创办的文艺复兴科技公司花费15年时间,研发基于量化数学模型的计算机模型,借助该模型,两蒙斯所管理的大奖章基金,从1989年到2006年的平均年收益率达到了38.5%,甚至超过股神巴非特。”

值得一提的是,李延刚也来自数量化投资的发源地――北美,他有着6年海外一线投资管理的实际工作经验,深刻领会并掌握了量化投资理念与方法,具备数量化投资领域的成功经验。2007年,李延刚回国后加盟中海基余,着手增强中海基金金融工程团队的寅力。在借鉴国外成熟的投资理念与经验的基础上,结合A股实际,他用了近两年时间对数量化模型进行反复修改与调试。目前,中海基金的金融工程部已经形成从择时、配置到选股等方面的一系列研究成果,并在今年顺势推出中海量化策略基金。

詹姆斯・西蒙斯的神话在中国证券市场能否再次实现?“当其他人都摆西瓜摊的时候,我们摆了一个苹果摊。”李延刚用一个形象的比喻来形容定量投资存国内市场的发展机遇。他认为,目前国内证券市场定性投资者太多,竞争激烈,而数量化投资者则太少,机会相对更多,竞争也很小。李延刚表示,大量实征研究证明,中国证券市场为一个弱有效市场,市场上被错误定价的股票相对较多,留给定量投资发掘市场非有效性的空间也就越大。基于这种考虑,定量投资方法在中国的发展极具发展空间。

“今年推出量化基金并非一时的心血来潮,一方面中海基金金融工程部已经逐渐成熟,而另一方面也是出于市场时机的考虑。”李延刚强调。

他认为,在经历2008年的巨幅下跌后,市场底部已经基本确立,目前小盘股估值相对较贵,短期内市场可能会以调整为主,但未来市场走势仍然存在诸多不确定。在此背景下,如何把握结构性机会将是未来投资关键之所在,利用数量模型进行分析和投资的量化基金具备更好的适应性。中海量化策略基金将把握市场调整时机,采用数量化模型选人具有估值优势和成长优势的大中盘股票作为基石,辅之以部分优质的小盘股票。

“量体裁衣”完善全程量化流程

据了解,中海量化策略基金的全程量化流程分三个步骤,即选股策略自下而上,施行一级股票库初选、二级股票库精选以及投资组合行业权重配置的全程数量化。

“就像裁缝做衣服一样,量化基金在投资中也要通过‘量体裁衣’来完善全程量化流程。通过全程量化与基金经理的思想相配合,才能做出优质的量化基金。”李延刚表示。

首先,选取代表性最强的反映公司盈利能力的指标,对于所有的A股上市公司进行筛选从而得到一级股票库。“主要通过对所有A股股票过去三年平均EPS(每股收益)、ROE(净资产收益率)、毛利率三项指标进行筛选,它们能分别较好的反映上市公司的获利能力,从而得到一级股票库。”李延刚说。

其次,通过盈利性指标、估值指标、一致预期指标,熵值法确定指标权重后,对一级库股票进行打分排名,从而筛选出二级股票库。其中,一致预期指标则是通过各券商分析师的调查后,得出上市公司盈利预期数据平均值,以此权威性地反映市场对公司未来盈利的预期水平。“中海量化基金引入一致预期作为选股指标,可以全面、权威的反应市场对上市公司未来盈利的预期水平,为投资决策提供更为真实和前瞻性的依据。与此同时,还可以根据预期的变化及时动态调节,更加适应股市的震荡波动。”李延刚强调。

篇4

[关键词]量化投资;Alpha策略;意义;方法

[DOI]10.13939/ki.zgsc.2015.25.083

Alpha策略最初的理论基础是套期保值,是由美国经济学家H.working提出的,随后股指期货的面市,量化研究便激发了人们浓厚的兴趣。传统的资产管理者理念的哲学基础大部分为追求收益风险平衡,然而平均市场收益与超额收益又很难达到绝对的均衡,因此将超额收益也即Alpha分离出来,建立起基于Alpha策略的量化投资,有助于指导投资实践。

1 Alpha策略在量化投资中的应用意义

量化投资指的是以现代计算机技术为依托,通过建立科学的数学模型,在充分掌握投资环境的基础上践行投资策略,达到预期的投资效果。采用量化投资方式的优点包括其具有相当严格的纪律性、系统性,并且对投资分析更加准确与及时,同时还具有分散化的特点,这使得策略的实施过程更加的机动灵活。量化投资过程使用的具体策略通常有量化选股、量化择时、统计套利、高频交易等,每一种策略在应用过程各有千秋,而Alpha策略属于量化选股的范畴。传统的定性投资也是投资人基于一种投资理念或者投资策略来完成整个投资活动的,最终的目的是要获得市场的占有率,并从中取得丰厚的利润。从这个角度来衡量,量化投资与传统投资的本质并无多大差别。唯一不同的是量化投资对信息处理方式上和传统定性投资有着很大的差异性,它是基于现代信息技术、统计学和现代金融工程理论的基础上完成对各类数据信息的高效处理,在对信息处理的速度、广度上是传统定性投资无法比拟的。在对投资风险的控制方面也具有很大的优势,是国际投资界兴起的新型投资理念和应用方法,也在日益成为机构投资者和个人投资者共同选用的有效投资方案。现阶段量化投资的技术支撑和理论建设的基础包括人工智能技术、数据挖掘、支持向量机、分形理论等,这些现代信息处理与数据统计方式为量化投资的可操作性提供了坚实的基础。

Alpha策略在量化投资中的使用优点主要是对投资指数所具有的价值分析与评定。它不是依赖于对大盘的走向变化或者不同股票组合策略趋势的分析,对投资价值的科学分析与合理评估更能吸引投资者的目光。Alpha策略重视对冲系统风险所获得的绝对收益,在股票投资市场上是一种中性的投资方式,具体的程序有选择资产、对资产的优化组合、建立具体组合方式、定期进行调整。为了促进该策略在投资市场中获得良好的收益,就必须先要重视优秀的选股策略,其次是重视期货对冲平均市场收益的时候所产生的风险控制问题。对冲系统风险时,若是能够及时地对投资组合与相关的股指期货的平均市场收益指进行精准地判定和预测,那么将会对整个投资行为产生积极的影响。

2 基于Alpha策略的量化投资具体策略和实践方法

通常情况下,Alpha策略所获得的实际收益并不是一成不变的,这与该策略本身的特定有关,具体表现在周期性与时变性上。

Alpha策略的时变性主要是指当时间产生变化时,超额收益也会随之而改变。需要清除的是Alpha反映的就是上市公司超越市场的预期收益,因此属于公司资产未来估值预期的范畴,所以上市公司自身所处的发展阶段和发展环境不同,那么就会给Alpha带来影响。由于时变性的特点,这就给策略的具体估计模型的设立带来了更多不可确定的因素,为此,参照对Alpha满足不同动态假设的理论基础,建立起一个可以获得不同种类估算的模型,同时假定在同一个时间范围内,超额收益和市场平均收益都保持恒定不变,这就极大地简化了计算的过程与步骤。也就是说在该段时间内,市场上股票投资组合基本面不会有太大的变化与波动,这就与实际的投资状况基本达成一致。对于投资策略的调整则要根据上市公司重大事项发生情况而定,那么估算的时间单位周期可以采用每日或者每周估算,对每一个季度的历史数据进行调整也可以作为一种调整方式,反映公司季度行情。对于具体证券而言,采用季度或者每周的调整频率则不是最为理想的,还要针对公司情况与市场行情综合调整。

Alpha的周期性特点在交替出现的正负号上最为突出,导致这一情况产生的原因主要是行业的周期性特征与套利效应共同造成的。具体而言,首先不同类型的证券分别属于不同的行业所有,当行业处于景气周期循环状态下会影响Alpha的符号与大小,同时景气程度的深与浅也会对此产生影响。其次一个股票组合产生非常大的超额收益情况下,市场中的其他机构投资者或者个人投资者就会不断地参与到该组合的投资中来,最后会导致Alpha逐渐接近于零。因此在建立不同策略的组合方面,要针对每一个季度的具体情况和波动率,进行综合性地评价与分析,并及时地做出必要的调整,以便最大限度地获得市场收益。

量化投资中的Alpha策略并不是一种单一类型的策略,不同的策略都在寻求获得超额收益的市场机会和可能性。现阶段市场上采用的Alpha策略主要有多因子选股策略、动量策略或者反转策略、波动性策略、行业轮动策略、行为偏差策略等,每一种策略在具体实施过程中都有其特征性,并且可以相互结合使用,发挥出综合预测和评价的作用。

多因子选股策略是必要和常用的选股方式,最大的优势是可以将不同种类和模块的信息进行高效化综合分析与评价后,确定一个选股最佳方案,从而对投资行为进行指导。该种选股策略的模型在建立方面比较容易,是量化投资中的常用方式。同时多因子模型对反映市场动向方面而言具有一定的稳定和可靠性,这是因为所选取的衡量因子中,总有一些可以把握住市场发展行情的特征,从而体现其本来就有的参考价值。所以在量化投资过程中,很多投资者都使用多因子模型对其投资行为进行评估,无论是机构投资者或者是个人投资者,都能够从中受益。多因子选股策略模型的建立重点在于对因子的剔除和选择上,并要合理判断如何发挥每一个因子的作用,做出综合性的评定。

动量策略的投资方式主要是根据价格动量、收益动量的预期与评定,对股票的投资进行相应的调整,尤其是针对本身具有价格动量的股票,或者分析师对股票的收益已经给予一定评级的股票,动量策略的应用效果会比较理想。在股票的持有期限内,某一只股票在或者股票投资的组合在上一段时间内的表现均佳,那么则可以判断在下一段时间内也会具有同样的理想表现,这就是动量效应的评价依据,从而对投资者的行为起到一定的影响作用。反转策略和动量策略恰好相反,是指某一只股票或者股票投资组合在上一段时间内表现很不理想,然而在下一个时期反而会有突出的表现,这也给投资者带来了一线希望,并对影响到下一步的投资策略的制定。

波动性策略也是Alpha策略的一种方式,主要是利用对市场中的各股运动和发展状态的细致观察与理智分析后,列出一些具有相当大的波动性的股票,同时这些股票的收益相关性也比较低,对此加以动态化的调整和规划,从而逐渐获得超额收益的过程。在一些多因子选股策略中也有机构投资者或者个人投资者将股票具有的波动性作为考察与评价因子之一,波动性策略经常和其他策略相结合来评价,这说明股票投资市场本身就具有一定的波动性,因此在投资过程中要慎重对待。

行业轮动策略和行为偏差策略的应用频率不似前面几种高,但也会和另外几种策略相互结合使用。行业轮动策略主要是为了充分掌握市场行业轮动机制与特征,从而可以获得高额的收益,对行业之间的投资也可以非常高效和准确地进行,对把握正确的时机有很大的优势。行为偏差策略目的是窥探到股票市场中存在的过度反应或者反应不足等现象,这些都属于股票投资市场的偏差,从而可以通过投资者对不同股票抱有的差异化评价来实现超额收益。

篇5

本刊记者专访了建信责任ETF、建信社会责任联接基金经理叶乐天,为我们揭开量化投资的面纱。来自浙江,北大数学系出身的叶乐天,谈起量化投资,如数家珍。在他看来,量化投资与基本面投资在方法论上有较大差别。后者类似中医,通过实地调研考察,望闻问切,接触病人,获取信息,加以判断;前者则把影响投资的各方面情况以及投资逻辑转化为数据和模型,类似西医,用医疗设备对病人进行体检和化验,更重视借助图表和数据对病人的病情做出判断,因此能做到不见病人而对其基本特征了如指掌。

:请通俗介绍一下什么是量化投资,它的发展情况如何?

叶乐天:中国量化投资研究院院长陈工孟曾做过这样的描述:第一批聪明人叫金融学家,他们发明了各种各样的金融衍生品赚得盆满钵满;第二批聪明人叫数学家,他们通过各种数据模型去发现了一些不合理的现象,同时发现了赚钱的机会,然而数学家不知道怎么把钱赚到手;第三批聪明人就是IT工程师、软件工程师,他们帮助第二批聪明人实现了赚钱的机会。而“量化投资”就是高端的金融人才、数学家和一流的IT工程师的复合。在美国有一种说法,最聪明的人,最高端的技术首先应用在两个领域,一个领域就是国防,第二个领域就是华尔街。

量化投资从20世纪70年代在美国兴起,经过40多年的发展,已经成为西方金融市场最为重要的投资方式之一。从20世纪90年代初期开始,量化投资的资产管理规模迅速增长,2000~2007年,美国的量化投资总规模增长了4倍多。2011年美国的量化投资和对冲基金的规模经过金融危机以后再创新高,达到了2万多亿美元的规模。

2009年被称为中国量化投资元年。随着2010年股指期货的推出,金融衍生品迅速登上中国资本市场的舞台,为量化投资的发展创造了有利的条件,而量化投资的发展为投资者提供了可选择的、非常有优势地位的投资方式。

:量化投资与价值投资有什么关系?

叶乐天:资本市场之大,每位强者都有自己的成功之道。相对于巴菲特过去20年平均20%的年回报率,有位中国人不太熟悉的高手更胜一筹,他就是华尔街的“模型先生”詹姆斯·西蒙斯。西蒙斯创办的大奖章基金从1989年到2006年的平均年收益率高达38.5%,净回报率超过巴菲特,即使在次贷危机爆发市场一片阴霾的2007年,他的基金回报都高达85%。

与股神巴菲特的“价值投资”不同,西蒙斯的投资成就依靠的是“量化投资”。这位24岁起就出任哈佛大学数学系教授的数学天才,依靠数学模型和计算机技术捕捉着市场机会。他认为,数学模型比主动投资能够更有效地降低风险。虽然中国人对西蒙斯这个名字还比较陌生,但量化投资产品在华尔街已经非常普遍。

:为什么说量化投资像西医?

叶乐天:随着计算机运算速度的提高,华尔街的量化投资已经发展到争取几毫秒的机会。同一个套利机会下,谁下单早,谁就能抓住机会。尽管大家争取的可能是万分之一的收益,但是通过每天大量的交易,日积月累,就能取得很高的回报。

与市场熟悉的定性投资相比,量化投资在研究方法上与其有着很大不同。定性投资主要通过公司基本面研究进行投资决策。需要基金经理到企业调研,看研究报告,与高管深入交流、了解大股东诉求,了解公司发展规划之类,有深度。量化投资则注重广度,比如市场上有2000只股票,量化投资会通过计算机比较2000只股票的数据,找出上涨个股共同的特征因子进行投资。与定性投资产品的基金经理经常出差不同,我主要的工作都在案头——搜集数据,处理数据、还有编程。

定性投资和定量投资的差异如同中医和西医的关系。定性投资更像中医,更多地依靠经验和感觉判断病在哪里;定量投资更像西医,依靠模型判断,模型对于基金经理的作用就像CT机对于医生的作用。

:如何选择量化投资产品尤其是指数基金?

叶乐天:目前,量化投资在中国公募基金市场的形态还比较简单,主要可以分为被动型的和主动型的。被动型的量化产品包括了大量的指数基金;主动型的量化产品则主要有3种模式,分别是“多因子型”、“事件型”和“宏观择时型”的。事件型和宏观择时型相对容易理解。多因子型,就是通过比较数据,筛选出个股走势变化的关联因子,然后,在未来个股走势出现类似因子时,触发交易,从中取得收益。

在公募产品中,以指数型产品为主,主动量化的产品数量稀少。公募基金受制于交易监管规则,比如在同一天的交易中,不能对同一标的做反向交易,在衍生品工具的使用上也非常有限,所以做主动量化的产品较少。同时,量化投资不像定性研究,对单个公司研究得很透,经得起很大的波动,追求的涨幅也大。量化投资通常追求很小的涨幅,但业绩比较稳定。而且,历史上指数基金的业绩表现还算稳定,主动量化基金产品的稳定性稍差,而业绩稳定对开放式基金更加重要。此外,市场深度不够也制约了量化产品在中国的发展。公募基金的规模通常比较大,如果做主动型的产品,更换持仓的冲击成本就比较大。

不过,对于普通投资者而言,要投资量化基金时,并不是非要弄懂基金的运作模型。选择一只量化产品与选择普通的基金产品,方法并没有太大的差异。首先,投资者需要了解量化产品的过往业绩,如果基金持续一段时间业绩表现优秀,说明这种模型相对来说是较为可靠的。其次,就是看基金经理的投资理念和思路方法投资者是否认可,因为基金经理正是模型的制定者。最后应当考虑个人整体的资产配置,从长期的角度对基金产品进行合理配置,不用过多地顾虑投资时机。

篇6

在银华基金副总经理兼量化投资总监周毅看来,量化投资成功的关键在于团队。

以分级基金为突破口 首战告捷

量化投资在股票市场的运用范围较广,包括金融工具设计、指数增强、市场中立阿尔法模型以及套利策略等多个方面。在反复比较、深思熟虑后,周毅选择将金融工具创新作为突破口。

周毅认为,相比于其他量化投资领域,金融工具与市场地域性特征关联度最低,因此移植性最强,成功概率越高,同时在中国市场相对比较欠缺。所有的金融工具中,在国外使用得最广泛的就是结构化。周毅首战试水分级基金。这是在当时法规允许范围内可实现的融资性结构化产品,其A类份额具有类固定收益特征,B类份额具有杠杆特征,满足3类投资者的需求。

截至今日,银华共推出了3只指数分级基金和一只股票型分级基金,包括银华深100(首只深100分级指基)、银华中证等权重90(首只等权重分级指基)、银华中证内地资源(首只投资主题指数的分级基金)和银华消费主题(首只主动管理的主题类分级基金)。据金牛理财网统计,这4只分级基金占据目前市场上分级基金规模的绝对优势,并且创造了多个第一:银华深100是上市首只首日出现双溢价的分级基金,也是目前场内规模最大的基金,约为150亿元左右;银华中证等权重90是第一个触阀值折算的分级基金,为所有分级产品的发展完善和风险控制,提供了可借鉴的宝贵经验。

看好中国量化投资“钱景”

不过,分级基金只是整个量化投资运用中金融工具设计的一部分,其发展的背景是目前国内衍生品缺乏的现状。周毅表示:“我们想做全方位的量化投资,包含量化投资的各个领域。”

2012年以来,银华的多只专户产品已经成功在A股市场上,综合运用以上两项策略。据记者了解,银华专户产品中,表现最好的账户年化收益(扣除各种费率后)大幅超越同期沪深300指数,波动率仅约为沪深300波动率的1/3。尽管受现有法规和交易平台限制,在美国运用的量化策略大多数无法在A股实现,但银华在专户对冲产品上的成功尝试,证明了在国内利用量化投资方法,可以获得绝对收益。而且随着各种限制的宽松化以及杠杆机制的引入,量化绝对收益产品可以拥有巨大的发展空间,中国式量化投资前景广阔。

志做国内旗舰量化团队

周毅将银华目前在量化投资领域所取得的诸多成就,都归功于其全业务线的量化团队打造。银华在业内属于较早开展专门的量化投资研究的公司之一,目前量化投资团队已经达到16人,职责涵盖了金融工具、α策略、套利及实时风控等量化投资的各个业务链。

篇7

胡俊敏是物理学博士,她是怎样跨专业从事投资行业?

她管理的博时特许价值基金,从2012年6月接手到年底,净值增长幅度居同类前20%,她是通过怎样的操作大幅提升基金业绩?

博时特许价值基金是量化基金,量化基金的操作又有怎样特点?

每日基金特邀胡俊敏博士,倾听她的人生经历和投资理念。

张学庆:从您的简历来看,是物理学博士,这是典型的理科学科,当然您后来又做过量化研究的工作,但您目前从事的工作是投资,是属于金融学这类范畴,这两个学科距离特别大。您之前研究的物理学、化学 ,对于投资有何帮助?

胡俊敏:当年念物理,现在做投资,不是事先计划好的,而是当时的历史环境造成的。我大学的时候是八十年代,中国还没有股市,我连股票是什么都没有概念。因为我比较喜欢跟数字打交道,就学了物理。去哈佛后,刚好碰上一些量化金融理论得到应用,华尔街需要有很强数理根基的人才。而由于美国经济不景气,教育经费不足,学术界又人才过剩,于是华尔街就吸引了大批的数学、统计或物理的博士。我在哈佛有机会初步了解到金融投资。

现在回头看,我学物理出身,做过材料研究,做过量化研究,现在做量化投资, 不是必经之路,但是确实每一段经历形成了我自己的知识结构,对我的投资理念的形成有不同程度的影响。

对于市场的理解。市场是否处于均衡的状态,金融界有很多争论。统计物理关于均衡非均衡态的理论以及量子力学的不确定原理我觉得一定程度上也适用于股票市场。股票市场不停地有新的信息,不同投资者对信息的接受和反馈不是瞬时的。另一方面,投资者行为与股价又是互相影响的,所以市场是处在一种不完全均衡的状态。市场过热现象也是不均衡态的一种表现。

数学统计上几率分布的概念在投资中是至关重要的。经常有投资者问我,你觉得下面一个月市场是涨还是跌,其实这是很难预测的,沪深300指数平均月收益为0.5%,但月波动率有9.1%,一个月的收益有2/3的几率分布在-8.6%到9.6%之间,波动性非常大。

逻辑思维方式和分析解决问题的能力。研究生的时候我做的是实验物理。就是通过对一些现象的观察和研究,找出规律,验证和发现基本原理。投资中由于信息多,频繁、且不完全,具备理性的逻辑思维和抓住问题本质的能力就非常重要。

张学庆:除了在学校中所学的知识,在后来工作中,还需要增加哪一方面的训练?才能成为一名合格的基金经理。

胡俊敏:量化基金经理需要的知识面比较广。除了比较强的数理基础和编程能力,下面几个方面的知识也是非常重要的。

基础金融知识:我业余选修金融方面的课,并通过准备CFA的考试补上金融知识的缺。争取到量化分析师的工作机会

量化投资管理:这有一整套理论框架。我当时在巴克莱资产管理公司任基金经理,有幸参加了《主动组合管理》作者Ron Kahn的课程。这本书被认为是量化投资的圣经。

行为金融:指由于投资者心理或思维偏差造成市场不有效的各种现象。量化投资之所以可行,就是因为股价由于各种原因而偏离其真实价格,有一定统计性规律可循。

市场经验:需要积累,我目前也在逐步积累A股市场的经验。

有志加入到量化投资行业中的朋友们可以针对各自的知识结构,制定出自己的准备计划。

张学庆: 您一个人管理5只基金,这可能得益于采用了量化的方法,同时管理五只基金,你会采取怎样的分配方法来统筹自己在五只基金间的精力分配?

胡俊敏:这就是量化投资的优势。首先,整个投资流程高度自动化、系统化。每天开盘前,所有基金及模型所需数据都已更新到基金管理系统里。其次,量化投资团队,基金经理后面有基金经理助理、量化分析师及IT的支持。基金经理只需将时间花在最关键的地方。具体讲,

量化基金,比如我管理的特许价值,以及和王红欣博士共同管理的裕富沪深300基金:更多的是模型管理,而不是个股管理。组合里的股票可能有上百只,但是我需要管理的是有二、三十信号构成的模型和一些组合构建的参数。需要交易的时候,可以根据模型用优化系统进行计算,我会检查模型结果是否正确,然后批量交易,而不是一个股票一个股票地分析、决定。。

张学庆: 您管理的基金比较多,有主动配置型,有被动配置型。能否给基金投资者一些建议,那类基金适合哪些投资者投资?

胡俊敏:特许价值基金是一只主动股票型基金,通过量化多因子选股模型在各行业内精选个股,以期获得长期跑赢市场的超额收益。风险要比纯被动或增强指数型基金高,但是超额收益的空间也高,适于有中等风险承受力,投资期间较长,对收益有较高要求的投资者,也可作为长期资产配置的一个成分。

张学庆:做为基金投资者,如果不看好市场,您认为他们有几个措施能够躲开市场风险。

胡俊敏:根本解决的方法是调整资产配置比例。如果对股票市场的未来不看好,那就降低在股票类资产的配置,将卖出的资金放到债券、其它投资品种、或现金上。因为对于市场的判断很难百发百中,所以在调整配置的时候即使不看好股票市场,仍然建议保留一定的股票类资产,市场走势常是不确定的。

同时,普通投资者择时的能力是比较差的。所以我给普通投资者的建议是1)采取定额定投的策略,牛熊市无阻的坚持投资。2)不要将所有的鸡蛋放在一个篮子里。分散投资,做长期资产配置。长期而言所承受的风险是有收益的。

张学庆: 博时特许价值现在规模是11亿,一个基金经理,他管理的资金到达多大规模之后,就会影响到业绩的增长,这也提醒投资者,选择基金时也要注意规模。

篇8

基于计算机公式和机器交易的量化投资,在华尔街由来已久甚至已经“统治华尔街”。由于国内金融市场起步较晚,自2002年第一只公募量化基金成立,量化基金始终处于徘徊、缓慢发展态势。 2015年,量化产品终于集中爆发,到2016年,A股市场动荡,量化基金大放异彩,占领了多个公募基金收益排行榜冠军位置,各基金公司纷纷加紧产品布局。

然而,2017年市场行情突然逆转,中小市值股票超跌乐兀模型建立于“回测数据”的量化基金发展再次陷入困境。据iFinD不完全统计显示,截至6月末,53只主动型量化基金有半数以上业绩告负。

其中,2016年最为热门的量化基金产品长信量化先锋A,今年年初至6月30日,以-12.32%亏损幅度垫底。值得关注的是,经过一轮宣传推介和持续营销,长信量化先锋在2016年成为市场上第一只规模突破百亿的量化基金,这也意味着量化投资业绩稍显起色,即在高位套牢为数不少的投资人。

同期,曾在2016年表现突出的创金合信量化多因子股票A、大摩多因子策略年内分别亏损-9.78%、-13.37%。

截至一季度末,东方启明量化先锋混合、东兴量化多策略混合、华润大元医疗保健量化混合等基金规模已低于5000万元的清盘线。

多位受访业内人士表示,对于量化基金的发展,基金业再度陷入“是否适合国内市场”、“回测数据的可靠性”、“人和机器如何结合”等深度困境。

从“风光无限”到“狂跌”

2015年以来,A股市场持续震荡与低迷,加之“资产荒”的资产配置难题,量化投资成为公募基金必争之地,特别是一些中小型公司,迫于同质化竞争压力,奋力打造“量化”特色。

以长信基金公司为例。“公司一直很重视量化产品的开发。”长信基金一位负责人介绍,长信基金从2010年起开始发行量化产品,到2017年一季度,旗下4只量化类权益类基金规模合计达到137.53亿元,占全部权益类总规模的近50%,较2015年同期20.28亿元规模大幅增长。

同长信基金一样,富国基金、南方基金等也都曾表态重点建设“量化基金”产品线。

2016年,量化基金表现尤为突出,成立于2016年前的68只量化基金,有28只2016年取得了正收益,在40只下跌的基金中,跌幅超过5%的有19只,占比不足四分之一。与此同时,天相投顾的统计数据显示,2016年股票型基金全年平均下跌13.38%,混合型基金平均下跌8.61%。

根据上海一家大型基金公司管理层人士透露,长信基金量化团队组建于2008年,约有10余人团队,尽管这一配置在业内并不算太高,但是借助长信量化先锋短期业绩优秀,长信基金专门针对量化展开一系列的宣传攻势。

《财经国家周刊》记者统计数据,2016年,每个季度末长信量化先锋规模分别为31.16亿元、46.16亿元和74.47亿元,当年末,其规模已达到109.44亿元,一度因为申购火爆不得不“限购”和分红来降低基金规模。

“该基金成立以来多数时间内偏重于投资中小盘成长风格个股。不少季度内基金持有大盘、价值风格个股占比几乎为0,成长风格占绝对优势。”中银国际证券有限责任公司孙昭杨表示。

因此,2016年四季度以来,市场风格转而寻求那些基本面扎实、业绩稳定的公司, 长信量化先锋在2016年11月突破高点后,便一路下滑直至垫底。这也意味着长信量化先锋背后接近最高点申购,被套牢在高位。 进入2017年之后,多家此前一直致力于量化投资研究的第三方机构,开始纷纷转向FOF等研究领域,与新一个交易年量化基金业绩萎靡大有关系。

而这并非市场个案,根据记者统计,从今年年初至6月30日跌幅垫底的光大保德信量化股票(-9.02%)、大摩量化多策略股票(-7.68%),其披露的持仓风格都是偏爱“中小创”。

同时,截至今年一季度,与长信量化先锋规模缩水至69.47亿元的遭遇一样,多个基金公司旗下量化产品还将面临“清盘”,例如上述成立于2016年10月27日的东兴量化多策略混合,2016年末规模为1.61亿元,成立不到一年时间,其规模已至清盘线下。

另外,据《财经国家周刊》记者了解,进入2017年之后,多家此前一直致力于量化投资研究的第三方机构,开始纷纷转向FOF等研究领域,与新一个交易年量化基金业绩萎靡大有关系。

“量化式”亏损反思

“目前A股市场,最为流行的量化股基的投资策略就是基于历史回测确定对股价影响较大的因子,但今年以来,价值股、大盘蓝筹股涨声一片,小盘股业绩不佳,于是大面积出现‘量化式’亏损。”富国基金一位量化投资负责人坦言,富国基金也是一家侧重量化投资的基金公司。

除了能够高效寻找上千只股票价格上涨或下跌的概率,量化投资最核心的卖点,莫过于使投资不再受基金经理的主观情绪影响,用量化模型抵御投资者内心的贪婪和恐惧。

如今,市场的突然反转,传统 alpha 策略当中最有效的市值及成长因子都遭受了不同程度的回撤。经过此次洗礼,量化基金却必须面对如何“主观灵活配置”的难题。

纵观长信量化先锋A持仓,自去年四季度以来基本上还是延续偏爱中小盘成长风格个股的投资风格。根据其年报,截至2016年年末,该基金股票仓位为84.05%,在其持有的154只个股中,中小板股和创业板股合计85只,占基金净值的比例达到50.06%。

到今年一季度,长信量化先锋A前十大重仓持股包括深桑达A、建研集团、雪莱特等,也均是以中小创股票为主。

如果放在更长的维度,从2010年11月成立至今年6月30日,长信量化先锋A的收益率为138.94%,超过同期沪深300指数近73%。同样的,从2011年至今,申万量化、长盛量化红利混合也分别达到138.95%、113.56%。

“量化交易通过回测,假设未来能够重演,更适用于长期投资,而大多数投资者的需求是在一定期限内获得回报,更考验配置能力与效率。”富国基金上述人士表示。

部分基金公司负责人透露,目前公司已着手试点,量化团队与其他团队的融合,量化与人工的优势结合始终是重点课题。

“一方面,公募基金风控和投资要求对量化交易的方法、品种、工具都产生了限制,套利、做空等策略都无法灵活运用,使得量化策略偏向于做多;其次,量化投资在牛市、市场风格转换时期表现不及主动投资,而是更多的被机构投资者所青睐,这又与国内小散为主的市场不适应。”摩根大通私人银行部门一位负责人分析。

篇9

关键词:石油天然气项目;经济评价;量化评级;概率分析;蒙特卡洛方法

中图分类号:F407.22 文献标识码:A 文章编号:1001-828X(2013)07-0-02

随着经营环境所面临的不确定因素不断增加,中国石油企业石油天然气投资项目决策的复杂程度也在不断加大。通常情况下,企业在进行项目决策时以经济评价指标作为重要依据,但随着经济评价指标体系的不断扩充完善,以及管理层发展战略所要求的定性指标在项目决策过程中的逐渐引入,如何在各评审项目间进行取舍、通过众多的定量和定性指标发现出符合企业发展战略的优质项目,目前尚缺乏精确的可量化的评价标准。此问题在企业资金较为紧张、项目投资总规模受限的情况下显得尤为突出。

在此背景下,学习和借鉴国际上常用的项目经济评价量化分析方法,通过掌握量化分析工具以提高项目决策的科学性已显得十分必要。本文的主要目的即在于通过引入一套综合考虑定量与定性评价指标的项目经济评价量化分析方法,探讨通过概率分析提高石油天然气项目决策的科学性,有效进行项目甄选、确保经营发展预期目标的实现。

一、基于概率分析的量化评级机制概述

(一)基本定义

所谓基于概率分析的量化评级机制,是指在量化分析的基础上将油气项目经济评价的各项结果转化为明确的分值,在分值总分的基础上确定项目评级结果,以评级结果作为项目是否通过和在多个项目间进行比较取舍的依据。为加强对不确定性因素的评价分析,量化分析中最核心的定量因素分析采用概率分析的方法(蒙特卡洛模拟法)进行。

(二)采用概率分析进行量化分析的必要性

油气项目的风险巨大而又复杂,在油气项目经济评价的实践操作中,由于缺少对不确定性因素进行评价的有效方法,传统经济评价方法已逐渐不能适应油气项目经济评价的最新要求。

首先,传统经济评价分析方法不能综合考虑不确定性因素的影响,例如敏感性分析仅能对单一的不确定性因素变化进行量化分析,决策树(层次分析)把不确定性因素的影响结果看作有多个固定的结果,并为每个结果分配可能性,最终得到评价指标的期望值。

其次,传统经济评价参数往往是通过以往项目经验的经济指标估算得来一个具体数值,没有针对具体项目内容具体分析,在不确定性因素方面往往依靠乐观或悲观的策略,采用系数法对评价参数进行处理,如在投资成本的处理上通常以主观增加一定比例的不可预见费作为对不确定性因素的处理。

因此,为弥补传统经济评价分析方法的这种缺陷,有必要引入概率分析方法作为量化评级机制的核心内容。概率分析是国际上项目经济评价量化分析方法中常用的一种,概率分析有概率树、情景分析法、蒙特卡罗模拟等方法。由于计算机技术的普及以及分析工具的成熟,蒙特卡罗模拟在投资决策分析中得到了普遍的应用。本文着重研究以蒙特卡洛摸拟法作为计算工具,探索符合中国石油企业实际的项目经济评价量化分析思路。

二、采用蒙特卡洛方法进行项目经济评价量化分析

(一)蒙特卡洛方法概述

1.基本定义

蒙特卡洛模拟法又称统计试验法或随机模拟法,该法由法国数学家John.ron.neuman创立,由于其依赖的概率统计理论与赌博原理类同,因此以欧洲著名赌城摩纳哥首都Monte Carlo命名。它是以计算机模拟为基础,用于研究和处理有限多个随机变量综合结果的一种数学方法。其原理是将项目目标变量(风险评价指标)和各个风险变量综合在一个数学模拟模型内,每个风险变量用一个概率分布来描述,然后利用计算机产生随机数(或伪随机数),并根据随机数在各个风险变量的概率分布中取值,算出目标变量值,经过多次运算即可得出目标变量的期望值、方差、概率分布等指标,供决策者参考。

2.蒙特卡洛模拟法的数学解读

蒙特卡洛模拟法的基本原理是:假定函数Y= f(X1,X2,… Xn),其中变量X1,X2,… Xn的概率分布已知,蒙特卡洛模拟法通过直接或间接抽样取出每一组随机变量(X1,X2,… Xn)的值(X1i,X2i,… Xni),然后按Y 对于X1,X2,… Xn的关系式确定函数值:yi=(X1i,X2i,… Xni)。反复独立抽样(模拟)若干次(i=1,2,… ,m),便可得到函数Y 的一批抽样数据y1,y2,… ym,当模拟次数足够多时,便可得出与实际情况相近的函数Y 的概率分布与其数字特征。这需要利用计算机针对某种概率模型进行数以千计、甚至数以万计的模拟随机抽样。

3.蒙特卡洛模拟法的主要优点

蒙特卡洛模拟法是油气项目经济评价的理想方法,其实质是在确定风险因素概率密度函数的前提下,依靠对大量历史数据进行统计分析的一种基于风险决策情景模拟的仿真实验。该方法的优点是使用计算机模拟项目的自然过程,比历史模拟方法成本低、效率高,结果相对精确;同时可以处理多个因素非线性、大幅波动的不确定性,能更准确地反映不确定性因素的影响,并把这种不确定性的影响以概率分布形式表示出来,从而获得评价指标更为详细、全面的统计信息,克服了敏感性分析等常规方法只能求得经济评价指标单一估值的局限性,更符合项目的实际情况、更具有科学性。需要注意的是蒙特卡洛模拟法依赖于特定的随机过程和选择的历史数据,不能反映风险因素之间的相互关系,需要有可靠的模型,否则可能导致偏差和错误。

(二)采用蒙特卡洛模拟的方法进行经济评价的分析过程

1.确定经济评价指标

在油气项目经济评价中存在众多的不确定因素,加强风险因素识别与分析,是合理进行经济评价的前提。经济评价指标体系的建立应遵循4条原则:

(1)系统性原则

油气项目经济评价是一个由多个子系统构成的综合系统,各个系统之间以及子系统内部各因素之间相互联系、相互影响。

(2)定性与定量相结合的原则

油气项目经济评价既有定量的因素,也有需要以性质来定性表征的因素。

(3)针对性和启示性的原则

油气项目经济评价的涉及因素很多,各类项目特点和共性不尽相同,因素和指标间侧重关系和影响不同,应有针对性地分类和刻画并建立关联关系。

(4)可比性原则

对不同地区、不同国家油气项目的评价应在同一标准的前提下进行,这样的评价结果才具有可比性,在项目综合优选中应减少人为主观臆断。

根据以上原则,可选取的影响油气开发项目经济效益的主要因素有商品量、销售价格、经营成本和建设投资等。

(1)商品量

一般而言,油气商品量是指通过销售可以获取收入的产品数量,亦可以称之为产品销量,它是根据油气产量和油气商品率计算得出的;油气商品率一般是根据油气生产过程中发生的损耗和自用情况综合确定,外供其他油气田或区块而非本油气田或区块自用的油气量均为商品量。

油气商品量的风险主要来自于油气的产出量。以气田为例,现已开发气田多为储量丰度低、物性较差、非均质性强、气水关系复杂,以致气田产能递减快,产量不确定性大。产量预测的主要方法有:递减曲线分析法、水驱曲线法、数学模型法和数值模拟法等,不同方法结果均是在理论上最佳逼近于真实产量。不同区块地质和开发条件存在差异,以及生产中如修井、不可控制力等不确定性的存在,会造成实际产量与设计方案存在一定的偏差,因此,经济评价中选择某种产量预测结果作为测算的同时,应考虑其不确定性,以及对气田开发经济效益的影响。

(2)销售价格

油气的销售价格往往是影响项目效益最敏感的因素之一,因此需要对未来油气价格做合理预估。在没有长期价格合同下,可以在历史价格数据分析的基础上,结合多家咨询机构(油气咨询公司、投行)的远期价格预测,考虑价格的变动趋势,最终确定未来不同阶段石油和天然气的价格分布区间,用于蒙特卡洛随机模拟。

(3)经营成本

降低或控制成本已成为各油田单位的重要任务。经营成本的增加,可分为内在因素和外在因素:内在因素多数是为减缓油气田产量自然递减而产生的各种措施费用,如排水采气、增压输送及修井等工艺技术措施等,带来了材料、动力等费用的增加;外在因素则是由于宏观经济因素,如通货膨胀而引起的原材料价格上涨。因此,经济评价应考虑经营成本的浮动效应,可根据各油气田经营成本历史数据和通货膨胀率估算出经营成本的变化幅度及可能性。

(4)建设投资

建设投资包括:固定资产投资、无形投资、递延资产和预备费。建设投资估算的范围包括勘探工程投资、开发工程投资,根据油气藏工程、采集工程和地面工程提供的工程量投资。近年来,气田开发以渗透率低、品位差的储量为主,开发成本普遍偏高,不但增加了投资,同时也增加了投资估算的不确定性。

2.确定风险变量及其分布规律

风险变量的确定,可采用专家调查法进行风险识别,并在此基础上,请专家对风险因素的发生概率和影响程度进行评估。如果风险因素较多,可以先进行敏感性分析,选择敏感的风险因素作为风险变量。

风险变量的概率分布描述是进行模拟分析的基础,常用的有正态分布、三角分布、均匀分布、梯形分布、β分布、阶梯分布等。当风险变量只能获得一个范围值时,可采用均匀分布公式来描述;当风险变量除取得范围值外,还知道最可能值,则用三角分布公式来描述;当风险变量获得少量的随机值,则根据多数风险变量具有正太分布或对数正太分布的特征,可模拟为正太或对数正太分布公式来描述。对有历史数据的风险变量可根据数据做统计分析,估计其概率分布,对没有历史数据的风险变量,可以采用专家调查法确定变量的概率分布。

3.计算机模拟运算

根据基础数据和产生的随机变量输入变量值计算评价指标值,整理模拟结果所得评价指标的期望值、方差、标准差及其概率分布和累计概率,绘制累计概率图,计算评价指标达到目标值的概率。蒙特卡洛模拟法的具体计算可以通过Matlab软件编程语言来实现求解,或借助加载在Excel中的Crystal Ball软件。

三、以定性指标分析作为量化分析的有益补充

对于油气项目经济评价中遇到的对项目评价结果有重大影响,但又不宜量化的影响因素,可采用专家调查法进行定性分析。常见的定性指标有:

(1)油气项目所在地的区域政治、经济、商业环境和财税政策;

(2)油气项目与企业发展定位和区域发展战略的契合程度;

(3)油气项目在技术验证、产能和就业带动方面的附加效益。

四、评级打分卡的建立和评级结果的确定

将通过蒙特卡洛模拟法得出的量化分析结果和定性指标分析结果通过统一的项目评级打分卡转换为直观的评级分值,将分项评级分值加权汇总后得出项目评级结果(如AAA,AA等),作为项目经济评价结果的最终参考依据。评级打分卡的取值范围可由评价专家根据历史项目经验进行确定,各分项评级分值的加权权重则在可历史经验的基础上,参考企业当前经营重点和发展战略确定,做到项目经济评价标准与企业实际经营间的紧密结合。

五、结语

油气开发项目存在很大的风险和不确定性,做好经济评价、加强针对不确定性因素的分析是规避风险的有效手段。

我国现阶段油气项目经济评价中很大的不足是风险评价指标关注力不够,主要风险因素包括油气价格、经营成本、投资估算等,识别并深入分析风险因素,合理预测风险因素的可能分布范围,是正确测算经济效益和规避风险的关键。

蒙特卡洛模拟法能够综合考虑多种风险因素,可提供更可靠、更贴近实际的风险分析结果,目前已在许多国家的管理决策、公共事业管理以及大型跨国公司的项目风险管理和经济评价中被广泛使用。建议在油气开发项目经济评价中加强蒙特卡洛模拟分析研究,采用多种方法综合评价,提高项目决策的科学性。

参考文献:

[1]童晓光,窦立荣,田作基,等.21世纪初中国跨国油气勘探开发战略研究[M].北京石油工业出版社,2003.

[2] Komlosi Z P. Application: Monte-Carlo simulation in risk evaluation of E & P projects [R]. SPE 68578, 2001.

[3]孟繁莉,曹成润,牛继辉.中外油气资源评价方式差异的探讨[J].世界地质,2005,24.

[4]徐钟济:蒙特卡罗法[M].上海科学技术出版社,1985.

[5]蔡进功,吴锦莲,晁静.国际油公司油气资源经济评价现状[J].石油勘探与开发,2002,29.

[6]许文星,顾祥柏.基于蒙特卡罗模拟的项目费用风险分析[J].石油化工设计,2007,24.

[7]谢军,冯景.数字油田建设经济效益与风险分析[J].吐哈油气,2007,12.

篇10

没错,量化股票基金就是这种类型的产品。统计显示,无论是公募,还是私募,今年以来量化股票基金整体表现远好于市场平均水平。而如果以目前能观测到的上证指数最高与最低收盘点位来计算,即在大盘走出的当前反弹点位627.26点、幅度23.62%的行情中(1月28日的收盘点位最低达2655.66点,11月29日收盘最高点位3282.92点,以下统计区间均为1月28日至11月29日区间,简称“区间”),我们看到,一些老牌公募基金和优秀私募的量化股票基金更是为投资者带来了丰厚的绝对收益,比如,南方基金旗下的南方量化成长和南方策略优化这两只量化产品,区间复权单位净值增长率分别为46.54%、43.38%,不但跻身同类前五,涨幅更接近大盘反弹幅度的1倍。

“在今年股票市场结构化行情中,量化股票策略通过多因子模型选股,能够抓住市场尾部机会,在市场风格和热点板块的迅速切换中保持较高仓位运作。而南方基金量化团队着力打造的主动量化投资,更是通过多模型捉到了广泛的错误定价机会,大概率的战胜市场指数,获取更为稳健的长期收益。这是今年以来,南方基金旗下量化产品取得出色业绩的最主要原因。”南方基金总裁助理、权益投资中总监如是说。

致力于捕捉

“非有效性”的主动量化投资

什么是主动量化投资?

“主动量化投资泛指利用海量数据和依靠计算机的系统支持,挖掘历史规律性,并采用严格的风控来获取稳健收益。”史博告诉《投资者报》记者,南方基金主动量化投资的核心是捕捉市场的“非有效性”,市场中有很多非理性投资者把股票价格抬高或压低,所以股价会根据市场情绪的波动围绕预期价格变化,主动量化投资通过上市公司基本面、一致预期、市场波动与情绪等各个维度综合描述定价的偏差机会,广泛精选个股获取超额收益。

值得一提的是,尽管南方基金旗下量化股票策略基金会为了最大程度获取绝对收益而维持较高的仓位,但单只股票的持仓占比却并不高,几乎都在1%以下。以南方量化成长为例,三季度持仓占比最高的为科隆精化,但仍不到1%,为0.97%,前十重仓股持仓占比合计为7.12%。

“南方基金量化团队基于基本面的量化选股策略是透明的和符合逻辑的。其优点是拥有灵活的市场应变能力、广泛选股的能力,可以管理较大规模,并能有效降低组合波动,保证业绩的可持续性。”史博告诉《投资者报》记者,南方基金旗下量化产品根据组合的不同契约规定等采用不同的数量化策略进行投资,通常单一产品实际投资股票数目有几百只。每只股票的持仓比例一般都比较低,单只股票的波动对净值影响较小,整体表现较为稳健。

对此,业内人士指出,对投资者而言,在无法准确预知未来市况时,长期持有老牌公募的量化股票基金是一个较为明智的投资选择。因为即使是在投资周期中赶上熊市遭遇Alpha和Beta双杀,但只要长期持有基金,在熊市周期过后,震荡市和牛市都可以为投资者赚取一定的绝对收益,在Alpha的复利作用下依然可以获取可观的收益。

以南方策略优化为例,该只量化基金成立于2010年,目前获晨星、银河三年5星评级;最近一年回报率在同类481只可比基金中排名第5 ;最近两年、三年回报率也都在同类400多只可比基金中排名前15。据Wind数据显示,截至11月29日,自成立之日起复权单位净值增长率为68.89%。即使以去年股市异常波动前最高点5100多点来计算,在大盘仍亏损37%多的背景下,该基金的亏损幅度已缩小到10%左右,明显优于大盘。

“团队+系统”炼就金牛量化投资团队

你也许会认为量化投资看上去简单,但实际上并不容易。一个好的量化产品,必须能够结合市场环境的变化等因素,动态调整各个风格之间的比例,进而使得模型适应不同市场。据了解,为了达到上述目的,南方量化团队打造了强大的量化多策略模型,包括从因子模型、事件驱动、价格特征、交易量特征、量价互动、主题轮动、行业轮动、突发事件方面的因素去结合公司基本面、当前市场环境等信息,从而精选股票,不仅如此,该基金还在今年引入了舆情因子,利用大数据捕捉市场情绪。

“总的来说,量化投资是一项复杂的系统工程,其成功依赖于团队成员之间的紧密合作。因其业务链条的严密性和逻辑的环环相扣,许多繁琐的细节实际上都是成功的关键。作为一种复杂的高智能投资方法,目前只有机构投资者才有竞争能力使用此方法。”史博告诉《投资者报》记者。经过多年不懈的努力,目前,南方量化团队已经建立了包含清洗整理过的上市公司财务数据库、因子库、回测平台、样本外跟踪分析平台在内的南方基金量化投资系统。

“我们相信,系统建设上的精耕细作为将来的收获奠定了坚实的基础。”史博表示,历史经验证明,并不存在一种适合各种市场环境的投资秘籍,市场是会自身调节的。所以南方量化团队不包装个人明星基金经理,而是要打造一个稳定的高效投资团队,通过向市场学习,不断地研究创新。“这才是我们团队的制胜之道。”