电力系统研究分析范文
时间:2023-05-29 15:09:42
导语:如何才能写好一篇电力系统研究分析,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
【关键词】CPPS;同步PMU;开放式通信;分布式控制
【Abstract】The construction of future smart grid became achievable due to the rapid development of embedded system, computing technology and communications technology. Modeling of Cyber-Physical Power System which based on CPS technology gave a new way to build the future smart grid. The platform of CPPS was studied and analyzed in a preliminary step. Synchronous PMU, open communication network, distributed control which was applied to CPPS was introduced.
【Key words】CPPS; Synchronous PMU; Open communication network; Distributed control
0 引言
受能源危机、环保压力的推动,以及用户对电能质量(QoS)要求的不断提高,当代电力系统不再符合社会的发展需求,智能电网(Smart Grid)成为未来电力系统的发展方向。智能电网的发展原因主要有以下几个方面:
1)分布式电源(Distributed Generation,DG)大量接入电网导致的系统稳定性问题。由于DG的大量接入使电网变成一个故障电流和运行功率双向流动的有源网络,增加了系统的复杂度和脆弱度,因此亟需发展智能电网以解决DG大量接入电网导致的系统稳定性问题。
2)电力用户对电能质量(QoS)要求的不断提高。现代社会短时间的停电也会给高科技产业带来巨额的经济损失,近年来发生的大停电事故更是给社会带来了难以估量的经济损失。因此,亟需建立坚强自愈的智能电网以提供优质的电力服务。
论文主体结构如下:第1部分介绍了近年来信息物理系统(Cyber Physical System ,CPS)技术的发展以及CPS与智能电网的相互关系;第2部分介绍了电力信息物理融合系统(Cyber-Physical Power System,CPPS)的硬件平台模型;第3部分介绍了同步相量测量装置(Phasor Measurement Units,PMU)技术;第4部分对CPPS中的开放式通信网络进行了初步分析;第5部分对CPPS的分布式控制技术进行了简单介绍;最后第6部分做出全文总结。
1 CPS与智能电网的相互关系
CPS技术的发展得益于近年来嵌入式系统技术、计算机技术以及网络通信技术等的高速发展,其最终目标是实现对物理世界随时随地的控制。CPS通过嵌入数量巨大、种类繁多的无线传感器而实现对物理世界的环境感知,通过高性能、开放式的通信网络实现系统内部安全、及时、可靠地通信,通过高精度、可靠的数据处理系统实现自主协调、远程精确控制的目标[1]。
CPS技术已经在仓储物流、自主导航汽车、无人飞机、智能交通管理、智能楼宇以及智能电网等领域得以初步研究应用[2]。
将CPS技术引入到智能电网中,可以得到电力信息物理融合系统(Cyber-Physical Power System,CPPS)的概念。为了分析CPPS与智能电网的相互关系,首先简单回顾一下智能电网的概念。目前关于智能电网的概念较多,并且未达成一致结论。IBM中国公司高级电力专家Martin Hauske认为智能电网有3个层面的含义:首先利用传感器对发电、输电、配电、供电等环节的关键设备的运行状况进行实时监控;然后把获得的数据通过网络系统进行传输、收集、整合;最后通过对实时数据的分析、挖掘,达到对整个电力系统运行进行优化管理的目的[3-4]。
从上文关于CPS和智能电网的介绍中可以看出,CPS与智能电网在概念上有相通之处,它们均强调利用前沿通信技术和高端控制技术增强对系统的环境感知和控制能力。因此,在CPS基础上建立的CPPS为促进电力一次系统与电力信息系统的深度融合,最终实现构建完整的智能电网提供了新的思路和实现途径。
2 CPPS的硬件平台架构
基于分布式能源广泛接入电网所引起的系统稳定性问题以及建立坚强自愈智能电网的总体目标,建立安全、稳定、可靠的智能电网成为未来电力系统研究的重要方向,同时也是CPPS研究的主要内容。
传统的电力系统监测手段主要有基于电力系统稳态监测的SCADA/EMS系统和侧重于电磁暂态过程监测的各种故障录波仪,保护控制方式主要有基于SCADA主站的集中控制方式和基于保护控制装置安装处的就地控制方式[5]。就地控制方式易于实现,并且响应速度快,但是由于利用的信息有限,控制性能不够完善,不能预测和解决系统未知故障,对于电力系统多重反应故障更不能准确动作。集中控制方式利用系统全局信息,能够优化系统控制性能,但是计算数据庞大、通信环节多,系统响应速度慢,并且现有SCADA系统主要对电力系统进行稳态分析,不能对电力系统的动态运行进行有效地控制。
针对目前电力系统监测、控制手段的不足,要建立坚强自愈的未来智能电网,必须建立相应的广域保护的实时动态监控系统,CPPS的硬件平台就是在此基础上建立起来的。
CPPS的硬件平台6层体系架构如图1所示,主要包括:物理层(电力一次设备)、传感驱动层(同步PMU)、分布式控制层(智能终端单元STU、智能电子装置IED等)、过程控制层(控制子站PLC)、高级优化控制层(SCADA主站控制中心)和信息层(开放式通信网络)。
其中,底层的物理层是指电力系统的一次设备,如发电厂、输配电网等。传感驱动层主要用于对电力系统的动态运行参数进行实时监控,测量参数包括电流、电压、相角等,在CPPS中广泛使用的测量装置是同步PMU。分布式控制层主要包括各STU/IED,为广域保护的分布式就地控制提供反馈控制回路。过程控制层主要指枢纽发电厂和变电站的控制子站,是CPPS的重要组成部分,通过收集多个测量节点的数据信息,建立系统层面的控制回路,并做出相应的控制决策。高级优化控制层是指调度中心控制主站,主要为电力系统的动态运行提供人工辅助优化控制。顶层的信息层即智能电网的开放式通信网络,注意信息层并不是单独的一层,而是重叠搭接CPPS的各个分层,为CPPS内部各组件提供安全、及时、可靠的通信。
上文给出了CPPS的硬件平台模型,但要在电力系统中具体实现CPPS,涉及诸多方面的技术难题,下面对CPPS中的同步PMU、开放式通信网络以及分布式控制等分别加以简单介绍。
3 同步PMU测量技术
同步PMU是构建CPPS的基础,它为CPPS中广域保护的动态监测提供了丰富的测量数据。同步PMU装置主要对电力系统内部的同步相量进行测量和输出,装设点包括大型发电厂、联络线落点、重要负荷连接点以及HVDC、SVC等控制系统,测量数据包括线路的三相电压、三相电流、开关量以及发电机端的三相电压、三相电流、开关量、励磁电流、励磁电压、励磁信号、气门开度信号、AGC、AVC、PSS等控制信号[6]。利用测得的数据可以进行系统的稳定裕度分析,为电力系统的动态控制提供依据。
同步PMU的硬件结构框图如图2所示。
其中,GPS接收模块将精度在±1微秒之内的秒脉冲对时脉冲与标准时间信号送入A/D转换器和CPU单元,作为数据采集和向量计算的标准时间源。由电压、电流互感器测得的三相电流、电压经过滤波整形和A/D转换后,送到CPU单元进行离散傅里叶计算,求出同步相量后再进行输出。注意,发电机PMU除了测量机端电压、电流和励磁电压、电流以外,还需接入键相脉冲信号用以测量发电机功角[7]。
4 CPPS的开放式通信网络
建立CPPS的开放式通信网络,应该在保证安全、及时、可靠的通信的基础上,使系统具有高度的开放性,支持自动化设备与应用软件的即插即用,支持分布式控制与集中控制的结合。对于建立的开放式通信网络,需要进行通信实时性分析、网络安全性和可靠性分析。
4.1 IEC 61850标准的应用
IEC 61850标准作为新一代的网络通信标准而运用于智能变电站中,支持设备的即插即用和互操作,使智能变电站具有高度的开放性。IEC 61850标准是智能变电站的网络通信标准,同时正在进一步发展成为智能电网的通信标准[8],因此,使用IEC 61850作为CPPS通信网路的通信标准是最佳选择。
IEC 61850的核心技术[9]包括面向对象建模技术、XML(可扩展标记语言)技术、软件复用技术、嵌入式操作系统技术以及高速以太网技术等。
4.2 通信网络配置与分析
对于CPPS开放式通信网络的网络配置,可参考智能变电站的三层二网式网络结构配置,构建CPPS的3层式通信网络,如图3所示。
其中,底层为位于发电厂、变电站和重要负荷处的大量PMU、STU/IED,分别负责采集实时信息和执行保护控制功能。中间层为控制子站(过程控制单元PLC),每个控制子站与多个PMU、STU/IED相连,以完成该分区系统层面的保护控制,并根据需要将数据上传到SCADA主站控制中心。SCADA主站控制中心接收各控制子站的上传数据,处理以后将控制信息下发到各控制子站,以实现CPPS的广域保护控制功能。注意,各层设备均嵌入GPS实现精确对时,保证全系统的同步数据采样。
5 CPPS的分布式控制机理
要建立坚强自愈的智能电网,必须利用新型控制机理建立可靠的电力控制系统。根据电力故障扩大的路径和范围以及故障的时间演变过程,文献[10-11]中提出建立时空协调的大停电防御框架,建立了电力系统的3道防线,为实现智能电网的广域动态保护控制奠定了良好的基础。
电力系统的分布式控制(Distributed Control,DC)是相对于传统的SCADA主站集中控制方式而言的,指的是多机系统,即用多台计算机(指嵌入式系统,包括PLC控制子站和STU/IED等)分别控制不同的设备和对象(如发电机、负荷、保护装置等),各自构成独立的子系统,各子系统之间通过通信网络互联,通过对任务的相互协调和分配而完成系统的整体控制目标[12]。分布式控制的核心特征就是“分散控制,集中管理”。在电力系统的3道防线的基础上,结合分布式控制技术,建立CPPS的3层控制架构,如图4所示。
其中,分布式控制层主要是在故障发生的起始阶段(缓慢开断阶段)采取的控制措施,其控制目标应该是保证系统在不严重故障下的稳定性,防止故障的蔓延。过程控制层是在系统已经发生严重故障时(级联崩溃开始阶段)所采取的广域紧急控制措施,需要付出较大的代价。通常针对可能会使系统失稳的特定故障,往往需要投切非故障设备以保证系统的稳定性。广域的紧急控制措施应该在故障被识别出的第一时间立即实施,控制措施实施越晚,控制效果越差。优化控制层是在前两层控制均拒动或欠控制而没有取得控制效果,同时在检测到各种不稳定现象后所采取的控制措施,通常需要进行多轮次的切负荷和振荡解列。在电力恢复阶段,要有自适应的黑启动和自痊愈的控制方案。
6 结语
将CPS方法引入到电力系统中,建立CPPS的模型平台,为建立坚强自愈的智能电网提供新的思路。文中对CPPS中的同步PMU测量技术、开放式通信网络技术、分布式控制技术分别进行了简单介绍。
【参考文献】
[1]Cyber-physical systems executive summary[R].CPS steering group:2008(6).
[2]Computing foundations and practice for Cyber-physical systems:A preliminary report [R].Edward A Lee:2007(5).
[3]IBM论坛2009,点亮智慧的地球[EB/OL].http:///cn/forum2009/winsdom.shtml.
[4]姚建国,赖业宁(Yao Jianguo,Lai Yening).智能电网的本质动因和技术需求(The nature of motivation and technical requirements of smart grid)[J]. 电力系统自动化(Automation of Electric Power Systems),2010,34(2):1-4(下转28).
[5]徐丙垠,薛永端,李天友(Xu Binyin,Xue Yongduan,Li Tianyou). 智能配电网广域测控系统及其保护控制应用技术[J].电力系统自动化(Automation of Electric Power Systems),2012,36(18):2-9.
[6]M.D.Ilic, L.Xie, U.Kahn and Moura, Modeling of future Cyber-physical Energy Systems for distributed sensing and control[J]. IEEE Transactions on systems, man , and cybernetics,2010,40(4):825-838.
[7]王健,张胜,贺春(Wang Jian,Zhang Sheng,He Chun).国内外PMU装置性能对比(Comparison of PMU devices from domestic and overseas )[J].继电器(Relay),2007,35(6):74-76.
[8]高翔.数字化变电站应用技术[M].北京:中国电力出版社,2008.
[9]IEC61850,Communication networks and systems in substations [S].IEC,2004.
[10]Kunder. Power system stability and control[M].北京:中国电力出版社.
篇2
关键词:大数据分析;电力通信设备检修;自动分析平台
DOI:10.16640/ki.37-1222/t.2016.24.164
0 前言
电力通信网络是国家电网公司除电网外的实体网络,是国家电网公司在发展过程中的重要组成部分,是国家电网公司安全生产的保障,也是各类电力调度生态和信息管理业务的主要载体,只有做好电力通信设备检修工作,才能有效地促进电力行业快速发展,保证电力设备的使用安全。
1 大数据下的电力通信概述
1.1 网络拓扑结构分析
随着社会不断的发展,大数据的时代已经到来,大数据被人们称作为一种巨量的资料信息,需要全新的处理模式才能保证数据信息处理过程中具有较强的决策力、观察力和流程优化能力,同时还可以在一定程度上增加数据信息的资产[1]。将大数据融入到电力通信设备检修工作中,可以有效的提高检修工作的质量与效率。现阶段,我国电力通信网络比较常见的网络组成方式主要有SDH网络,该系统在使用过程中主要以星型、链型、环型的形式出现,并以电力通信传送网网络的形式进行操作,如图一所示。使用大数据将其中的数据进行优化处理,只有这样才能将电力通道传输系统进行统一管理,从而促进电力行业快速发展。但是在实际应用过程中,常常会限制一些电力网路规模的建设,要想改变这一现状就需要采用混合的电力通信网络以组成的方式进行。对于电力通信网络来说,可以根据网络的主要形式将其制作成对应的双纤环网构架,从而提高电力通信设备的安全性与可靠性。
1.2 业务在通信网中的承载关系
大数据在分析电力通信设备影响业务自动分析平台时,常常将业务在通信网中的承载关系进行划分,主要包括了以下几点:(1)底层承载平面:如图1所示.使用专业的MSTP传输系统,将网络进行传输与重组;(2)业务网络平面:主要包括了相关数据网络、调度数据网络、行政交网络等部分。其中的数据网络主要包括了电力通信网络,通过数据网络将其中的数据信息进行传递[2]。不同网络系统所承载的网络业务都可以进行实时交换,提高数据的转换的准确性;(3)业务平面:该业务主要包括了语音业务、行政电话业务、数据调度业务等部分组成。并通过大数据将其中的业务数据进行分析,只有这样才能保证业务数据信息可以正常传递下去。
2 大数据下的电力通信SDH传送网络保护机制
2.1 SDH网络中的设备保护
要想通过大数据对电力通信设备的影响业务自动化进行分析,就需要使用SDJ网络设备保护系统,根据电力通信的现状为其制定有效的保护机制。在一般情况下,保护机制会在一些单独的网元设备中进行运行,并对网元设备中的电源盘、主控板卡、支路板进行保护,从而保证电力通信设备可以正常运行下去[3]。
2.2 SDH网络中的线路保护
SDH网络在对电力通信进行保护时,常常会以多元化的形式进行,只有这样才能保证电力通信设备可以正常进行传输工作。SDH网络下的相关线路主要由子网连接、复用段保护而形成的。其中的子网连接保护可以将其在各个网络通讯中进行应用,保证数据传输的稳定性。使用该网络还有这、传输数据较快,随意换转等作用;而复合段保护与子网连接的差距较大,主要体现在对电力通信终端口级的保护,保护设备可以正常运行,完成现对应的工作[4]。但是在使用过程中不适合将在电力通信通道中进行应用。同时还可以使用1+1的形式进行复合段的保护。
3 大数据下的电力通信设备检修影响业务分析系统实现
要想使用大数据对电力通信设备检修影响业务平台分析系统实现,就需要做到以下几点:(1)检修分析对象,了解分析对象,并将电力通信中的主板卡、网元、光缆纤芯、光缆段进行定期检修,只有这样才能保证电力通信设备的使用安全;(2)做好电力通信分析工作,并将其进行定期检修做好检修工作的记录,总结其中的数据信息,使用大数据对数据这些数据进行分析,找出电力通信设备中所在的问题;(3)分析步骤,在使用大数据对电力通信设备数据进行检修时,要对业务、板卡、线路板、支路板进行检测,并了解其中所承载的业务数据。在检查过程中,如果要对板卡进行检查的话就需要将原有的业务状态进行终端。如果的交叉版、时钟版的话就需要找出其中的网元承载业务。如果是一些备用卡板的话就需要将业务进行停止使用,将其中的相关线路进行日常检查,只有这样才能保证电力通信设备的使用安全。
4 总结
电力通信业务的主要核心内容与电力通信网络的运行稳定性有着非常重要的关系,同时也是保障人们用电安全的关键之一。随着社会不断的发展,我国电力网络规模不断扩大,这在一定程度上提高了电力运营的难度,对电力通信业务的需求也越来越高。因此,大数据融入到电力通信业务中去才能满足现代化社会的需求,并做好网络电力通信业务,从而促进电力企业快速发展,提高社会经济效益。
参考文献:
[1]张春平,唐云善,施健.电力通信设备检修影响业务分析的研究及应用[J].电力系统通信,2012(06):23-26.
[2]杨志敏,吴斌,舒然.基于大数据处理技术的电力通信网检修工作分析方法[A].中国电机工程学会电力信息化专业委员会、国家电网公司信息通信分公司.2015电力行业信息化年会论文集[C].中国电机工程学会电力信息化专业委员会、国家电网公司信息通信分公司:2015:1.
篇3
【关键词】电力;自动化;通信网络;分析
1 电力自动化的通信方式
通信系统是实现电力自动化系统的基础,电力系统自动化对通信系统的要求取决于计划实现的自动化水平、电力系统自动化的规模和复杂程度等因素。针对电力自动化系统及其特点,通信系统应具有以下特性:
(1)保证通信可靠性;
(2)满足目前和适应将来的数据传输速率;
(3)双工通信(个别情况下可用单工);
(4)通信不能受停电和故障的影响;
(5)易于操作且维护工作量小
(6)保证建设费用。
下面对目前新兴的几种通信方式作相应介绍:
1.1 扩频通信方式
扩频通信是一种先进的信息传输方式,其信号占用的带宽远大于一般常规通信方式所需的最小带宽。频带的展宽是通过编码及调制的方法来实现的,与所传送的信息数据无关。接收端则用相同的扩频码进行相关解调来解扩并恢复信息数据。
在无线电通信中射频信号的带宽与所传信息的带宽是相比拟的。如用调幅信号来传送语声信息,其带宽为语声信息带宽的两倍。现今使用的电话、广播系统中,无论是采用调幅、调频或脉冲编码调制制式,处理增益值一般都在十多倍范围内,统称为“窄带通信”。而扩频通信的处理增益值高达数百、上千,称为“宽带通信”。一般说来,扩频通信最初是在军事、公安通信中应用,后又发展到个人业余通信、体育竞赛通信、证卷交易所通信和数字立体声广播等。扩频通信应用于电力部门是在该技术解密以后,是在地调或县调通信中最具发展潜力的一种新型通信方式。这是人们在电力自动化系统中的实际应用方面正在努力探索的一种通信方式,重点在于组网技术。扩频通信可组织综合通信业务,同时传输话音、数据和图像信号,有丰富的接口终端,可接电话机、交换机和调度总机,以及配电自动化系统终端设备等。
1.2 光纤通信
自光纤通信问世以来的短短一二十年间,其发展异常迅速,光纤通信的传输速率不断提高,无中继传输距离逐步加长。许多国家已建立了不同规模的光纤通信网络,一般是首先应用于市内局间中继、长途干线,继而广泛应用于电力、铁道、公路、化工、公安等部门的专用网。光纤局部区域网、用户网系统发展也很迅速。随着波分复用技术的日趋成熟,光纤巨大的带宽资源得以充分利用,使得一根光纤的传输容量很快地扩大几倍至几十倍。
光纤通信的主要特点有:频带宽、通信容量大;损耗低、中继距离长;可靠性高、抗电磁干扰能力强;通信网络具有自愈功能;无串话干扰、保密性好;线径细、重量轻、柔软;节约有色金属,原材料资源丰富;随着光纤成本不断下降,其经济效益也越来越显著,光纤通信也逐渐成为电力自动化通信的主力军。
1.3 电力线载波通信(PLC)
用电力线实现可靠的通信一直是电力工业界致力研究的课题之一。经过几十年的努力,输电线上的电力线载波通信已由过去专门提供话音业务发展到传输继电保护、远动、计算机控制信息等综合业务,逐渐接近了实用化和商业化阶段。
在配电网电力线上实现通信与在输电网电力线上实现通信其基本原理相同,但两者的环境条件有很大不同。首先,在设计通信系统时的最基本要求是保证有足够大的信噪比,相比之下配电网电力线上的噪声与干扰是非常严重的。其次还有配电网络的阻抗随之发生变化引发的问题以及信号的失真问题。
随着远程自动化抄表、电力负荷管理、配电网络信息管理、智能住宅小区等技术市场的迅猛发展,各国电力部门对开发以中低压配电网电力线为媒介的电力通信系统表现出极大的兴趣。美国的PLC产品已经越来越多的用于公共事业和商业服务,预计到2002年销售额可达10亿美元。韩国将投资1780万美元开发研制2~10Mbps的电力线路调制解调器,并将在今后5年内为韩国带来50亿美元的收益。利用配电线传输高速数据信息可以使电网管理更加规范合理,对实现电能和高速数据的双重传输具有重要的实际意义。此外,电力公司本身即具有网络遍及所有家庭和单位的先天优势,由此带来的网络投资费用的节省极为可观,而且随着互连网的发展,可以为用户提供更广泛、更全面的服务。
2 电力自动化通信网络的建议模式
从目前来看,国内在电力自动化的通信方式方面还没有一个具体的标准,不仅如此,从科研和开发阶段来说基本上是属于起步阶段,因此,在实际应用方面往往会缺少一些现成的可供参考的标准模式。对于本文前面部分所讲的几种通信方式,可以说各有优缺点,但还没有一种通信方式能够完全满足这种网络复杂、点数多、可靠性要求高的电力系统自动化通信。为了让这个问题逐渐得以解决,可以在现场的实际应用中多设置一些试点,对每种通信方式的性能、可靠性和价格等方面做详细比较,根据比较结果选择合适的通信方式作为将来电力系统自动化通信的主要模式并加以推广应用,以下将提出一套电力自动化通信网络的建议模式,该模式的指导思想在于:在没有一个完全满足和适合电力系统自动化的通信方式之前,应当综合利用现阶段这些通信方式的各自优点来组织一个分区分层的配电自动化通信网络。
第一层:市区的电力系统自动化分站和配电管理中心之间的通信可以通过目前规划的光纤网络来完成,而外县市电力自动化分站与配电管理中心之间的通信则通过目前规划的SDH微波通信进入市区光纤网络后送到配电管理中心。
第二层:每一个电力自动化分站负责本区的电力自动化信息的处理并负责与配电管理中心的联系,对于本区所在的如变电所、大用户、主要线路开关站等主要站点与配电自动化分站之间的通信可以采用光纤通信或一点多址无线通信方式来完成。
第三层:对于每个变电所所带的一些小的配电站和线路开关等与变电所之间可以采用扩频通信、800MHz窄带无线通信方式或电力线载波的通信方式。
第四层:对于居民区内部读表、负荷控制、自动供电和调节电表等一些服务,可以通过前面所述的电力线调制解调器利用已经布好的低压电力线进行通信。这一层的实现属于将来配电自动化的发展相对成熟以后的事务范畴,在此基础上进一步实现用户端的自动控制和抄表等,或者目前新建小区需要和提前考虑的部分,它属于自动化发展的方向和最终目的。
3 结语
通信技术与计算机技术的飞速发展为电力系统运行、维护、控制和管理实现自动化提供了先进的工具和技术基础,庞大而复杂的电力系统要组成综合自动化系统,必须有先进、可靠的通信网络系统支撑,同时也要求通信系统能抵御来自于闪电、电晕、开关操作等产生的强电磁干扰。在设计和选择电力自动化网络系统的结构和产品时应当根据配电站的实际需求、地理位置和规模进行综合的考虑,只有这样才能够让电力系统安全、稳定、有效运行。
参考文献:
[1]张莘茸.探讨电力自动化系统的网络安全[J].科技资讯,2011(02).
篇4
关键词:电力营销;数据分析;实时监控;月度分析
中图分类号:TP39文献标识码:A文章编号:1672-3198(2008)05-0317-01
1凯里供电局营销工作概况
凯里供电局系中国南方电网公司和贵州电网公司领导下的国家大二型企业,担负供电辖区内15个县(市)及湘黔电气化铁路的电能供应、销售与服务任务,并为黔电入粤、黔电入湘的重要通道,为贵州电网公司代管县局最多(15个)的供电企业。该局年售电量40亿千瓦时,辖区内高能耗负荷企业占总负荷70%左右,该局目前营销工作面临负荷结构不合理、代管县局多的复杂管理形势。如何有效的调动代管县局主动做好辖区内的营销服务工作,培育更多优质负荷,提高企业的营销经营业绩,成为该局营销管理工作的研究重点。为此,该局通过建立电力营销数据分析系统,客观公正地评价下属业绩,导入竞争机制,不断提高该局的营销工作质量。
2 建立实时数据跟踪监控系统
凯里供电局针对需要实时控制的电量及电费回收等指标推行日报表和帐目日报表、周期性报表制度,建立起销售状况的实时监控数据分析系统。这里重点介绍电量销售日报表和电费回收进度表。
电费欠费说明:
1.凯里供电局本月应收15478万,截至8月30日下午6:00,本月实收14090万,欠费1388万,回收率为91.03%。凯里系统本期合并口径新增欠费953万,月末应收电费余额增加额为673.57万,其中城区供电分局直管客户欠费191万(凯里纸厂欠费110万,城区小客户欠费81万),直管县局终端用户欠费566万(其中施秉恒盛公司欠495万,市郊局小客户欠23万、镇远局小客户欠47万);台江局欠192万。
2.注意问题:凯里城区小客户本月欠费可能较多,要加大催费力度;同时对凯里纸厂进行跟踪催费。
销售异常势头,跟进弱势区域、弱势类别。
(2)电费回收进度表。
欠费数目越大,时间越长,追讨的可能性就越小,控制应收账款的通用原则是对赊销客户设定信用额度和信用期限。凯里供电局要求各分县局和大客户管理所在每月24日后按日上报电费回收进度表。每月最后两天在早会上通报。一方面提醒各分县局和部门注意正常欠费的关注和跟进;另一方面对异常欠款及时暴光,及时检点,及时追究,从上至下形成对应收账款追讨的巨大压力。
3 建立月度营销分析制度,做好营销数据的月度分析
对于市场营销部而言,简单地根据营销数据考核各分县局和部门工作没有任何意义,重要的在于你能引入公平的评估模式,让各分县局和部门的营销负责人心服口服。
完备科学的月销售分析应达到以下目的:
(1)分析整个地区局的当月电量、线损、欠费余额,同期增长率,教上月成长率。
(2)引导各分县局和部门营销负责人关注自己的电力销售和电费回收是否健康。
(3)引导各分县局和部门营销负责人关注当月重要客户的销售。
(4)排除市场容量不同、市场基础不同等因素的干扰,客观公正地评估各分县局和部门的销售贡献。
这里以月度下网电量分析表进行说明:
通过此表我们可以看到凯里供电局当月的售电量、累计售电量、成长率、同期增长率等,还可以看到各类别电量及所占的比例。更重要的是,我们可以看到各分县局的售电情况,排名情况,对各分县局进行点评, 还可以要求后三名说明原因,给其营销负责人相应的指导和压力。
4 小结
通过建立有效的电力营销数据分析系统,凯里供电局实现了实时的销售监控和周期性的分析反馈及控制,为提高企业经营业绩奠定了基础。
参考文献
[1]傅景伟.电力营销技术支持系统[M].中国电力出版社,2002.
[2]沈百新.利用专家系统预测地区用电负荷[M].电力需求侧管理,2005.
篇5
【关键词】配电网 电压分析 辅助决策
当前,用户对配电网电压质量的投诉主要集中在电压偏差超差方面[1]。为了提升电压质量,同时提高专业管理水平,有必要建立一套辅助决策系统,以实现电压偏差问题的自动定位和电压治理措施的经济技术比较,从而给专业人员以最优的参考。
1 总体思路
思路如下:由手工绘制或GIS系统导入形成基础模型(模型连接配网元件库),然后通过潮流计算发现问题所在,最后通过技术经济算法实现辅助决策。说明:①元件库应包括配变、等效电源、线路、无功装置、DG等;②应支持GIS导入;③对解决措施的校核需考虑未来负荷增长等情况。
2 几个关键算法
2.1 配网潮流算法选择
中低压配电网运行方式多变,为了避免不正确合环,一般是放射状运行,线路的R/X值较大,因此适合用前推回代型潮流计算方法。该方法比较成熟,限于篇幅,不再赘述。
2.2 电压分析模型
在潮流计算基础上,可获取电压幅值超差的节点,然后运用电压分析模型进行“病症”分析。为了简化问题,我们规定本系统的辅助决策是基于单个措施的,即最后给出的措施建议只有一项(这也符合实际运维情况);另外,判据全部采用国网或行业标准。电压分析模型见图1所示。
图1 电压分析流程
2.3 电压治理措施的辅助决策
流程如下:开始获取问题原因从知识库获取可能的解决措施计算各种解决措施的技术指标计算各种解决措施的经济指标选择最优措施结束。
3 应用实例
3.1 配网概况及潮流计算结果
以东部某村庄的低压配网为例。S11-160kVA的配变低压侧出两路线:一路长度700米,负荷16kW;另一路长度1500米,负荷28kW,线路型号均为BLVV-70,为0.85。
潮流计算结果:第一回线路首端电压227V、末端电压216V;第二回线路首端电压227V、末端电压174V。根据D类电压合格率指标要求,D类电压范围应控制在198V~235.4V之间,因此第二回线的末端电压显然处于偏差超差状态。
3.2 电压分析
根据图1流程,对第二回线进行建模并逐个改变因素后计算,发现:当功率因数由0.85提升到0.9,末端电压178V,不合格;当导线截面由70mm提升到120mm后,末端电压195V,不合格;当供电半径缩短500m,末端电压210V,合格。因此,对第二回线来说,“供电半径”是敏感因素。
3.3 电压治理措施的决策
就目前技术手段来看,要解决供电半径过长,可采取的措施主要有加装线路调压器和新建电源点两大类[3]。就本算例实际,具体为:
(1)线路调压器:容量50kVA,变比1:1.15。
(2)新增电源点:10kV线路800m+50kVA变压器。
运用文章构建的系统对两种方案进行经济技术对比,结果见表1所示。其中,年综合费用指初投资平均分摊到年(在各自运行寿命内)+年运维费-年线损减少所带来的电费节省。
表1 两种措施的经济技术比对
项目
措施实施前/措施(1)实施/措施(2)实施
项目
措施实施前/措施(1)实施/措施(2)实施
末端U/V
174/206/205
年运维费/万元
-/0.06/0.11
线损/kW
8.9/7.5/3.1
寿命/年
-/5/12
负荷增加20%后的电压变化
-/204/202
年综合费用/万元
-/0.51/1.44
初投资/万元
-/3.1/14.8
由表1可知,就本算例来说,两种措施的技术指标相差不大,但措施(1)的经济指标明显高于措施(2),因此我们选择增加线路调压器方案。
4 结语
文章通过建立计算机辅助系统,能依据网络结构、负荷态势快速锁定电压偏差超差节点并分析具体原因,接着依据专家知识库确定备选方案,最后通过经济技术比较做出最优选择。文章的研究经历算例的考验,具有推广价值。
参考文献:
[1] 罗家健.配电网电压偏差综合优化案例分析[J].机电工程技术,2014,31(2):132-135.
[2] 刘书铭.中高压配电网非线性用户的电能质量特性研究[J].电力系统保护与控制,2014,36(2):226-228.
篇6
关键词:暂态稳定 输电网络 结构保持 临界割集 网络分割
1 引言
近年来,由于电力系统跨区输电、跨区联网的形成,电网结构愈加复杂化,动态稳定问题日益突出,因此准确地识别出系统中制约暂态稳定的“瓶颈”环节,以采取有效的监测、控制措施来提高系统的稳定性,是近年来被关注的一个热点。
本文基于网络拓扑结构和参数,不依赖于数值仿真计算,利用耦合的思想形成网络中割集的权系数,按照权系数的大小识别网络中的脆弱环节,并由输电网络本身固有的分区分层的结构特点,识别出网络中最易导致系统失稳的临界割集,确定危险“断面”。
2 导纳阵耦合的模型[1]
一个描述网络的导纳阵Y及其逆阵Y-1=Z有相对应的元。任取Y阵
元yij与Y-1阵元yij-1这一对对应元,Y-1阵 ,对应的网络图
如图2-1(a)所示,方向为由j指向i,边权为yij-1;Y阵元yij在对应的网络图上,其方向为由i指向j,边权为yij,其一阶循环积 ,可用来衡量节点i和j的耦合程度,并对应矩阵G的j行i列,如图2-1(b)所示。如果将gij放入矩阵G的行列,于是逐个地形成G阵的元,所得G阵定义为A阵的关联矩阵。
当上述定义用于导纳阵Y(其逆阵为阻抗阵Z)时,因Y阵常为对称阵,故gij=gji。若A为状态阵,它是非对称的,则gij≠gji。若不考虑方向性时,可取其绝对值大者,作为j和i两节点的耦合系数。系统地以运算方式形成耦合矩阵,先定义2矢量的逐项积,符号记为。设行矢量a和列矢量b分别为
则矢量a和矢量b的逐项积(term by term product)定义为
在线性代数中,2矢量的标量积(内积)为
它在整体上表达了2矢量的相关程度。
如果取规范式
则可用μ定量地说明2矢量的相关程度。当μ接近1时,称a、b2矢量是强线性相关的,当μ接近0时,称a、b2矢量是弱线性相关的。如果a1b1,a2b2,…anbn的各项中,从绝对值看,某一项占的比例大,则表明该项在a,b2矢量的相关中处于主要地位。
对导纳阵Y及其逆阵Y-1:
其中 是行向量,
是列向量,则
将行矢量
对应矩阵G的第i行,并将G阵记以G=YY-1,并定义G阵为导纳阵Y的耦合矩阵。
3 用导纳阵Y形成耦合阵G的步骤
为保证按区域划分的原则,首先应将系统中的发电机节点重新编号,新编号的节点顺序应使各台发电机在地理位置上互相邻接。
具体步骤为:
(1)将负荷节点的功率转换为导纳 ,
使负荷节点转变为非注入节点。
(2)形成包括发电机内电抗及负荷节点在内的支路导纳矩阵Yb,并由公式 形成节点导纳矩阵。
(3)消去Y0阵的非注入节点,只保留发电机节点,所获得的导纳阵记为Y。
(4)求阻抗矩阵Z=Y-1,进而求出G=YZ。
4 利用耦合值进行动态分割
求得系统状态阵后,进而求阵,形成耦合阵G=YZ,再设定一临界耦合系数gc,在G阵中,舍弃所有耦合系数绝对值小于gc的元,进而G阵的对应边也被取消,即该边对系统的动态影响不大。这时系统被分割为一个个的子块。阵的每一个元都对应一个数值,该数值称为此元对应的边的权。
与质量弹簧系统相类似,电力系统作为非线性动力系统,在故障后外部扰动已消除的情况下,可以将电力系统作为一个自治系统来研究。对于一个自治系统来说,其特征是在暂态过程中系统内部的能量是守恒的。若能量可用动能和势能之和表示,当外部扰动结束后,动能和势能将进行等量交换。当电力系统受到大的冲击扰动之后,必将有大量的暂态能量向系统中注入,系统的暂态稳定性主要取决于这部分能量能否被系统网络所吸收。如果能够完全吸收,则系统是稳定的,反之失去稳定。虽然电力系统暂态稳定性具有全局性的特点,但暂态稳定则具有局部性的特点,系统的失稳主要表现为:系统中的发电机呈现出两群或多群振荡,网络表现为在脆弱或临界割集处撕裂。
如果扰动相当大,当系统中电机间相角差出现大于180°的情况时,可把系统中的电机分群,使在一群内的电机之间在失去暂态稳定整个过程中相角差很小,称为同调机群[2],而不同调的电机之间的相角差很大,通常大于180°,系统失稳可能呈现为两群或更多的群,其群间联络线通常都不是由一个割集组成,而是对应多个割集,其中只有一个割集其支路两端相角差单调增大,超过180°,称之为临界割集。
5 结论
本文提出了一种基于网络拓扑结构和参数,不依赖于数值仿真计算,利用耦合的思想形成网络中割集的权系数,按照权系数的大小识别网络中的脆弱环节,并由输电网络本身固有的分区分层的结构特点,即可识别网络中最易导致系统失稳的临界割集,确定危险“断面”。本文则无需大量的数值仿真计算,仅由输电网络拓扑结构固有的分区分层的结构特点,即可识别网络中最易导致系统失稳的脆弱环节,为电力系统运行方面提供了合理的指导。为电力系统规划方面以及电力系统稳定控制装置在电力系统中的布点提供了一定的依据,有助于解决长期以来制约系统暂态稳定的“瓶颈”问题。
参考文献:
[1]蔡国伟等.基于支路暂态势能和两端电压识别临界机群的新方法.中国电力,2002,35(5):40~44
[2]Lei Wang,Meir Klein,Solomon Yirga,Prabha Kundur. Dynamic Reduction of Large Power Systems for Stability Studies. IEEE Trans on Power Systems,1997,12(2):889~895
篇7
关键词:电力系统;变压器;故障;原因;处理
中图分类号:TM7 文献标识码:A
在电力系统中,变压器是重要的设备,变压器的作用是多方面的,不仅能升高电压把电能送到用电地区,还能把电压降低为各级使用电压,以满足用电的需要。总之,升压与降压都必须由变压器来完成。在电力系统传送电能的过程中,必然会产生电压和功率两部分损耗,在输送同一功率时电压损耗与电压成反比,功率损耗与电压的平方成反比。利用变压器提高电压,减少了送电损失。变压器的稳定运行是保障电力系统安全生产的基础,变压器出现故障将严重影响供电的可靠性和电力系统的正常运行。通过对电力系统变压器故障的早期判断,能够有效地减少由于变压器故障引起的停用,防止电力系统安全事故的发生。因此,了解变压器故障类型与特点,在日常巡检与例行检查中有针对性地对变压器情况进行检查以免故障进一步扩大,保证电力系统的安全稳定运行。
1 变压器常见故障及产生原因
变压器的常见故障按变压器本体可分为内部故障和外部故障;按故障发生的部位可分为铁芯故障、分接开关故障、绕组故障、绝缘故障;按发生故障的性质可分为热性故障和电性故障;按故障发生的回路可分为:电路故障、磁路故障和油路故障;按变压器的结构可分为绕组故障、铁芯故障、油质故障和附件故障等。
1.1 绝缘故障和密封不良
变压器油和绝缘纸、板以及绝缘件构成了变压器油-纸绝缘系统,绝缘故障主要表现形式及其产生原因如下:(1)变压器油受到污染,绝缘强度下降进而导致变压器整体绝缘性能下降是目前变压器运行中的常见故障。(2)有些变压器采用薄绝缘、小油道的设计制造,这些变压器往往在投运后不久就发生故障。
1.2 绕组和引线故障
绕组故障主要是指发生在变压器线圈、纵绝缘和端子中的故障。绕组故障主要由以下原因引起:(1)持续过载可在整台变压器中引起高温,造成线圈绝缘变脆、脱落,引起绕组匝间短路,导致变压器损坏。(2)由于运行中的变压器遭受严重的外部短路时,在电动力和机械力的作用下,变压器绕组的尺寸或形状将发生不可逆的变化。(3)变压器线圈的接头因焊接过程中质量控制不严导致质量欠佳,线圈引出线和套管导电杆连接不好会致使变压器在运行中接头过热从而导致局部绝缘劣化。(4)变压器线圈的绝缘中渗入水分或器身干燥处理不够彻底,会导致运行中的变压器发生匝间短路。(5)雷电冲击、对地弧光放电等瞬变过程都可能会造成变压器绕组薄弱处发生绝缘损坏乃至击穿。
1.3 磁路部分故障
磁路故障就是指发生在变压器的铁芯、铁轭及夹件中的故障。磁路故障产生的原因主要有:(1) 铁芯叠片之间的绝缘或与铁轭夹件之间的绝缘产生损坏会产生很大的循环涡流,产生大量的热量,危及铁芯和线圈的绝缘,变压器的铁损也会随之增加。(2)运行中的电力变压器铁芯形成多点接地,轻则发生局部过热,重则导致变压器跳闸甚至造成变压器直接损坏。
1.4 分接开关故障
分接开关故障主要表现为:分接开关触头接触不良、触头间短路或对地放电、分接开关引线松动等。故障原因有很多,如制造质量存在问题;在安装、运行操作及维护过程中存在不当行为造成弹簧压力不足、接触不可靠、引线紧固不良、开关触头氧化、分接开关不到位等现象。
1.5 高压出线套管故障
套管是电力变压器内绕组与油箱外联结引线的重要保护装置,也是电力变压器与外部电网或设备连接的桥梁。其长期遭受电场、风雨、污染等影响,易使瓷釉龟裂绝缘油老化,是变压器故障多发部位。在运行中,以下因素易导致套管故障:(1)套管瓷套的表面沉积有灰尘、油污和盐雾等,常常会引起套管的污闪;(2)套管与绕组引线联接固定销脱落造成悬浮放电;(3)套管密封不良导致进水受潮;(4)套管因漏油致使套管缺油而过热。
2 电力变压器故障常用的诊断方法
2.1 观察法
由于运行中的电力变压器产生故障时,其声音、散发的气味、气体颜色以及油温都会出现异常。因此,可以通过闻、听、摸、看等方式来对变压器的故障进行诊断。
2.2 变压器油化验
变压器油化验是一种常见且有效的故障诊断方法。由于充油电气设备的潜伏性故障所产生的可燃性气体大部分会溶解于油,因此可应用监测仪测定变压器油中各种故障气体,连续测定因故障释放而溶解于油中气体的含量,分析气体类别及含量来确定变压器故障的类型。
2.3 变压器绝缘试验
变压器的绝缘试验主要包括变压器的泄漏电流、介质损失、绝缘电阻、吸收比、感应耐压、交流耐压等试验。泄漏电流试验可用于变压器引线套管缺陷和绝缘部分穿透性缺陷的诊断。对泄漏电流测量结果进行分析判断时,主要与历年试验结果比较各项参数不应有显著变化。按标准规定使用兆欧表进行测量,依次测量各线圈对地及线圈间的绝缘电阻,并与历次测量结果比较判断。
3 变压器故障处理
变压器断路器故障跳闸时,运行人员应立即清楚、准确地向值班调度员报告情况,汇报事故发生的时间及现象、跳闸断路器的名称、编号、继电保护和自动装置的动作情况及表针摆动、频率、电压、潮流的变化等。并在值班调度员的指挥下沉着、迅速、准确地进行处理。为加速处理故障,限制故障的发展,应进行下列操作:(1)将直接对人员生命有威胁的设备停电;(2)将已损坏的设备隔离;(3)运行中的设备有受损伤的威胁时,应停用或隔离;(4)站用电气设备事故恢复电源;(5)电压互感器保险熔断时,将有关保护停用;(6)现场规程中明确规定的操作,可无须等待值班调度员命令,运行人员可自行处理,但必须向值班调度员汇报。
结语
综上所述,变压器是电力系统的重要设备,掌握变压器常见故障产生的原因和诊断方法以及出现故障时的处理方法,可以有效地提高变压器的健康水平,确保电力系统安全稳定运行。
参考文献
[1]韩金华,张健壮.大型电力变压器典型故障案例分析与处理[M].中国电力出版社,2012.
篇8
关键词: 负荷预测;数学统计;人工智能
DOI:10.16640/ki.37-1222/t.2016.11.198
0 引言
自上世纪70年代开始,国内外对电力系统负荷预测的研究热情逐渐升温,进入上世纪80年代,我国步入到大力发展经济建设的阶段,电力需求极度旺盛,然而能源又极度紧张,电力供电一度出现供应不足的情况,负荷预测开始成为电力公司一项必要的日常工作任务。20世纪90年代,全球电力市场化层层渗透,随着科学技术的迅猛发展,新的预测方法层出不穷,为电力负荷预测问题的研究提供了后备力量。
长久以来,国内外学者以及电力相关从业人员在长期的实践研究过程中,不断探索负荷预测新方法,随着近年来各种数学模型的涌现,以及人工智能的发展,出现了不少新颖的预测方法,这些方法大概能分成两大类别:一类是数学统计类的经典预测方法,比如回归分析法、趋势外推法、时间序列法等;另一类是人工智能类的新型预测方法,如80年代后期流行的专家系统法、90年代后期发展起来的人工神经网络法等。下面分别介绍这些主要预测方法。
1 回归分析法
回归分析是一种经典统计学上分析数据的方法,通过对历史负荷数据进行统计归纳分析总结,寻找预测输入变量与影响负荷变量之间的某种相关的线性或非线性关系,并以此关系的规律建立数学模型,从而实现对未来负荷的基本预测。简单来讲就是建立自变量与因变量之间关系模型,依照变量数目的不同,一般分为单元和多元回归分析。该方法原理成熟、计算简便、运算速度快,但是过分依赖历史负荷数据,对样本容量需求过大,对平稳的且大量的历史数据有着不错的预测效果,但是在遇到气温,节假日等变化较大因素的影响下,该方法无法反映实时与非线性的影响关系。
2 趋势外推法
节假日、社会环境、天气变化会对电力负荷波动造成干扰,尽管在形成这种具有随机性、不确定性的情况下,电力负荷总是本质的保持着一定的波动趋势。我们可以在其中找出负荷的这种趋势,根据这些负荷变化的相关历史趋势,拟合一条负荷波动趋势曲线,按照这条拟合出来的曲线的发展趋势,估计曲线上在未来某点的负荷变化,根据不同的负荷波动,采用不同的曲线拟合,这就是所谓的趋势外推法。此方法优点与缺点同样突出,优点是所需历史负荷数据样本较少,特点是作趋势向外推断,完全忽略分析内部的不确定成分,缺点是对影响因素变化大的因子无法考虑进来,如果负荷波动较大,那么误差将会增大。
3 时间序列法
时间序列分析法是将历史负荷变化所产生的变化规律,依照时间的先后顺序进行排序,以时间为轴揭示负荷随时间变化而变化的发展规律,利用这种对应关系,就可以将过去时间里发生的负荷变化规律作为未来时间里负荷变化的预测根据。同样,时间序列法在电网正常运行,受外部环境影响变化小的平稳状态下具有良好的预测精度,但是对时间序列的平稳性要求过高,一旦负荷受到特殊事件(如停机等)不确定性因素的影响,那么该方法也将失去其预期的效果。
4 专家系统法
专家系统其实是一种复杂的计算机程序设计系统,将计算机模拟成负荷预测的人类专家,基于历史负荷变化知识数据库,汇集人工经验智能的利用计算机处理负荷信息,按照专家水平进行预测判断工作。专家系统结构如图1所示。在处理节假日等需要依靠人工经验来判断的不确定性影响因素对负荷影响产生较大的变化时,此方法有取得了很好的效果,但是各个地区的电力环境不同,造成计算机程序复杂,数据庞大,能否准确的对各个因素对负荷造成的影响进行定量分析成为了一个较为难以克服的困难。
5 人工神经网络法
人工神经网络是模拟人脑智能化地处理信息的人工智能预测方法,它通过学习获得最优的参数,处理预测输出与输入影响变量之间复杂的非线性关系,对于分析处理任意复杂的非线性关系问题以及随机的不确定性问题有着良好的解决问题能力。正因为它具有出色的学习能力,预测过程中都可以随时不断地选择新的训练样本来优化和微调系统参数,这样对非结构性、模糊性的规律具有一定的自适应功能,避免了数学建模的困难,也提高了系统计算的时间,相比较前面介绍的四种方法,它还能考虑并反映出各种不确定性因素(如气候、特殊事件、节假日因素等)对负荷造成的干扰影响,更加适用于短期负荷预测。但是,人工神经网络预测也存在许多缺陷,网络的层数和神经元的选择基本上要依靠经验反复实验帮助确定,且网络收敛慢,容易陷入局部收敛。它本质上是一种基于经验风险最小化的方法,范化能力有限,另外在小样本学习方面也受到了不小限制。
6 支持向量机法
支持向量机(Support Vector Machines, SVM)是由BELL实验室的Vapnik 等人在20世纪70年代中期提出的一种新型机器学习算法,因其卓越的性能,在模式识别和处理函数回归估计问题等诸多领域内受到了各研究学者们的强烈青睐。支持向量机与传统的人工神经网络预测方法所采用的经验风险最小化归纳原则是截然不同的,它实现了结构风险最小化(Structure Risk Minimization, SRM)的归纳原则,对未来样本的泛化能力明显增强。从理论上说,SVM的训练相当于解决一个线性约束的二次规划问题,所以必然存在解,获得的将会是全局最优解,这样就无形解决了人工神经网络预测方法中根本无法规避的局部极值问题。对应的支持向量本质上是训练样本集的子集,对训练样本集进行分类实际上就是对支持向量进行最低分类。 当Vapnik引入ε-
(下转第208页)(上接第215页)
不敏感损失函数之后,支持向量机由原来解决简单的模式识别问题扩展为解决复杂的非线性回归估计问题,我们把这一扩展内容称之为支持向量回归法(Support Vector Regression, SVR)。将各种负荷影响因子的历史信息作为系统输入量,建立训练样本空间,采用非线性映射变换方法将低维空间映射到高维特征空间,构造线性函数进行线性回归,巧妙地解决了维数问题,构建SVM目标函数,将训练好的预测模型应用于电力系统的负荷预测中去。影响电力系统短期负荷预测精度的因素包括日照、气温等气象因素及国家政策、节假日因素等其它不确定性影响因素。可见,电力负荷由于这些因素的影响,本身就是一个复杂的非线性系统,而SVM模型求解算法简单、泛化能力强、收敛速度快,在解决有限小样本、非线性系统及高维识别问题中具有超群的优越性,如果将其置于短期负荷预测上,显然SVM方法比起上述其他预测方法更加适用于电力系统本身。随着机器学习,支持向量机的不断发展,在此基础上不断改良的支持向量机预测方法逐渐涌现,人们追求更高的预测精度的诉求一直在不断扩进。同时,寻找满足适合各类电网环境的负荷预测新方法也成为了人们继续研究的新命题。
7 结束语
本文通过分析基于数学统计的经典预测方法和基于人工智能的新预测方法,将回归分析法、、趋势外推法、时间序列法、专家系统法、人工神经网络法、支持向量机法进行了比较分析,得出支持向量机是当前最合适的一种方法。
参考文献:
[1]斐乐萍.县级区域短期电力负荷预测研究[D].华北电力大学,2014.
[2]尹立.基于支持向量机的某区域电网电力需求的预测研究[D].北京交通大学,2014.
篇9
关键词:电力系统超短期负荷预测人工神经网络外推法
中图分类号:F407文献标识码: A
1 负荷预测概述[1]
负荷的大小与特性对于电力系统设计和运行都是极为重要的因素。对负荷的变化与特性有一个事先的估计是电力系统运行、控制和规划不可缺少的一部分。
指导调度员控制联络线交换功率在规定范围,一般需5~15min 的负荷数据。预防性控制和紧急状态处理需要10min至1h的预测值[2] 。这也是本文的主要研究方向。
2 电力系统负荷预测方法简介
长期以来,国内外学者对负荷预测的理论和方法做了大量的研究,提出了各种各样的预测方法,这些方法大致可分为两大类:一类是以时间序列法为代表的传统方法,另一类是以人工神经网络为代表的新型人工智能方法。传统方法中主要有时间序列法、多元线性回归法及傅立叶展开法等。人工智能方法中主要有专家系统法、模糊逻辑法、人工神经网络法及小波分析法等。由于电力负荷的变化有其不确定性,如气候变化、意外事故的发生等对电力负荷造成随机干扰,因此,每种方法均有一定的适应场合,并需要不断的完善。
2.1 回归分析法
回归分析法又称统计分析法,回归模型有一元线性回归、多元线性回归、非线性回归等回归预测模型;其中,线性回归用于中期负荷预测。优点是:预测精度较高,适用于在中、短期预测使用。缺点是:1.规划水平年的工农业总产值很难详细统计;2.用回归分析法只能测算出综合用电负荷的发展水平,无法测算出各供电区的负荷发展水平,也就无法进行具体的电网建设规划。
2.2 弹性系数法
弹性系数是电量平均增长率与国内生产总值之间的比值,根据国内生产总值的增长速度结合弹性系数得到规划期末的总用电量。弹性系数法是从宏观上确定电力发展同国民经济发展的相对速度,它是衡量国民经济发展和用电需求的重要参数。电力弹性系数可以用下面的公式来表示:
(2-1-1)
式中:为电力弹性系数;为为电力消费年平均增长率;为国民经济年平均增长率
在市场经济条件下,电力弹性系数已经变得捉摸不定,并且随着科学技术的迅猛发展,节电技术和电力需求侧管理,电力与经济的关系急剧变化,电力需求与经济发展的变化步伐严重失调,使得弹性系数难以捉摸,使用弹性系数法预测电力需求难以得到满意的效果。2.3 时间序列法
时间序列法是短期负荷预测的经典方法,是根据负荷的历史资料,设法建立一个数学模型,用这个数学模型一方面来描述电力负荷这个随机变量变化过程的统计规律,另一方面在该数学模型的基础上再确立负荷预测的数学表达式,对未来的负荷进行预报。就一般地时间序列预测方法而言,人们总是先去识别与实际预测目标序列相符合的一个随机模型,并估计出随机模型中的未知参数,再对随机模型进行考核,当确认该随机模型具有适用价值后,再在此基础上建立预测表达式进行预报。它利用了电力负荷变动的惯性特征和时间上的延续性,通过对历史数据时间序列的分析处理,确定其基本特征和变化规律,预测未来负荷。
2.4 负荷求导法
每天的负荷大小(高低)有差别,但其负荷的变化率是有一定的规律。只要找出一个适当函数来拟合每天的负荷曲线,对这个函数进行一次求导,即可得出一天的负荷变化率。虽然每天的负荷大小变化难以准确预测,但对负荷曲线求导后,得出的负荷变化率有一定的稳定性。因此,利用负荷的变化率来进行超短期负荷预测将会使精确度提高。负荷求导法预测的公式是:
(2-1-2)
式中对第i+1点的负荷预测值;
第i点的实际负荷值;
第i点的预测负荷变化率值。
2.5 专家系统法
专家系统预测法是对数据库里存放的过去几年甚至几十年的,每小时的负荷和天气数据进行分析,从而汇集有经验的负荷预测人员的知识,提取有关规则,按照一定的规则进行负荷预测。实践证明,精确的负荷预测不仅需要高新技术的支撑,同时也需要融合人类自身的经验和智慧。因此,就会需要专家系统这样的技术。专家系统法,是对人类的不可量化的经验进行转化的一种较好的方法。但专家系统分析本身就是一个耗时的过程,并且某些复杂的因素(如天气因素),即使知道其对负荷的影响,但要准确定量地确定他们对负荷地区的影响也是很难的。专家系统预测法适用于中、长期负荷预测。此法的优点是:1.能汇集多个专家的知识和经验,最大限度地利用专家的能力;2.占有的资料、信息多,考虑的因素也比较全面,有利于得出较为正确的结论。
2.6 外推法
根据负荷的变化趋势对未来负荷情况作出预测。电力负荷虽然具有随机性和不确定性,但在一定条件下,仍存在着明显的变化趋势,例如农业用电,在气候条件变化较小的冬季,日用电量相对稳定,表现为较平稳的变化趋势。
外推法有线性趋势预测法、对数趋势预测法、二次曲线趋势预测法、指数曲线趋势预测法。趋势外推法的优点是:只需要历史数据、所需的数据量较少。缺点是:如果负荷出现变动,会引起较大的误差。
2.7 人工神经网络法
人工神经网络理论最早出现于20世纪40年代,经过几十年的发展,已广泛的用于电力系统短期负荷预测。在现有的各种神经网络的计算方法中,由Ponelhert和Mcclelland提出的BP算法是应用得最多的一种。BP算法的模型为前向多层网络,由输入层、隐含层、输出层组成,每层都包含若干节点,同一层的节点间没有相互的连接,而仅仅在前后不同层之间有节点的连接。BP算法的学习过程由正向传播和反向传播组成,正向传播过程的输入样本从输入层经隐含层处理后传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层得不到期望值,则转入反向传播,将误差信号沿原连接通路返回,通过修正各神经元的权系数,使误差信号减小,达到给定的精度,从而完成了其学习过程。这样,当在网络的输入端加入一新的信号时,就能从其输出端得到相应的结果。
3 预测算例
通过前述对各种预测方法的分析,采用神经网络法和外推法对山东某地区一个变电站的2005年8月8日负荷进行预测。在实际应用中,预测最小间隔为5min,预测长度为1h。目前15min预测间隔为最常用。负荷采样间隔为5分钟,一天24个小时为288个数据,预测为提前15分钟的预测,预测结果如下:
图1 基于BP神经网络的负荷预测曲线
预测的平均相对误差为2.3089%,本文在建立超短期负荷模型时,未考虑天气变化和突发事件对负荷的影响,这在一定程度上影响了预测的精度。当天气变化显著或者有突发事件时,这个预测模型的精度会变差。但总的来说,所得预测结果比较令人满意。
图2 外推法负荷预测曲线
预测的平均相对误差为2.3059%,与神经网络法预测结果相差不大。
4 结论
本文对各种负荷预测方法进行了分析,并且在短期及超短期负荷预测方面,针对于两种目前比较常用的负荷预测方法――人工神经网络法和负荷外推法进行了重点的仿真研究。得出:在超短期负荷预测方面两种方法得出结果相差并不是很大。负荷外推法方法简单,要求的历史数据较少,运算速度较快,可满足系统在线分析的实时要求,比较适合在工程中应用。人工神经网络法算法比较复杂,而且存在训练时间较长、收敛性等问题。但是在短期负荷预测方面(例如提前24小时的预测)神经网络法存在着比负荷外推法明显的优势。因此,在工程应用等方面线性外推法还是具有较强的实用性。
参考文献
[1]刘晨晖.电力系统负荷预报理论与方法[M].中国:哈尔滨工业大学出版社,1987年 .20-60.
[2]张峰 吴劲晖 张怡 胡若云.基于负荷趋势的新型超短期负荷预测法[J]. 电网技术,2005,vol.28 No.19
[3]吴熳红 杨继旺.几种电力负荷预测方法及其比较[J].广东电力,2001,vol.17 No.1
[4]陈霞 安伯义 陈广林.电力负荷预测理论与方法[J].农村电气化,2004.7
[5]吴劲晖 王冬明 黄良宝 孙维真.一种超短期负荷预测的新方法-负荷求导法[J]. 浙江电力,2000,6
[6]张国忠 熊伟 向求新 黄晓明 刘亚. 应用人工神经网络预测电力负荷[J].电力自动化设备,2002,22
[7]S.H.Ling Frank H.F.Leung H.K.Lam Peter K.S.Tam Short-Term Electric Load Forecasting Based on a Neural Fuzzy Networks[A]. IEEE Transactions on Industrial electronics vol.50 no.6
[8]闫承山 刘永奇.人工神经网络在华北电网负荷预测中的应用[J].电网技术,1998,22
[9] 马文晓 白晓民 沐连顺.基于人工神经网络和模糊推理的短期负荷预测方法[J].电网技术,2003,27
[10]D.C.Park M.A.El-Sharkawi R.J.Marks II L.E.Atlas and M.J.Damborg. Electric Load Forecasting Using An Artificial Neural Network [A].IEEE Transcaction on Power Systems vol.6 no.2 May 1991
[11]Lee K.Y.,Cha Y.T. Park J.H.,Short-term load forecasting using an artificial neutral network[J]. Power Systems, IEEE Transactions on , Volume: 7 , Issue: 1 , Feb. 1992
[12]姜勇.电力系统短期负荷预测的模糊神经网络方法[J]. 继电,2002,30(7)
[13]Shan Shao, Yaming Sun, Short-term load forecasting using fuzzy neural network. Advances in Power System Control, Operation and Management, 1997. Fourth International Conference on (Conf. Publ. No. 450) Vol. 1 Nov 1997
[14]杨洪明 白培林.基于遗传算法的人工神经网络负荷预报模型[J].湖南电力,2000 20
作者简介
陈晓东 男 硕士 工程师电力系统稳定 山东电机工程学会
篇10
近年来,随着云计算、物联网以及移动互联网等技术的迅猛发展,全球对IP地址的需求大幅增加。智能电网作为物联网的重要应用,已经在全国各地开展示范工程推广。智能电网对IP地址的大量需求,迫切需要基于下一代互联网技术的信息通信平台作为支撑。具有巨大地址空间的IPv6已经成为下一代互联网IP层技术。作为下一代互联网协议,IPv6是针对IPv4面临的问题而提出的。同IPv4相比较,IPv6在地址容量、安全性、移动性以及服务质量等方面有了明显的改进。
二、IPv6过渡技术分析
现阶段全球绝大多数网络仍是IPv4,过渡到IPv6还需要很长一段时间。在此期间,IPv4与IPV6是共存的,过渡技术就是用来解决两个版本IP网络互通的问题。过渡技术总体可以分为三类:IPv6/IPv4双栈技术、隧道技术和IPv4/ IPv6协议翻译技术。
2.1 IPv6/IPv4双协议栈技术
双栈技术是IPv4向IPv6过渡的一种有效的技术。网络中的节点要求同时支持IPv4和IPv6协议栈,源节点根据目的节点的不同选用不同的协议栈,而网络设备根据报文的协议类型选择不同的协议栈进行处理和转发。双协议栈部署简单,是所有过渡技术的基础,被国内外运营商广泛采用,但双协议栈技术没有完全解决IPv4地址短缺的问题。
2.2隧道技术
隧道(tunnel)是指一种协议封装到另外一种协议中的技术。隧道技术提供了两个IPv6节点之间通过IPv4网络实现互连通信,以及两个IPv4节点之间通过IPv6网络实现互连通信的技术。
隧道类型有多种,根据隧道协议的不同分为IPv4 overIPv6隧道和IPv6 over IPv4隧道。按照隧道终点地址的获得方式,可将隧道分为配置型隧道(如手工隧道、GRE 隧道)和自动型隧道(如隧道、6to4、6over4、6RD、ISATAP、基于MPLS 的隧道6PE和6VPE等)。隧道技术的特点是不要求网络所有设备都支持双协议栈,只要求隧道两端的设备支持两种协议。缺点是不能实现IPv4节点与IPv6节点的直接通信。
2.3协议翻译技术
协议翻译技术是为了提供了IPv4网络与IPv6网络之间的互访技术,也就是使IPv6主机可以访问IPv4主机,IPv4主机可以访问IPv6主机。相关的技术有NAT-PT和IVI技术。
NAT-PT是IETF最先提出的解决IPv4/IPv6互通问题的解决方案。通过与SIIT 协议转换和传统的IPv4 下的动态地址翻译NAT以及适当的应用层网关ALG相结合,实现了纯IPv6 的主机和纯IPv4 主机间的相互通讯。但NAT-PT技术由于其协议自身存在不少缺陷,带来很多的部署问题和安全漏洞,所以IETF已经不推荐使用NAT-PT。
IVI基于运营商路由前缀的无状态IPv4/IPv6翻译技术,该方案是由清华大学李星教授提出的IPv4和IPv6的翻译技术,并已形成5 个IETF 的RFC 标准。目前IVI已经在我国的纯IPv6网络CERNET2正常运行四年以上,并得到了思科、华为、中兴通讯等设备厂商的支持,具有良好的运用前景。
三、电力通信网IPv4-IPv6过渡技术研究
3.1 通信网现状
江西公司现有IPv4数据通信网已具备一定规模,采用MPLS VPN (标签交换虚拟专用网络)技术设计建设。全网使用IP over SDH技术进行组网,双机双平面方案配置。目前通信数据网已运行信息、视频等多个VPN,其中信息VPN承载大量与企业生产、经营活动相关的业务流量。
3.2 过渡技术分析
基于IPv6的电力通信网与智能电网的结合,一方面可以满足物联网、云计算等技术在智能电网应用中对网络地址的大量需求,另一方面也可以满足电网与IPv4/IPv6用户信息交互,推动智能电网的全面建设。在公司“信息通信十三五规划”中,公司提出逐步建设IPv6网络的规划。在充分考虑IPv6网络与现有的业务系统不发生冲突的基础上,公司可采用新建一个IPv6 VPN方案,将IPv6与IPv4业务流量隔离。由于数据通信网IPv4至IPv6演进是一个长期过程,可采用以下三种方案实现过渡:
方案一:采用隧道技术
该方案最为保守,对现网改动最小。只需在数据网CE路由器上运行双协议栈,开启IPv6协议。方案的缺点是在CE路由器的隧道上并没有为IPv6带来MPLS VPN的对等体模型的优势,且CE路由器需要运行双协议栈,这样会增加设备负载,降低路由器处理能力和转发效率,因此不建议采用。
方案二:采用6PE(IPv6 Provider Edge)技术
该方案较为稳健。部署IPv6可以实现多点对多点的IPv6孤岛访问,需要新购IPv6业务CE路由器,PE和CE路由器均需运行IPv6协议。该方案不用改变现有网络结构,有利于快速部署IPv6网络,但它没有VPN的概念,随着未来接入IPv6网络的业务逐渐增多,各项业务流量无法实现的相互隔离,安全性也不能得到保证,因此不建议采用。
方案三:采用6VPE(IPv6 VPN Provider Edge)技术
该方案为优选方案。通过部署IPv6 MPLS VPN,可有效做到各项业务流量之间的相互隔离,而且CE与PE路由器之间具有VPN的对等体模型的优势,业务安全性也可得到有效保障。部署方式和现有IPv4 MPLS VPN方式类似,不必改变现有网络结构,只需新购IPv6业务CE路由器,开启IPv6协议。PE路由器运行双协议栈,骨干网可继续采用IPv4协议。原有PE路由器和新增CE路由器运行IPv6协议并配置相应的VPN和VRF接口。
3.3 演进路线
1、IPv6穿越IPv4通信网的应用
随着 IPv6 的部署规模扩大,IPv6分布于广域网不同区域。Ipv6需穿越Ipv4骨干通信网,并运行 IPv6 业务。数据通信网采用MPLS VPN技术进行数据交互。骨干网两端IPv6区域,需通过隧道技术或6VPE技术互相通信,网络中仍存在一定数量的双协议栈节点。
2、IPv6 全网覆盖
在规划末期,公司IPv6 进一步广泛部署,大部分业务运行于 IPv6 网络上,基本不存在 IPv6 孤岛,网络中 IPv4 局域网和双协议栈点逐步消失,全网设备单轨运行IPv6协议。
免责声明
公务员之家所有资料均来源于本站老师原创写作和网友上传,仅供会员学习和参考。本站非任何杂志的官方网站,直投稿件和出版请联系杂志社。