信号与通信论文范文

时间:2023-04-05 03:27:08

导语:如何才能写好一篇信号与通信论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

信号与通信论文

篇1

关键词屏蔽门,列车自动防护,接口控制

屏蔽门(Platformscreendoors,简称PSD)系统是现代化轨道交通工程的必备设施,它沿轨道交通站台边缘设置,将轨道区与站台候车区隔离,具有节能、环保和安全等功能。安装屏蔽门系统后,不仅可以防止乘客跌落轨道而发生危险,确保乘客安全,减少人为引起的停车延误,提高列车准点率,而且可以减少站台区与轨道区之间冷热气流的交换,从而降低环控系统的运营能耗,节约运营成本。

信号系统与屏蔽门系统相结合是屏蔽门系统工程的重要环节。此外,要更好地确保乘客的安全以及奠定无人驾驶的技术基础,就必须实现屏蔽门与列车车门的连动,并确保屏蔽门系统与信号系统的列车自动防护(ATP)之间建立联锁关系。根据世界各城市轨道交通工程的成功先例,屏蔽门普遍由信号系统进行控制。广州于2004年10月开始对正在运营的地铁1号线加装屏蔽门系统。该项工程预计总投资金额为1.484亿元人民币,是目前我国最大的一项轨道交通屏蔽门系统工程。本文主要对广州地铁2号线及1号线加装屏蔽门系统工程中的西门子信号系统与屏蔽门系统的接口进行分析。

1屏蔽门系统所需信号系统的条件及功能

(1)信号系统与屏蔽门系统的接口仅考虑线路上的列车的正向运行,但要满足屏蔽门对停车精度的要求。只有停车精度要求被满足,信号系统才允许自动或人工向列车和站台屏蔽门系统发送开门命令。目前,用于广州地铁2号线的LZB700M型中,ATP和ATO(列车自动运行)系统是由德国西门子公司提供的,其列车定点停车的精度ATO系统为±0.3m,成功率99.99%,ATP系统为±0.5m,已满足屏蔽门对停车精度的要求。广州地铁1号线同样采用LZB700M型ATP、ATO,目前列车停车的精度ATO系统为±0.5m,成功率99.5%,ATP系统为±1m。由此可见,要安装屏蔽门首先必须改善列车的停车状况,停车精度至少要达到ATO系统为±0.4m,成功率99.5%,ATP系统为±0.5m的要求;并要保证在列车停车精度为±400mm情况下,列车乘客门净开度≥1200mm(屏蔽门门开宽度为2000mm)。

(2)只有屏蔽门关闭的情况下列车才能运行。ATP轨旁单元通过故障安全型继电器输入接点接收当前屏蔽门的状态(PSD开门或PSD关门)。如果屏蔽门是开门状态,ATP轨旁单元会设置一个安全停车点,不让任何列车驶入相应的车站站台。

(3)PSD的状态通过ATP报文传输给列车。当列车接近运营停车点,且屏蔽门的状态由“PSD关闭”变化为“PSD开门”时,ATP轨旁单元会产生紧急制动让列车停车。

(4)确保当列车停在停车窗位置范围内时才连通列车到轨旁的通信通道。当列车在站台范围内移动时,ATP通过不激活“PTI(positivetrainidentification,有车标志)释放”切断PTI通道。如果列车停到指定的ATP停车窗位置时,则通过ATP激活“PTI释放”让PTI通道连通。当列车车门打开时,这些报文会通过PTI通道传输到轨旁单元,屏蔽门会随之而打开。

(5)屏蔽门控制系统向信号系统提供全部门“关闭及锁定”和“互锁解除”信息,接口采用安全型干接点双断硬线连接,接口分界点在屏蔽门控制设备外的线端子排。

(6)列车在ATP停车窗范围内停稳后,ATP车载单元会发出打开列车车门的信号。当列车车门打开,ATP车载单元一个持续的故障安全输出则会切断列车的牵引系统。这是为了防止列车在车门开启的情况下人为地启动列车。

(7)PTIMUX(PTItracksideunit)根据接收来的2个不同的PSD编码(对应PSD开门的编码)驱动2个继电器输出,它们是表示“PSD开门”命令的接口。为了产生一个持续的控制信号,ATO需不断发送“PSD开门”命令,直到屏蔽门被请求关闭为止。

(8)如果列车车门关闭(人工或自动),屏蔽门也随之关闭,这些报文会通过PTI通道传输到轨旁单元。目前广州1、2号线列车只有人工关闭车门功能。

(9)ATP车载单元在关闭车门的同时,输出关闭屏蔽门命令。只有收到列车车门关闭好,且通过ATP报文接收到屏蔽门的“关闭及锁定状态”信息后,列车牵引系统才被释放,ATP才允许启动列车。

(10)开左门或开右门应与站台的位置和列车运行方向相符合。如在换乘站(如公园前站),屏蔽门的开关要根据有利于乘客导向的原则来进行设计:先开下客侧的屏蔽门,后开上客侧的屏蔽门。

(11)屏蔽门系统发生故障,或屏蔽门实际已关闭但因故不能有效地把“关闭及锁定状态”信号传送给ATP系统时,司机只有按“PSD互锁解除”按钮,屏蔽门系统才能给ATP系统送出“互锁解除”的信号,用以切断屏蔽门系统和信号系统间的联锁关系,ATP才允许启动列车。且司机必须在每次发车前都按下“PSD互锁解除”按钮,直到故障修复为止。

(12)屏蔽门系统应为每侧站台提供一组接口与信号系统连接,因此,岛式站台和侧式站台有两组接口,一岛两侧式站台有四组接口(如公园前站)。

(13)由于广州地铁1、2号线的列车编组方式相同,在信号系统中没有考虑采用不同的列车编组来开启对应的屏蔽门。

2信号系统与屏蔽门系统的接口控制

2.1接口信号描述

信号系统与屏蔽门控制系统之间使用信号控制电缆连接,使用继电、双断、安全型干接点等方式的接口电路。两系统接口信号的描述见表1。

2.2ATP子系统对PSD打开状态时的保护联锁设计

屏蔽门的状态通过ATP报文传输给列车。ATP子系统在屏蔽门不同的打开情况下监督列车的移动,并最终控制列车导向安全。其出现的情况有图1中给出的5种。

图1中:情况1和2若PSD打开,轨旁ATP会生成一个安全停车点让列车不能进入相应车站的站台。在情况1中,当列车制动距离小于列车与安全停车点的接近距离时,列车实施正常制动让列车在停车点前停车。而在情况2中,当列车制动距离大于列车与安全停车点的接近距离时,列车则要被实施紧急制动。在情况3中,列车在站台区域移动,同时收到“PSD关闭”改变为“PSD开门”的信息时,车载ATP单元会产生一个紧急制动。同样,在情况4中,车载ATP单元也会产生一个紧急制动,这是因为列车尾部还在站台区域内。在情况5中,列车已出清站台区域时PSD打开,这时列车不会产生紧急制动。通过上述的5种情况,确保在PSD打开的情况下禁止列车在站台区段移动,防止危及乘客的安全。

2.3接口硬线连接的安全设计

简单的故障会导致屏蔽门错误地开、关门,这是必须要防止的。现说明接口故障的安全设计。

2.3.1PTIMUX和PSD控制器之间的继电器盒

PTIMUX和PSD控制器之间采用继电器进行隔离,防止电气干扰影响信号系统。同时为提高安全性,接口电路采用4线双切线路。一个正常的PSD命令是由4个PTIMUX输出继电器组合确定的,可以避免“PSD开门”和“PSD关门”两个信号同时出现的错误。这些继电器会安装在PTIMUX上,通过复合的接点关系防止“PSD开门”和“PSD关门”命令的错误输出。其原理见图2。继电器盒的继电器输出状态与逻辑结果见表2。

通过其继电器控制电路逻辑结果分析,16种继电器可能的动作组合中,只有2种组合会产生正确的输出(PSD开门和PSD关门)。这样的设计也是为了防止继电器失误而产生错误的输出命令。

2.3.2报文容错

车载ATO通过PTI信标到PTI-MUX的整个传输通道的报文都有CRC(循环冗余码校验)进行校验。另外,列车停在停车窗位置范围时,整个PTI传输通道才连通,以确保其它情况下没有任何的报文接收,影响到PSD的功能。

2.4两侧都有屏蔽门的设计

该情况是列车可以打开左侧、右侧或者同时都要打开两侧车门的情况。

这里使用了6个继电器,其功能分别是:允许开门,允许关门,两侧门都开,开左门,开右门,关闭所有门。通过这6个继电器的接点组合控制PSD的命令输出:①开右侧屏蔽门,允许开门和开右门的继电器吸起;②开左侧屏蔽门,允许开门和开左门的继电器吸起;③开两侧屏蔽门,允许开门和两侧门都开的继电器吸起;④关闭屏蔽门,允许关门和关闭所有门的继电器吸起。继电器的输出状态和逻辑结果见表3。

如表3所述,只有上述的情况会产生命令输出,其它的组合是无效的。通过其继电器的互锁关系,确保不会因继电器错误动作产生有效的屏蔽门控制命令。如在公园前站这个需要两侧开门的换乘站,在设计上要考虑屏蔽门对乘客的导向作用,两侧屏蔽门要先开下客门再开上客门,而关门时要先关下客门再关上客门。这就需要在车载软件中设置两侧车门的开关延时时间。同样两侧屏蔽门开关的时间也应作对应的设置。

2.5车门与屏蔽门的同步

屏蔽门和列车车门的开门时间,会在小于1s内同步启动。屏蔽门和列车门关闭的时间应大致相同。同步要求的延误,主要是因为启动指令要从信号系统的车载设备传送到信号系统的地面设备,传送过程中会产生延误。关门同步实现起来比较容易。列车车门及屏蔽门收到关门命令也不是立即关闭的,而是都有一个延时时间。根据实际情况各自确定一个关门的延时时间即可。

3结语

屏蔽门系统与信号系统的结合提高了屏蔽门的自动性和安全性,在保证列车和乘客安全,实现快速、高密度、有序运行等功能的同时,为乘客提供了一个舒适安全的乘车环境。通过了解信号系统与屏蔽门系统之间的控制与监督,就能更深入了解屏蔽门系统的运作过程。

参考文献

1孙增田.广州地铁屏蔽门系统的方案比选.地铁与轻轨,2002(6):28

篇2

专 业:

姓 名:

学 号:

报告日期:

论文(设计)题目:

智能天线技术的基本原理及其music算法

指导教师:

论文(设计)起止时间:

一、论文(设计)研究背景与意义

智能天线是3g的一项关键技术,作为当今三大主流标准之一的td-scdma(time division-synchronous code division multiple access)是由中国自主提出使用的tdd方式的(时分双工方式)的第三代移动通信系统标准。td-—scdma的核心技术之一就是智能天线技术。在td-—scdma系统中使用智能天线技术,基站可以利用上行信号信息对下行信号进行波束成形,从而降低对其他移动台的干扰,同时提高接收灵敏度,增加覆盖距离和范围,改善整个通信系统的性能。

智能天线是一种多天线系统,它按照某种算法来对准期望信号,使得期望信号得到最大增益,而干扰信号被压制。 智能天线系统的核心在于数字信号处理部分,它根据一定的准则,使天线阵产生定向波束指向移动用户,并自动调整权系数以实现所需的空间滤波。智能天线需要解决以下两个关键问题:辨识信号到达方向doa(directions of arrinal)和数字波束赋形的实现。在对信号doa估计的算法中,作为超分辨空间谱估计技术的music(multiple signal classification)算法是最经典的算法之一。

本文针对3g的需求背景,研究智能天线技术及doa估计算法。随着移动通信用户数迅速增长和人们对通话质量要求的不断提高,要求移动通信网在大容量下仍具有较高的话音质量。经研究发现,智能天线可将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向doa(directions of arrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。同时,利用各个移动用户间信号空间特征的差异,通过阵列天线技术在同一信道上接收和发射多个移动用户信号而不发生相互干扰,使无线电频谱的利用和信号的传输更为有效。在不增加系统复杂度的情况下,使用智能天线可满足服务质量和网络扩容的需要。

其实就是一种多天线系统,它按照某种算法来对准期望信号,使得期望信号得到最大增益,而干扰信号被压制。因此需要知道期望信号到来的方向,即doa。music算法是经典的用来估计波达方向的算法。

二、论文(设计)的主要内容

智能天线是一种安装在基站现场的双向天线,通过一组带有可编程电子相位关系的固定天线单元获取方向性,并可以同时获取基站和移动台之间各个链路的方向特性。智能天线的原理是将无线电的信号导向具体的方向,产生空间定向波束,使天线主波束对准用户信号到达方向doa(direction of arrinal),旁瓣或零陷对准干扰信号到达方向,达到充分高效利用移动用户信号并删除或抑制干扰信号的目的。

波达方向(doa,direction of arrival)估计是智能天线研究的一个重要方面,无论是上行多用户信号的分离,还是下行选择性发射,对用户信号doa的测定,都成为智能天线实现指向性发射的必要前提。在对信号doa估计的算法中,作为超分辨空间谱估计技术的music(multiple signal classification)算法是最经典的算法之一。本文主要介绍智能天线技术的基本原理,发展历程,技术分类,及智能天线对系统的改进和主要用途。写出均匀线阵的统计模型,研究music算法的基本原理,用matlab仿真实本课题的主要研究内容如下:

(1)介绍智能天线技术的发展历程、研究现状和技术分类;

(2)在均匀线阵的统计模型下研究智能天线技术的基本原理;

(3)重点研究music算法的基本原理,并用matlab仿真软件实现;

(4)分析music算法的估计精度,得出全文结论。

三、论文(设计)的工作方案及进度安排

第一阶段(XX年9月7日-XX年10月11日)查阅有关智能天线技术,music算法和matlab仿真等方面的资料,关注国内、外当前的先进技术和发展前景,积累知识。

第二阶段(10月12日-11月8日)对智能天线的工作原理进行详尽地分析,给出均匀线阵的统计模型,研究music算法的基本原理,学习用matlab实现仿真

第三阶段(11月9日-11月22日)用matlab编写程序,程序调试

第四阶段(11月23日-12月20日)整理资料,结合设计经历撰写论文,备战论文答辩。

四、参考文献

1) 刁鸣,熊良芳,司锡才,超分辨测向天线阵性能的计算机仿真研究,电子学报,XX no.5

2) 何子述,黄振兴,向敬成,修正music算法对相关信号源的doa估计性能,通信学报,XX no.10

3) 张贤达,保铮,通信信号处理,国防工业出版社,XX

4) 刘德树,罗景青,张剑云,空间谱估计及其应用,中国科学技术大学出版社,1997

5) 李旭健,孙绪宝,修正music算法在智能天线中的应用,山东科技大学,266510

6) 陈存柱,浅析自适应智能天线技术的应用,北京师范大学,100875

7) [美]s.m. 凯依 著,黄建国等 译,现代谱估计原理与应用,科学出版社,1994

8)徐明远, matlab仿真在通信与电子工程中的应用 XX

五、指导教师意见

指导教师签字:

年 月 日

六、答辩小组意见

篇3

关键词:3G,越区切换,应用

 

1.引言在蜂窝移动通信网中,切换是保证移动用户在移动状态下实现不间断通信越区切换;切换也是为了在移动台与网络之间保持一个可以接受的通信质量,防止通信中断,这是适应移动衰落信道特性的必不可少的措施。特别是由网络发起的切换,其目的是为了平衡服务区内各小区的业务量,降低高用户小区的呼损率的有力措施。切换可以优化无线资源(频率、时隙、码)的使用;还可以及时减小移动台的功率消耗和对全局的干扰电平的限制。

2.越区切换的定义当移动台从一个小区(指基站或者基站的覆盖范围)移动到另一个小区时,为了保持移动用户的不中断通信需要进行的信道切换称为越区切换,

3.越区切换的分类从技术上分:当一次切换被触发后,一个新的信道将被建立,通信将转接到新的链路,同时,原来的信道被释放。切换处理过程可以根据新链路的建立途径(旧链路的释放是发生在新链路的建立之前、之中或之后)来分类。硬切换:新的连接建立前,先中断旧的连接;软切换:指既维持旧的连接,又同时建立新的连接。

硬切换:硬切换的特点是移动台在硬切换情况下,同一时刻只越区切换占用一个无线信道,它必须在一个指定时间内,先中断与原基站的联系,调谐到新的频率上,再与新基站取得联系,在切换过程中可能会发生通信短时中断。硬切换主要是不同频率的基站和扇区之间的切换。

软切换:软切换的特点是在软切换过程中,两条链路及相对应的两个数据流在一个相对较长的时间内同时被激活,一直到进入新基站并测量到新基站的传输质量满足指标要求后,才断开与原基站的连接。软切换是同一频率下不同基站之间的切换。

从小区的性质上分:同一交换中心基站之间的越区切换;同一BSC之间的切换;不同BSC之间的切换;不同交换中心之间基站的越区切换;微小区与宏小区之间的切换;同基站内不同扇区的切换;不同运营商之间的切换。

4.三种体制下的越区切换WCDMA与CDMA2000均采用软切换,TD-SCDMA采用接力切换。

WCDMA中的软切换

它是采用移动台发起的异步软切换方式进行的导频切换,基站需要确定在什么时间、什么位置为移动台启动软切换算法。论文大全。WCDMA的移动台可在同一频率下检测到其他基站与本基站的信号,确定它们之间的时间差。检测到的时间信息经由本基站到达新的候选基站,候选基站调整它新的专用信道的发射时间,即在发送信息的时间上进行调整,使不同基站在这个信息比特期间与下行码道同步。无线链路增加和释放过程:(1)小区2的导频信号强度逐渐增强,当小区2的导频强度Ec/Io达到(最好导频Ec/Io-(报告门限-增加滞后门限))并维持T时间,而此时候选集没有满,小区2此时被加入到候选集里。该项动作也称为无线链路增加。(2)小区3的导频信号强度逐渐增加并开始超过最早的小区1的导频信号强度,在小区3的导频(最好候选导频)强度Ec/Io达到(最弱导频Ec/Io+替换滞后门限)并维持T时间,而此时候选集的数目已满(假设此时系统设置的候选集最大数目是两个),小区3(候选集中最强的信号)此时替代小区2(候选集里最弱的信号)被加入到候选集里,小区1同时被移出候选集。该项动作也被称为无线链路增加和释放。论文大全。(3)此时候选集中小区3的导频信号强度逐渐减弱,当小区3的导频强度Ec/Io弱到(最好导频Ec/Io-(报告门限+删除滞后门限))并维持T时间,小区3(候选集里最弱的信号)此时被移出候选集。该项动作也称无线链路的释放。

CDMA2000中的软切换

它也是导频切换,移动台不断地搜索着激活类、候选类、邻近类、剩余类各个导频的强度,并且根据导频强度维护各个类,当移动台靠近切换区时,移动台开始以下操作过程:(1)导频p2强度超过了T_ADD,但尚未到达动态门限,移动台将这个导频移到候选集;(2)导频p2强度超过了[(SOFT_SLOP/8)×10×log10(PS1)+ADD_INTERCEPT/2],移动台发送导频强度测量消息;(3)移动台收到扩展切换指示消息DROP_INTERCEPT/2,将p2移入激活集,开始宏分集,而后发送切换完成消息;(4)导频p1的强度下降低于动态门限[(SOFT_SLOPE/8)×10×log10(PS2)+DROP_INTERCEPT/2]移动台开始启动发送切换定时器;(5)切换下降定时器超时,移动台发送导频强度测量消息给基站;(6)移动台收到切换指示消息,将p1移入候选类。而后发送切换完成消息;(7)导频p1的强度下降低于T_DROP。移动台开始启动发送切换定时器;(8)切换下降定时器超时,移动台将p1从候选类移到邻近集。

TD-SCDMA中的接力切换

接力切换是一种基于智能天线的切换方案。它利用精确的定位技术,在对移动台的距离和方位进行定位的基础上,根据移动台方位和距离作为辅助信息,来判断移动台是否移动到了可进行切换的相邻基站临近区域。实现接力切换的必要条件是:网络要准备获得移动台的位置信息,包括移动台的信号到达方向(DOA)以及移动台与基站的距离。在TD-SCDMA系统中,由于采用了智能天线和上行同步技术,系统较容易获得移动台的DOA,从而获得移动台的位置信息。具体过程是:利用智能天线和基带数字信号处理技术,可以使天线根据每个移动台的DOA为其进行自适应的波形赋形。对每个移动台来讲,仿佛始终都有一个高增益的天线在自动跟踪它,基站根据智能天线的计算结果就能确定移动台的DOA,从而获得移动台的方向信息;利用上行同步技术,系统可以获得移动台信号传输的时间偏移,进而计算得到移动台与基站之间的距离;经过前两步之后,系统就可准确获得移动台的位置信息。

通过比较WCDMA、CDMA2000、TD-SCDMA中的切换技术,可以得到下面的结论:

在测量过程中,软切换和硬切换都是在不知道移动台准确位置的情况下进行切换、测量的,因此需要对所有的邻小区进行测量,然后根据给定的切换算法和准则进行切换判断和目标小区的选择。论文大全。

而接力切换是在知道移动台精确位置的情况下进行切换测量,所以它没有必要对所有邻小区进行测量,只需对与移动台移动方向一致的、靠近移动台一侧少数几个小区进行测量,然后根据给定的切换算法和准则进行切换判断和目标小区的选择,就可以实现高质量的越区切换。

5.越区切换的应用越区切换作为通信系统的关键技术,它可广泛应用于各种场合。例如,近年来地空数据通信的使用改变了对空作战指挥模式,而实现指控系统对空中平台远距离、大区域、不间断地引导指挥,关键在于实现空中平台的越区切换;GSM―R铁路专用移动通信系统,为铁路提速和客运专线提供网络化、智能化、综合化的行车调度指挥系统,越区切换技术是GSM―R移动性管理中的关键技术;双卡双模手机中的应用等。

参考文献

[1]《GSM―R越区切换分析与优化》,北京交通大学,电子信息工程学院丽聪、来尉

[2]《TD-SCDMA系统原理与关键技术》,大唐移动通信设备有限公司

篇4

【关键词】照明光源;无线网络;智能控制

1.前言

目前我国照明用电量占建筑用电的20%-30%,智能照明电气公司生产的场景控制器和调光产品基本上都采用开环控制,根据区域要求打开光源并调节光的输出,这样很难达到该环境最合理的照度,通常调节好一个照度水平后,不会再根据该环境的光线强度来改变照度。这种不合理的控制光源方法,增加了用电量,造成大量污染。无线传感器网络技术是本世纪最具影响力的技术之一,如果将无线传感技术应用到照明控制系统中,不仅会大大减少成本,而且节约资源,避免不必要的浪费。

本文提出的照明控制系统主要利用短距离无线通信和CAN总线技术,应用于小环境光源照明控制,由无线通信基站、无线通信从站和终端节点组成。本方案适合小环境光源控制,克服了自动化程度低、管理比较混乱、控制相对分散的传统照明控制系统的缺点,为人们生活提供一个更加智能化的环境。

2.原理及技术

本研究方案主要应用到短距离无线通信技术和CAN总线技术。其中,短距离无线通信技术采用低功率短距离无线通信技术,采用nRF905无线射频收发芯片。无线通信基站由STC89C52和nRF905无线收发器组成。STC89C52为改基站的控制芯片,用来产生控制信号,并对从站返回的状态做出反应,确保照明光源运转正常;nRF905无线收发器为基站信号发送设备,通过nRF905完成对控制信号的发送和对从站发送的照明光源状态信号的接收。

2.1 短距离无线通信

随着通信和信息技术的不断发展,短距离无线通信技术的应用步伐不断加快,正日益走向成熟。一般意义上,只要通信收发双方通过无线电波传输信息且传输距离限制在较短范围(几十米)以内,就可称为短距离无线通信。短距离无线通信技术的工作频段为ISM频段,使用这类频段不需要任何许可证,通常只要求发射不超过一定的功率(通常低于1W),只要不干扰其它频段即可。目前常见的短距离无线通信经常应用于以下几个ISM频段:27MHz频段;2.4GHz频段和315MHz;433MHz和868MHz等频段。

2.2 CAN总线

CAN总线是德国BOSCH公司从80年代初为解决现代汽车中众多的控制与测试仪器之间的数据交换而开发的一种串行数据通信协议,它是一种多主总线,通信介质可以是双绞线、同轴电缆或光导纤维。通信速率可达1MBPS。CAN总线是具有通信速率高、容易实现、且性价比高等诸多特点的一种已形成国际标准的现场总线,是最有前途的现场总线之一。

3.选用部件

本方案所用设备主要为PHILIPS半导体生产PCA89C250收发器、SJA1000控制器和挪威Nordic公司nRF905无线收发器。

PCA82C250是CAN控制器的物理接口,其主要作用是:给BUS提供差动发送信号,给CAN控制器提供差动接受信号。该芯片采用5V直流电供电,PCA82C50是针对汽车中高速通讯的应用而设计,符合ISO11898标准。

SJA1000是一种CAN独立控制器,通常用于自动化领域,用来控制区域网络控制。SJA1000与控制器Basic CAN最主要的不同在于SJA1000提供了Pelican的全新工作模式,在该模式下,CAN总线符合全部的CAN2.0B协议。

挪威Nordic公司的nRF905芯片主要应用于小面积区域。nRF905在无线数据通信、无线报警及安全系统、无线监测、无线开锁、家庭自动化和玩具等诸多领域得到广泛应用。

4.系统硬件

4.1 nRF905通讯模块

nRF905与STC89C52单片机硬件接口如图1所示。

4.2 CAN控制收发器

本方案用到的PCA82C250芯片是为CAN协议配置的物理总线接口,能够为CAN总线提供差动发送能力,为SJA1000提供差动接收能力。图2为SJA1000与PAC82C250组成的硬件图。

5.系统软件

硬件操作需要通过软件来实现。软件的基本操作包括初始化和常规服务两部分。初始化服务包括SJA1000和nRF905两个芯片的初始化,SJA1000发送和接收的配置,nRF905的发送和接收的配置;常规服务包括:无线通信基站、无线通信从站、无线终端节点之间的通信。

5.1 CAN总线操作

初始化SJA1000芯片,配置SJA_MOD寄存器,进入复位模式,确定验收滤波器模式;配置SJA_CDR0寄存器,选择PeliCAN模式,禁止SJA1000的CLKOUT引脚;配置总线定时寄存器波特率设置为125Kbps,配置输出控制寄存器为正常输出模式,TX0为下拉,TX1为下拉;配置命令寄存器释放接收缓冲器,配置验收滤波寄存器。

5.2 无线数据操作

初始化nRF905,nRF905所有配置都是通过SPI接口进行,SPI接口由5个寄存器组成,只有在掉电模式和Standby模式是激活的。置高PWR_UP,置低TRX_CE使nRF905工作于Standby模式。SPI接口包括5个内部寄存器:状态寄存器、RF配置寄存器、发送地址寄存器、发送有效数据寄存器、接收有效数据寄存器。通过配置RF配置寄存器可使nRF905正常运行。

5.3 CAN总线数据发送

CAN发送:发送缓冲器配置分为描述符区和数据区,描述符区第一个字节是帧信息字节,它说明了帧格式(标准帧格式或扩展帧格式)、远程或数据帧和数据长度。标准帧格式有两个字节的识别码,扩展帧格式有4个字节的识别码,数据长度最长为8个字节,发送缓冲器长13个字节。配置发送缓冲器工作在扩展帧格式,发送数据帧,数据长度为8个字节,识别码与下位机匹配,发送数据为nRF905无线接收的数据。检测状态寄存器,接收状态位为0、发送完成状态位为1且发送缓冲器状态位为1,则将发送缓冲器数据放入TX缓冲器,命令寄存器SJA_CMR发送请求位置1,发送数据。

5.4 CAM总线数据接收

CAN接收:中断寄存器SJA_IR接收中断位置高,开始接收RX缓冲区数据,将数据存入接收缓冲区,存储完成后接收缓冲器位置高释放RX缓冲区;释放仲裁丢失捕捉寄存器和错误捕捉寄存器。

5.5 无线数据发送

nRF905发送:TRX_CE=0,TXEN=0,nRF905处于SPI编程;CSN置低,SPI等待一条指令W_TX_PAYLOAD=“00100000”,写TX有效数据,写操作从字节0开始;发送TX缓存存放数据;CSN置高;CSN置低,SPI等待一条指令,W_TX_ADDRESS=“00100010”,写TX地址,全部写操作从字节0开始;发送TX缓存存放地址;CSN置高;TRX_CE置高开始发送;发送完成后TRX_CE置低。

5.6 无线数据接收

nRF905接收:TRX_CE=1,TXEN=0,nRF905处于接收状态;DR=1&&TRX_CE==1&&TXEN==0是否为1,判断是否有新数据传入且数据接收完成,TRX_CE=0进入Standby模式;CSN置低,SPI等待一条指令,R_RX_PAYLOAD=“00100100”,读RX有效数据,读操作从字节0开始;CSN置高;TRX_CE=1。

5.7 无线通信基站控制

常规服务即无线通信基站工作包括:在完成对nRF905芯片的初始化后使TXEN和TRX_CE引脚置低,nRF905处于SPI编程,将nRF905所发地址及数据写入缓存,置高TRX_CE和TXEN引脚,发送数据,发送不成功则重新发送,如果成功,置低TRX_CE,等待下一个数据发送。

6.系统测试

将CAN收发器单片机的串行接口与PC机串口相连,利用PC机串口通信程序将数据通过串口发送给CAN接收器,实现CAN节点的收发数据测试。串行通信的参数设置为:串口端口号:1;波特率:9600bps;数据位:8位;停止位:1位。

在使用串口时先要打开串口,然后将数据传给CAN节点单片机。发送数据中要包含无线控制器的下位机地址和其他控制信息,如在实验中使用的节点地址为0x00020406、其他控制数据为34。34对应的二进制数据为00110100。实验表明,本方案给出的无线与有线混合的网络控制系统工作正常。

无线通信基站发送0X34到无线通信从站,从站接收信号后通过CAN总线发送至终端节点,终端节点接收并在数码管显示接收数据,并控制下面LED灯相应的暗灭,显示正常发送RXOK信号通过CAN总线传输至无线通信从站,从站将信号发送至基站,基站接收信号并将数码管置零,等待下一个发送信息。

7.小结

该系统能利用有线与无线网络相结合完成对光源的控制,取得了较好的效果,综合了有线和无线网络的各自优点,使得网络控制成本更低、网络利用率更高、系统智能化更强,便于网络的管理和应用,适合学校、家庭、政府、企业等场所应用,该网络结构的应用将具有可观的社会效益和经济效益。

参考文献

[1]卢志强.无线控制网络的研究[D].西安:西安科技大学硕士学位论文,2004.

[2]黄晓霞.无线传感器网络在绿色照明系统中的应用[D].上海:同济大学硕士学位论文,2007.

[3]黄艳玲.智能控制技术在住宅照明控制中的应用研究[D].重庆:重庆大学硕士学位论文,2003.

[4]孙宗智,王涛.一种智能照明控制系统方案的研究[J].信息技术与信息化,2010(1):55-57.

[5]张岳军.智能照明系统的研究与开发[D].浙江:浙江大学硕士学位论文,2006.

[6]董珀.智能照明控制系统及其新技术研究[D].上海:东华大学硕士学位论文,2010.

篇5

【关键词】温度 at89s52 nrf9e5

1 引言

由于在局部的温度通常具有不一致性,因此在检测环境温度时,传统的单一测点测量温度的方法并不能够准确说明实际的温度信息。在同一环境中,对多点进行温度测量,能够有效解决这一问题,使得温度测量更加准确。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20[1]。

本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

2 系统方案

无线数据传输按照传输方式的不同,可以分为:点对点、点对多点以及多点对多点。本论文所设计的系统由主控芯片51单片机、主接收器以及多个测量终端组成。每个测量终端都是通过无线传输模块nrf9e5传递数据,进而形成无线传输的温度采集系统。系统框图如图1所示。

将相应的温度传感器分布在所要测量环境的不同位置,就能够精确评估环境温度。然后再将这些测量得到的温度经过无线通信模块发送到主控芯片上,主控芯片对数据进行处理和显示。

3 硬件电路设计

3.1 无线数据传输模块

nrf9e5具有和8051相互兼容的微控制器,但是时序和指令都与其有些差别。nrf9e5与cpu的数据交换是通过串口来进行的。

nrf9e5和其他模块通信主要是通过自身内部的并行口和内部的spi口。nrf9e5与nrf905等具有一样的功能。收发器在与微控制器进行数据交换的过程中,主要是通过片内的spi和并行口。在要传输通信的数据准备好之后,就能够产生中断,供微控制器使用。

3.2 温度测量电路

温度检测的方法有很多,比如采用热电偶等。但是本论文采用的是ds18b20温度传感器。该温度传感器采用的是one-wire总线,即只采用一根信号线与单片机进行连接。该测温传感器能够测量零下55度到125摄氏度的温度范围,同时分辨率能够达到0.5摄氏度。工作电压范围很宽,一般为3.0至5.5v。

3.3 主控芯片

本论文设计的数据采集器使用的主控芯片是at89s52单片机。msc-51单片机是八位的非常实用的单片机。本论文所使用的at89s52单片机就是基于这款单片机的。msc-51单片机的基本架构被atmel公司购买,继而在其基本内核的基础上加入了许多新的功能,同时扩展了芯片的容量以及加入flash闪存等等。51内核的单片机具有很多优点,因此无论是在工业上还是在一些电子产品上应用都很多。全球也有许多大公司对其进行扩展,加入新的功能。即使是在今天,51单片机仍然在控制系统中占据很大市场。

下面对本论文所使用的单片机作简要介绍。这款单片机具有最大能够支持的64k外部存储扩展,同时还具有8k字节的flash空间。该单片机具有4组i/o口,分别是从p0到p3,同时每组端口具有8个引脚。每个引脚除了能够作为普通的输入和输出端口外,还具有其它功能,也就是我们通常所说的引脚复用。其还具有断电保护、看门口、计时器和定时器。51单片机一般的工作电压是5v。

4 软件设计

4.1 通信协议

本系统为单点对多点的无线通信,主接收器在可靠通信范围内分别与每个数据终端通信。主接收器与每个数据终端都有一个唯一的地址,因此在通信过程中必须明确接收方的地址。系统通信协议定制如表1所示。

4.2 温度测量程序

本论文采用的温度传感器是one-wire总线的器件,与主控芯片进行一根数据线连接,就能够同时实现数据和时钟信号的双向传输。但是这样就要求主控芯片的时序必须具有严格的要求。在出厂之前,每个器件的rom上都光刻上64位的编码,这个编码地址序列是唯一的,我们可以通过这个编码地址序列来进行多

点的组网。但是本论文所设计的温度采集系统,在每一个结点只是用一个温度传感器,因此在程序中并不需要读取其rom编码。

5 总结

在实际的温度测量过程中,测量单点的温度往往并不能够准确反映实际温度信息,需要对同一环境进行多次测量,同时要对多个温度节点进行测量。但是多点温度测量的温度测量点比较分散,如果使用传统的有线布线方式的话,则系统设计复杂,十分麻烦。本论文设计了一种基于无线传输的温度采集系统,采用了nrf9e5无线芯片,主控芯片采用的是at89s52单片机,温度测量的传感器为ds18b20。本论文首先介绍系统整体设计方案,然后分别简要介绍硬件电路设计以及部分软件程序设计。

参考文献

[1]马祖长,孙怡宁,梅涛.无线传感器网络综述[j].北京:通信学报,2004,25(4):15-17.

[2]郑启忠,耿四军,朱宏辉.射频socnrf9e5及无线数据传输系统的实现[j].单片机与嵌入式系统应用,2004(8):51-54.

[3]季一锦,尹明德.一种基于nrf9e5的无线监测局域网系统的设计[j].国外电子元器件,2004,(12):22-25.

[4]盛超华,陈章龙.无线传感器网络及应用[j].微型电脑应用,2005,21(6).10-13.

篇6

论文摘要:文章介绍了数字通信系统的技术特点,并与传统的模拟信号对比阐述了数字信号的优势,然后对数字通信系统的应用方法进行浅析。

一、数字通信系统

数字通信是指用数字信号作为载体来传输信息,或者用数字信号对载波进行数字调制后在传输的通信方式。它的主要技术设备包括发射器、接收器以及传输介质。数字通信系统的通信模式主要包括数字频带传输通信系统、数字基带传输通信系统以及模拟信号数字化传输通信系统三种。

数字信号与传统的模拟信号不同,它是一种无论在时间上还是幅度上都属于离散的负载数据信息的信号。与传统的模拟通信相比其具以下优势:首先是数字信号有极强的抗干扰能力,由于在信号传输的过程中不可避免的会受到系统外部以及系统内部的噪声干扰,而且噪声会跟随信号的传输而进行放大,这无疑会干扰到通信质量。但是数字通信系统传输的是离散性的数字信号,虽然在整个过程中也会受到的噪声干扰,但只要噪声绝对值在一定的范围内就可以消除噪声干扰。其次是在进行远距离的信号传输时,通信质量依然能够得到有效保证。因为在数字通信系统当中利用再生中继方式,能够消除长距离传输噪音对数字信号的影响,而且再生的数字信号和原来的数字信号一样,可以继续进行传输,这样一来数字通信的质量就不是因为距离的增加而产生强烈的影响,所以它也比传统的模拟信号更适合进行高质量的远距离通信。此外数字信号要比模拟信号具有更强的保密性,而且与现代技术相结合的形式非常简便,目前的终端接口都采用数字信号,同时数字通信系统还能够适应各种类型的业务要求,例如电话、电报、图像以及数据传输等等,它的普及应用也方便实现统一的综合业务数字网,便于采用大规模集成电路,便于实现信息传输的保密处理,便于实现计算机通信网的管理等优点。

要进行数字通信就必须进行模数变换,也就是把由信号发射器发出的模拟信号转换为数字信号。基本的方法包括:首先把连续形的模拟信号用相等的时间间隔抽取出模拟信号的样值。然后将这些抽取出来的模拟信号样值转变成最接近的数字值。因为这些抽取出的样值虽然在时间进行了离散化处理,但是在幅度上仍然保持着连续性,而量化过程就是将这些样值在幅度上也进行离散化处理。最后是把量化过后的模拟信号样值转化为一组二进制数字代码,并最终实现模拟信号数字化地转变,然后将数字信号送入通信网进行传输。而在接收端则是一个还原过程,也就是把收到的数字信号变为模拟信号,通过数据模变换再现声音以及图像。如果信号发射器发出的信号本来就是数字信号,则不用在进行数据模变换的过程,可以直接进入数字网进行传输。

二、数字通信系统的应用

数字通信系统的关键性技术包括编码、调制、解调、解码以及过滤等。其中数字信号的调制以及解调是整个系统的核心也是最基本、最重要的技术。

数字调制是通过对信号源的编码进行调制,将其转换成为能够进行信道传输的频带信号,即把基带信号(调制信号)转变为一个高频率的带通信号(已调信号),而且由于在传输过程中为了避免信息失真、传输损耗以及确保带内特性等因素,在进行信号进行长途传输以及大规模通信活动时必须对数字信号进行载波调制。现阶段的数字信号调制主要分为调幅、调相以及调频三种。调幅是根据信号的不同,通过调节正弦波的幅度进行信号调制,目前最常见的数字信号是幅度取值为0和1为代表的波形,即二进制信号;调相是由于载波的相位受到数字基带信号(调制信号)的控制,通常情况下载波相位和基带信号是保持一致的,例如二进制基带信号为0时,载波相位相应也为0;调频是利用数字信号进行载波频率的调制。解调就是讲载波信号提取出来并经过还原得到信息的过程,它是调制的逆过程也被称为反调制。目前解调的类型分为相干解调和非相干解调两大类。数字通信的质量通常用信息传输速率、符号传输速率以及消息传输速率这三个指标来衡量。对于数字通信系统的性能指标通常用信息传输速率、符号传输速率以及消息传输速率这三个指标来衡量。

通信系统向数字化时代的转变就是要从有线通信想无线通信,从公用移动网络到专用网络,从而实现全球化的数字通信理念。而且通过现有的综合业务数字网络为基础,通过一个多用途的用户网络接口就可以轻松实现信号发出端到接收端全程数字传输与交换的新型通信网。利用这种新型技术可以扩充通信业务的范围,而且还具有更加经济以及灵活的特点,能够与现有的计算机互联网、多媒体信息网、公共电话网以及分组交换数字网等进行任意转换。随着数字通信设备的发展和不断完善,利用微处理技术对数字通信系统的信号进行转变,还能够使设备更加灵活的应用到各种长途以及市话当中。由于长途通信线路的投资远大于终端设备,为了提高长距离传输的经济性,未来高度、大容量的数字通信系统也将成为主流趋势,而且随着数字集成电路技术的发展,数字通信系统的设备制造也越来越容易,成本更低、可靠性也更高。

三、结束语

数字通信系统是一种全新的利用数字信号进行消息传输的通信模式,伴随着社会的不断发展,数字通信的应用也已经越来越广泛,在我们日常生活中的电脑、手机上网、视频电话、网络会议以及数字电视等都是通过数字通信系统来进行信号传输的,而且由于社会的发展人们对各种通信业务的需求量也在逐渐增加,在光纤传输媒介还没有完全普及以前,数字通信系统主要是利用电缆、微波等有限的媒介进行传输,但目前光纤技术的发展无疑将会推动数字通信的发展。随着数字通信系统也正在向智能化化、高速度以及大容量的方向迅速发展,相信在未来数字通信系统将会取代传统的模拟通信系统而成为主导。

参考文献

[1]张英.微处理机实现的数字通信[J].电子技术应用,2005.

[2]张晓林.电视数字通信[J].图书馆杂志,2005.

[3]王金保.通信基本知识[J].华北电力技术,2005.

篇7

10月6日下午,2009年诺贝尔物理学奖揭晓,高锟与美国贝尔实验室的威拉德・博伊尔(Willard Boyle)、乔治・史密斯(George Smith)共获殊荣。高锟的获奖成果,是在英国标准电讯实验室完成的。后来,他在香港中文大学做过九年校长(1987年至1996年),直至退休。

由于在光纤通信领域的开创性成就,高锟将获得约140万美元奖金的一半,博伊尔和史密斯发明了用于数字图像技术的CCD传感器,将各获四分之一的奖金。

三位科学家40年前的研究,帮助构建了当下的信息时代,也为自己赢得了诺贝尔奖。

高锟与低损耗光纤

20世纪60年代初,激光器的发明给光通信研究带来了新的希望――激光束不仅具有亮度高等优点,还可以在光纤中传播。

但由于缺乏稳定、可靠和低损耗的传输介质,光通信似乎仍是一个遥不可及的目标,因为光信号在当时的光纤材料中只能传输20米。

当时,高锟是国际电话电报公司旗下英国标准电讯实验室的一名研究人员。他1933年11月出生在上海的一个书香门第,孩提时代的他就喜欢科学实验,甚至自制过小型炸药弹丸。

后来,高锟随家人迁居香港,曾在香港圣约瑟书院就读。1954年,他远赴英伦,在伦敦大学攻读电机工程。

与不少同行因此对光纤传输的技术前景产生怀疑不同,高锟研究团队认为更值得关注的,是光纤原材料问题。

他后来回忆道:“那时面对的最大难题,就是玻璃的杂质问题。玻璃看似透明,其实杂有不纯的元素,所以我们构想,假若有一种没有杂质的玻璃,光波的传导就不会衰减。”

1966年6月,高锟与同事乔治・霍肯(George Hockham)在《电气电子工程师学会学报》上发表题为“用于光频的光纤表面波导”的论文指出,提纯原材料后可制造出适合长距离通信使用的低损耗光纤:在纯的玻璃纤维中,光信号可传输100公里以上。

这一研究奠定了光纤通信的基础。这一年,他年仅32岁。1970年,美国康宁公司研制出第一种超纯光纤。1975年,英国安装了世界上第一套光纤通信系统。

北京邮电大学前校长林金桐对记者说:“从高锟和霍肯的论文,到世界上第一个商用光纤通信系统的诞生,仅用了十年时间,这在重大科学研究成果向现实生产力转化的众多案例中,显得格外突出。”

诺贝尔奖评委会在新闻公报中表示,这些低损耗的玻璃纤维推动了因特网等宽带通信的发展,光在这些玻璃纤维中流动,文本、音乐、图像和视频可在瞬间进行全球传输,“如果我们拆开密布全球的玻璃纤维,将得到一条10亿公里以上的长线,足够环绕地球2.5万多圈。”

香港中文大学前任校长金耀基甚至将高锟研究成果的重要性,与印刷术、火药、指南针等中国古明相提并论,“今天生活在网络社会,就是因为光纤的发明改变了我们的生活。”(更多关于高锟的资料,见本期“华人”栏目)

贝尔实验室和CCD

在现代的高速网络通信中,数字图像是最主要的承载内容,而这很大程度上要归功于本年度诺贝尔物理学奖的另一项获奖内容――美国朗讯公司贝尔实验室的威拉德・博伊尔和乔治・史密斯发明的用于数字图像的装置:电荷耦合器件(Charge Coupled Device,CCD)。

博伊尔1924年出生于加拿大,26岁时在加拿大麦基尔大学获得博士学位。他在1953年加入贝尔实验室,并在1962年与同事首先发明了可以连续运行的红宝石激光器。

史密斯1930年出生于美国,29岁时在美国芝加哥大学获得博士学位后也进入贝尔实验室。

1969年10月的一天,史密斯走进同在贝尔实验室半导体研究部门工作的博伊尔的办公室,两人进行了一场“头脑风暴”。在不到两个小时的时间里,博伊尔和史密斯在黑板上大致勾绘出一种新装置的蓝图,两人将其命名为电荷耦合器件。

这种新技术的源头,还要追溯到爱因斯坦提出的光电效应,即通过光电效应,光可以被转变为电信号。然而,如何在极短时间内收集并读出信号,看上去却是一个无法逾越的技术挑战。因此,一开始,很多同行都对CCD的概念嗤之以鼻。

但博伊尔和史密斯坚信自己的想法,并成功地将蓝图变成了现实。他们采用特殊的硅半导体材料,并将硅片细分为一个个“单元格”或者说“像素”,这样,当光照射到像素之上,会产生信号电荷。当时,很多电子器件以电流或电压作为信号,CCD则采用电荷作为信号。

信号电荷不仅可以在CCD内存贮,还可以穿越一排排的“像素”,在电极与电极之间快速传输(电荷耦合),并最终被读出。

CCD的发明,带来了摄影的一场革命。光能够被电子化捕捉,而不再需要传统的感光胶卷,数码相机也得以走进千家万户。

篇8

【关键词】地下通信 技术问题 解决途径

伴随着现代化武器的进步,国防通信的抗击破坏问题引起了外军的关注,要想提通信系统的抗击破坏能力,常用的方法有多手段和多路由,除此之外,还可以通过建立抗击破坏能力强的通信线路来应对紧急情况,提高国防通信系统的能力。本文中讲述的军事地下通信系统的抗击破坏能力非常强,因为其收发信号的设备及天线都设置在地下坑道中,通过无线电波穿过地层进行信息传送,即时坑道的密闭门呈现关闭状态,也不会阻碍通信,所以,该通信系统有着与众不同的生存能力。

1 电波传输的模式

1.1 “透过岩层”模式

“透过岩层”模式是借助电波穿过覆盖层下面的低导电率岩层进行信息传送,使用该模式必须先打若干几百米以上的竖井,把发送和接收信息的天线插入低导电率岩层中。要想阻止电波衰减,可以采用低频率,一般使用长波。该模式的通信距离比较短,使用百瓦以上发信功率时,通信距离仅几公里。

1.2 “地下波导”模式

如果采用兆瓦级别的功率和低频率,低导电率岩层的电率很小时,电波可以实现在覆盖层下面和热电离层上面两个位置之间反射进行传递,该模式就是所谓的“地下波导”模式,通信距离有l到2千公里,但是该模式还处在探索时期。

上述两种传播模式的优点是:

(1)通信一般不受天电及电台的影响;

(2)传播条件不容易发生变化,信号比较稳定;

(3)通信保密性高。

缺点是:

(1)电波容易出现衰减现象;

(2)通信传播速率较低。

1.3 “上一越一下”模式

使用模式时,天线以水平形式设在坑道中,电波从天线中反射出来后,先穿过地层,再折射到地面继续传递,传递到接收地后再发生折射进入地层,最后到达接收天线,“上一越一下”模式的信号比较稳定、隐蔽,虽然与“透过岩层”模式和“地下波导”模式相比有点差,但是,它采用小功率就能够实现较远的通信距离,而且,天线设在坑道内,使用非常便捷。

2 地下通信的技术问题及其解决策略

2.1 地下通信的技术问题

开展地下通信较难,原因是:

2.1.1 天线效率较低

天线折射电波的能力比较小,而且天线设在地层下面,地面试半导电介质,吸收电波的能力很强,所以,天线效率较低。

2.1.2 接受地信号较弱

电波在传输过程中会受到“传播衰减”,但是在地下通信中,电波不但会受到“传播衰减’,而且不止一次,包括两次“穿透衰减”和“折射衰减”,另外,天线效率较低,所以,接受地信号较弱。

2.1.3 天电影响较大

天电对中长波的影响较大,在华南地区的夏季,噪声电平可达到90到120dB,遇到雷电天气,天电影响会显示为一串强烈的脉冲,通信会变得困难。

2.2 技术难点的主要解决途径

2.2.1 准确安设天线

在坑道较好的情况下,天线尽量架设的长一些,这样可以提升天线的辐射力。为了消除地面对其造成的损耗,天线应与坑道保持一定距离,方法是把天线架设在与坑道顶端相差5~10cm处,要想增加天线的有效长度,缩小天线输入端口的容抗,这样有助于配合电台,应该让天线输出端口接地。

2.2.2 选择合适的工作频率

在地下通信中,选择合适的工作频率很重要,若选择的工作效率较好,就能够借助最小发信功率来实现通信目标,或者在发信功率固定时,可以在接受地得到较高的信噪比。与此相反,如果工作频率选择不正确,即使采用了较大发信功率,也无法实现通信联络目标。

2.2.3 采用弱信号接收技术

上述两种途径,都可以提高接受地的信噪比。但是使用了以上途径,接受地的信噪依然较低,这时,采用弱信号接收技术,才能够实现完成通信联络任务。

2.2.4 使用脉冲噪声处理技术

比如采用“宽一限一窄”电路来减少脉冲带来的干扰,最便捷的办法是使用时间分集技术,就是把一个码元分为几个段,相隔一段时间进行传输,接收的时候,如果能保证任意一段不受干扰,就能够接收到信息,这样可以有效降低误码率。

3 地下通信的研究及应用概况

因为地下通信有着抗击破坏能力强、信号隐蔽的优点,美国、苏联等国对这方面都加大了研究力度。从50年代开始,就涌现出了一大批有关地下通信的论文以及研究报告纷纷在期刊上发表。从70年代到今天,地下通信方面的论文依然在发表,60年代初期,美国为了防御苏联的核攻击,在“大力神’导弹基地甚至“民兵”导弹基地建立了以“上一越一下”模式为基础的地下通信系统,作为地下控制系统和发射井两者联系的线路。

关于美国M一x导弹的C3系统,是通过两个地面控制中心借助设在地下的光纤网来进行指挥和控制工作。如果地面控制中心无法正常工作,该系统会改变为通过中频无线电控制中心来进行指挥和控制工作,如果遇到敌人袭击,地面混合空中的控制中心都瘫痪,这时保存着的导弹,可以通过安设在防御工程内部的中频天线,接收和实施由美国指挥所采用VLF、LF和HF发来的命令来反击核袭击。据美国有关杂志的报道,前不久,苏联进行了借助低频低信息率通信的地下传递试验。

从以上这些消息我们可以知道:外军关于地下通信的实际应用,一般是把它安设在核导弹基地以及指挥机关甚至是通信枢纽,它被作为一种应对紧急情况的通信手段来使用,而且它抗毁能力也比较强,由于重要的军事设施是敌人摧毁的主要目标,所以,怎样保证其在受到敌人突然袭击后,依然可以完成最低要求的通信、指挥和控制工作这一点是十分重要的。

参考文献

[1]张涛.漏泄电缆无线通信系统在地下矿山的应用与研究[D].中南大学,2006.

[2]司徒梦天.地下通信的原理及其在外军通信中的应用[J].计算机与网络,1991,Z1:87-94.

[3]宋晓鸥.基于软件无线电的地下通信接收机设计与实现[J].电子器件,2014(04):669-673.

[4]王美玲.基于电流场理论的地下数字通信系统设计与实现[D].哈尔滨工程大学,2013.

[5]李晓宇.井下无线通信研究与设计[D].武汉理工大学,2013.

[6]谢璐,杨玉华,单彦虎,武慧军.应用于地下无线传感器网络的磁通信电路分析[J].仪表技术与传感器,2016(08):123-126.

[7]王智懿,赵江平,张浩,王海芹.地下矿山人员紧急通信研究与运用[J].煤矿安全,2009(04):50-53.

篇9

(1)培养学生综合运用所学知识,结合实际独立完成课题的工作能力.

(2)对学生的知识面,掌握知识的深度,运用理论结合实际去处理问题的能力,实验能力,外语水平,计算机运用水平,书面及口头表达能力进行考核.

2.要求

(1)要求一定要有结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并要求技术含量较高.

(2)设计或论文应该在教学计划所规定的时限内完成.

(3)书面材料:框架及字数应符合规定

3.成绩评定

(1)一般采用优秀,良好,及格和不及格四级计分的方法.

(2)评阅人和答辩委员会成员对学生的毕业设计或毕业论文的成绩给予评定.

4.评分标准

优秀:按期圆满完成任务书中规定的项目;能熟练地综合运用所学理论和专业知识; 有结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并有较高技术含量.

立论正确,计算,分析,实验正确,严谨,结论合理,独立工作能力较强,科学作风严谨;毕业设计(论文)有一些独到之处,水平较高.

文字材料条理清楚,通顺,论述充分,符合技术用语要求,符号统一,编号齐全,书写工整.图纸完备,整洁,正确.

答辩时,思路清晰,论点正确,回答问题基本概念清楚,对主要问题回答正确,深入.

(2)良好:按期圆满完成任务书中规定的项目;能较好地运用所学理论和专业知识; 有一定的结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并有一定的技术含量.立论正确,计算,分析,实验正确,结论合理;有一定的独立工作能为,科学作风好;设计〈论文〉有一定的水平.

文字材料条理清楚,通顺,论述正确,符合技术用语要求,书写工整.设计图纸完备,整洁,正确.

答辩时,思路清晰,论点基本正确,能正确地回答主要问题.

(3)及格:在指导教师的具体帮助下,能按期完成任务,独立工作能力较差且有一些小的疏忽和遗漏;能结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,但技术含量不高.在运用理论和专业知识中,没有大的原则性错误;论点,论据基本成立,计算,分析,实验基本正确.毕业设计(论文)基本符合要求.

文字材料通顺,但叙述不够恰当和清晰;词句,符号方面的问题较少i图纸质量不高,工作不够认真,个别错误明显.

答辩时,主要问题能答出,或经启发后能答出,回答问题较肤浅.

(5)不及格:任务书规定的项目未按期完成;或基本概念和基本技能未掌握.没有本人结合实际的具体设计内容或独立见解的论证,只是一些文件,资料内容的摘抄.毕业设计(论文)未达到最低要求.

文字材料不通顺,书写潦草,质量很差.图纸不全,或有原则性错误.

答辩时,对毕业设计(论文)的主要内容阐述不清,基本概念糊涂,对主要问题回答有错误,或回答不出.

对毕业设计(论文)质量要求

----论文内容符合任务书要求

1.对管理类论文要求:

·对毕业论文的要求是一定要有结合实际的本人独立论证的内容.

·要求论点明确,立论正确,论证准确,结论确切

·论证内容要求有调查研究,有统计数据,对统计数据要有分析,归纳,总结,

·根据总结得出结论.

·最后有例证说明

管理类论文毕业论文行文的逻辑要领

增强毕业论文行文的逻辑力量,达到概念明确,论证充分,条理分明,思路畅通,是写好毕业论文的关键.提高毕业论文行文的逻辑性,需把握以下几点:

(1)要思路畅通

写毕业论文时,思维必须具有清晰性,连贯性,周密性,条理性和规律性,才能构建起严谨,和谐的逻辑结构.

(2)要层次清晰,有条有理写毕业论文,先说什么,后说什么,一层一层如何衔接,这一点和论文行文的逻辑性很有关系.

(3)要论证充分,以理服人,写毕业论文,最常用的方法是归纳论证,即用对事实的科学分析和叙述来证明观点,或用基本的史实,科学的调查,精确的数字来证明观点.

(4)毕业论文行文要注意思维和论述首尾一贯,明白确切.

(5)文字书写规范,语言准确,简洁.

2.对工程设计性论文要求:

·有设计地域的自然状况说明和介绍

·有原有通信网概况介绍及运行参数的说明

·有设计需求,业务预测

·有具体的设计方案

·有相应性能及参数设计和计算

·有完整的设计图纸

例如: A市本地SDH传输网设计方案

一,A市概况简介

二, A市电信局SDH传输网络现状(或PDH传输网络现状)

1, A市本地网网络结构,交换局数量及位置,传输设备类型及容量

2, 存在的问题及扩大SDH网的必要性(或建设SDH网的必要性)----需求及业务预测

三, A市电信局SDH传输网络结构设计方案

1, 网络拓扑结构设计

2,设备简介

3, 局间中继电路的计算与分配

4, 局间中继距离的计算

四, SDH网络保护方式

1, SDH网络保护的基本原理

2, A市电信局SDH网网络保护方式的选择及具体设计

五, SDH网同步

1, 同步网概念与结构

2, 定时信号的传送方式

3, A市电信局SDH网络同步方式具体设计

六, 方案论证,评估

3.计算机类型题目论文要求:

管理信息系统

·需求分析(含设计目标)

·总体方案设计(总体功能框图,软件平台的选择,运行模式等)

·数据库设计(需求分析,概念库设计,逻辑库设计,物理库设计,E-R图,数据流图,数据字典,数据库表结构及关系),

·模块软件设计(各模块的设计流程),

·系统运行与调试.

·附主要程序清单(与学生设计相关的部分,目的是检测是否是学生自己作的).

校园网,企业网等局域网设计

·功能需求

·对通信量的分析

·网络系统拓扑设计

·设备选型,配置

·软件配置

·子网及VLAN的划分

·IP地址规划

·接入Internet

·网络安全

例如:××人事劳资管理信息系统的开发与设计

1,开发人事劳资管理信息系统的设想

(1)人事劳资管理信息系统简介

(2)人事劳资管理信息系统的用户需求

2,人事劳资管理信息系统的分析设计

(1)系统功能模块设计

(2)数据库设计

—数据库概念结构设计

—数据库逻辑结构设计

(3)系统开发环境简介

3,人事劳资管理信息系统的具体实现

(1)数据库结构的实现

(2)应用程序对象的创建

(3)应用程序的主窗口

(4)菜单结构

(5)数据窗口对象的创建

(6)登录程序设计

(7)输入程序设计

(8)查询程序设计

(9)报表程序设计

4,总结

设计报告格式与书写要求

·设计报告应按统一格式装订成册,其顺序为:封面,任务书,指导教师评语,内容摘要(200~400字),目录,报告正文,图纸,测试数据及计算机程序清单.

·报告构思,书写要求是:逻辑性强,条理清楚;语言通顺简练,文字打印清楚;插图清晰准确;文字字数要求1万字以上例如:(1) A市本地SDH传输网设计方案

一,A市概况简介

二, A市电信局SDH传输网络现状(或PDH传输网络现状)

1, A市本地网网络结构,交换局数量及位置,传输设备类型及容量

2, 存在的问题及扩大SDH网的必要性(或建设SDH网的必要性)----需求及业务预测

三, A市电信局SDH传输网络结构设计方案

1, 网络拓扑结构设计

2,设备简介

3, 局间中继电路的计算与分配

4, 局间中继距离的计算

四, SDH网络保护方式

1, SDH网络保护的基本原理

2, A市电信局SDH网网络保护方式的选择及具体设计

五, SDH网同步

1, 同步网概念与结构

2, 定时信号的传送方式

3, A市电信局SDH网络同步方式具体设计

六, 方案论证,评估

(2 ) A 地区GSM数字蜂窝移动通信系统网络优化设计方案

一,A 地区GSM数字蜂窝移动通信现状

1,A地区概况;人口,地形,发展情况

2,系统现状;现有基站,话务状况

3,现行网络运行中存在的问题及分析

①接通率数据采集与分析

②掉话率数据采集与分析

③拥塞率数据采集与分析

4,话务预测分析计算

二,A 地区GSM数字蜂窝移动通信系统网络优化设计方案

1,优化网络拓扑图设计

2,硬件配置及参数的优化

3,基站勘测设计及安装

4,交换局容量及基站数量

5,传输线路的设计

三,网络性能及分析对比

1,优化前网络运行情况

2,数据采集与分析

3,拨打测试

四,网络优化方案评价

(3 ) A 市无线市话系统无线侧网络规划设计

一,无线市话网络概述

1,A 市通信网络发展情况

2,IPAS网络特点

二,A 市本地电活网络现状

1,现有传输网络结构

2,传统无线网络规划

三,无线网络规划设计方案

1,A 市自然概况介绍

2,总体话务预测计算

3,IPAS网络结构设计及说明

4,覆盖区域划分,基站数量预测计算

(l〉每个覆盖区话务预测计算

(2)基站容量频道设计

5,基站选址,计算覆盖区域内信号覆盖情况

6,寻呼区的划分

(1〉各个网关寻呼区的划分

(2〉各个基站控制器寻呼区的划分

7,网关及CSC的规划

(1)网关到CSC侧 2M 链路设计

(2)CSC到CS线路设计

四,基站同步规划

(4 )A 市 GSM无线网络优化

一,GSM网络概述

二,A市GSM网络情况介绍

2.1 网络结构

2.2 网元配置

2.3 现网突出问题表现

三,GSM网络优化工作分类及流程

3. 1 GSM网络优化工作分类

3.2 交换网络优化流程

3.3 无线网络优化流程

3.3.1 无线网络优化流程

3.3.2 无线网络优化流程的实际应用

四,网络优化的相关技术指标

4.1接通率

4.2掉话率

4.3话务量

4.4长途来话接通率

4.5拥塞率

4.6 其它

五,无线网络优化设计及调整

5.1 网络运行质量数据收集

5.2 网络质量优化及参数调整

篇10

民航通信中使用到的短波实质为无线电波,主要用于地面与飞机间的通信,其通信传播方式主要有以下三种:

1.1地面波。地面波是沿着地球表面传播的波,它沿着半导电性质和起伏不平的地表面进行传播,一方面使电波的场结构不同于自由空间传播的情况而发生变化并引起电波吸收,另一方面使电波不像在均匀媒质中那样以一定的速度沿着直线路径传播,而是由于地球表面呈现球形使电波传播的路径按绕射的方式进行。

1.2天波。天波是经过地面上空40~800公里高度含有大量自由电子离子的电离层的反射或折射后返回地面的电波传输方式。天波是短波的主要传播途径,可实现长距离的传播,短波信号由天线发出后,经电离层的多次反射,传播距离可以由几百公里达到上万公里,且不受地面障碍物阻挡。在天波传播的过程中,路径衰耗、大气噪声、时间延迟、电离层衰落、多径效应等因素,都会造成信号的畸变与弱化,影响短波通信的效果。

1.3直接波。直接波是从发射天线到接收天线之间,不经过任何发射,直接到达,电波就象一束光一样,所以有人称它为视线传播。由于民航中,飞机大多数时间都是在飞行,所以有些时候地、空之间的短波通信,实际上是可以靠直接波完成的。

2.短波通信的特点

与卫星通信、地面短波等通信手段相比,无线电短波通信有许多显著的优点:(1)短波通信无需建立中继站即可实现远距离通信,(2)短波通信元器件要求低、技术成熟、制造简单、设备体积小、价格便宜,建设和维护费用低;(3)设备简单,目标小、架设容易、机动性强,即使遭到损坏也容易修理,由于其造价相对较低,可以大量装备,因而系统顽存性强。(4)电路调度容易,灵活性强,可以使用固定设置,进行定点固定通信,也可背负或装入车辆,实现移动中的通信。这些优点是短波通信被长期保留、至今仍被广泛应用的主要原因。同时,短波通信也存在着一些明显的缺点:(1)信道拥挤、频带窄;(2)短波的天波信道是变参信道,故信号传输不稳定;(3)大气和工业无线电噪声干扰严重;(4)天线匹配困难。

3.短波通信在民航中的应用

短波通信系统的主要用途是使飞机在飞行的各阶段中和地面的航行管制人员、签派、维修等相关人员保持双向的语音和信号联系,当然这个系统也提供了飞机内部人员之间和与旅客的联络服务。

3.1民航短波通信基本设备

民航短波地空通信设备由短波单边带发信机、短波单边带收信机、遥控器及地空选择呼叫器组成,设备一律使用单边带抑制载波、模拟单信道无线电话工作方式。短波单边带发、收信机均采用全固态电路及频率合成技术,频率范围为2.8~22MHz,发信机功率不大于6KW。

3.2民航短波通信地面站

民航短波通信地面站系统由三部分组成:短波机房设备、天线和馈线以及操作台设备。短波机房设备作为大功率发射设备,通常设置在远端,以减少对其他电子设备的干扰以及对操作员健康的影响。操作台设备设置在操作终端附近,便于操作与管理。

3.2.1短波机房设备。短波机房设备的主要设备包括短波通信电台、功放、预后选器、交流稳压电源、光端机及一整套控制电缆,主要功能是传送选呼信号和语音信号。短波电台是整个系统的核心设备,地面与航空器上均有配备,用于收发信号,包括选呼信号和音频信号。电台的性能直接决定了整个系统的性能,电台选型依据主要有两点:符合用户需求并且与飞机上电台匹配。预后选器是为了提高系统的抗干扰能力而选择的设备。光端机是地面站系统中实现远程控制的接口设备,起着连接短波机柜和操作台的作用。

3.2.2操作台设备。操作台设备由操作终端及监控软件、选呼器、选呼控制器和光端机组成。操作员的所有操作都在监控软件上进行。监控软件实现对选呼器和短波电台的远程遥控,控制选呼器产生选呼代码,呼叫对应的飞机,控制电台的调制方式转换和音频信号收发,同时监测电台的工作状态。选呼器的功能是通过发射4个单音信号选择通知某个飞机。选呼器提供了一个7针的音频接口,包括一对平衡的选呼音频输出口、一个PTT输出口和一个地线,其余3个口经改造用于同选呼控制器通信。选呼控制器作为选呼器、电台和控制终端的中间设备,是实现系统自动化的关键,其基本作用是实现对电台、选呼器、控制终端、音频设备的信号转接、电平匹配、远程控制和状态感知,并自动转换调制方式。

3.2.3天线。天线的选择具体根据用途来确定:近距离固定通信:选择地波天线或天波高仰角天线。点对点通信或方向性通信:选择天波方向性天线等。组网通信或全向通信:选择天波全向天线。车载通信或个人通信:选择小型鞭状天线。3.3短波地空通信数据链系统在民用航空领域,由于我国地理复杂、疆域辽阔、超短波网络尚不能实现完全覆盖,短波依然是地空通信的主要手段。短波地空通信数据链系统作为民航数据通信系统的子系统,在当前兴起的极地飞行中,有效解决了飞行盲区问题,对飞行安全起着非常重要的保障作用。短波地空通信数据链系统用于航空器飞行中保持与基地和远方航站的联络。其系统构造由短波/超短波通信系统、卫星通信站、地空数据网及机载通信系统组成,短波地空通信数据链系统通过短波、超短波与卫星实现了近、中、远程地空实时话音和数据通信。

4.结束语

近年来,随着微型计算机、移动通信和微电子技术的迅速发展,短波通信技术有了新的突破性进展,出现了实时选频、自适应、跳频、差错控制、多载波正交频分复用(OFDM)调制及软件无线电等新技术,使短波通信很好地弥补了它的缺点,还使短波通信的设备更加小型化、更加灵活方便,进一步发挥了短波通信设备简单、造价低廉、机动灵活等固有的优点。短波通信必将在应急通信、抗灾通信、特别是在军事通信中发挥更重要、更广泛的作用。因此。短波通信作为民航内部通信的重要手段,必将在今后较长时间内得到保持和发展。

参考文献:

[1]JohbG.ProakisMasoudSalehi.通信系统原理.电子工业出版社.2006年6月

[2]游战清.无线射频识别技术规划与实施[M].北京:电子工业出版社,2005

[3]谈华生,周民.关于航空频段通信导航业务受干扰问题的分析与思考.2004.06

[4]中国人民总装备部.短波通信技术.国防工业出版社,2002