岩土工程论文范文

时间:2023-03-16 04:40:04

导语:如何才能写好一篇岩土工程论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

岩土工程论文

篇1

土以碎散的颗粒为骨架,由固、液、气三相物质组成;在其由岩石风化的生成、搬运和沉积过程中几经沧桑,形成了不同于其他材料的复杂的力学性质,而不同时空条件下土的性状也各不相同。所以尽管已提出的土的本构关系理论数学模型不下百种,动用了传统力学和现代力学的各种理论和手段,但是到目前为止,还没有一种为人们所公认的,能够准确、全面反映各种土的应力应变关系的数学模型。是否存在这样的模型也是值得怀疑的。

在计算机和计算技术基础上发展起来的,以有限元为代表的数值计算是解决边值问题的强有力的手段。当用来计算弹性体时其精确程度令人叹为观止。其计算结果与光弹试验结果毫厘不差,结果光弹试验很快被废止。土是碎散材料,而在一般数值计算中首先被假设为连续体,然后被离散化,假设各单元间的结点位移协调,计算土体的应力变形关系。这常常不能反映土的变形的微观机理。以DDA(DiscontinuousDeformationAnalysis)为代表的离散单元计算方法在计算某些农产品(如谷类)和工业零件(如滚珠)时是相当成功的。以至被称为“数值试验”可以精确地代替模型试验。在定性地探索土的变形的微观机理时,也是很有价值的。但是用以描述由不同尺寸、不同形状、不同矿物成分的颗粒组成的土,反映不同三相成分及其物理、化学和力学的相互作用,即使是可能,恐怕也是相当遥远的事。

数学模型和数值计算预测的另一个难点是土的参数的选取,它受到取样(制样)和试验手段的限制。原状土在取样过程中不可避免地受到扰动和发生应力释放,会破坏其结构性。即使是重塑土试样,制样的方式、器具和操作程序的差别也严重影响试验的结果。另一方面,目前使用的土工试验仪器也存在局限性。以真三轴仪为例,由于边界之间的干扰,试样的应力和应变的均匀是很难保证的。

在对地基和土工建筑物的探测方面,土层的时空变异及人类活动给勘探测试及其结果的判释造成困难。除此以外,岩土工程中的复杂边界条件和施工过程中的诸多因素也严重影响工程的实际结果。

在我国每年发表和撰写了大量的论文和报告,提出了各种理论、模型、计算方法、计算程序和技术手段,常常伴以试验或者实测数据的验证,其结果也常常是“符合得很好”。自己的试验或观测证实了理论或者方法的完美,正是:“各夸自家颜色好,百花园中各称王。”这种结果的可信性很值得怀疑。笔者在评阅一些论文和成果时,对于那些二者符合得完美到天衣无缝的图与曲线,常常怀有很大的不信任感;而对于存在相当差别,甚至坦率地承认预测的不成功的情况,则是完全理解的。可惜后者较少。

近年来,主要在国外进行了多次的“考试”或者“竞赛”活动:首先委托一个(或几个)单位进行所谓的“目标试验”,亦即需要预测或者预算的试验或实例。其结果是保密的,或者预测前不做试验,预测以后在试验。事先公布有关的土的一般资料、基本试验的数据(为确定有关参数)和目标试验的应力(应变)路径。在全世界或者一定范围征求参赛者(参加目标试验的人不参赛)。全部预测结果上交以后,公布试验结果。一般是召开研讨会,评估或者评分。参赛者也常常进行申辩和总结。这是一种客观、公正和有权威性的检查比较方式。也是推动岩土工程发展的十分有益的活动和手段。它使我们认识到在岩土工程领域,我们的认识能力和预测能力到底有多高。

试验方法和设备的检验比较

1.不同仪器的相同试验的检验

1982年在法国Grenoble召开的“土的本构关系国际研讨会”上①,用剑桥式的立方体真三轴仪分别由德国的Karlsrube大学和法国的Grenoble大学对同样的砂土和粘性土进行复杂应力路径和应变路径的真三轴试验,两份试验结果是存在着差别的。由于使用的仪器与土料都是相同的,差别主要源于操作方法和技巧。

1987年在美国克里夫兰召开的“非粘性土的本构关系国际研讨会”上②,利用美国Case大学的空心圆柱扭剪仪和法国Grenoble大学的剑桥式立方体真三轴仪进行砂土的相同应力路径的试验。试验内容包括:

(1)b=不同常数的不同密度两种砂土的真三朝试验;其中,b=(σ1-σ2)/(σ1-σ3)

(2)在π平面上应力路径为圆周(两周)的的真三轴试验。

(b=常数的真三轴试验与空心圆柱试验的比较)表示了对于Hostun密砂(干密度ρd=1.65g/cm3)在b=不同常数,中主应力ρ2=500kPa保持不变,用两种仪器试验得到的轴向应力与轴向应变关系曲线,轴向应变和体应变的关系曲线。可见在b=0和0.28时,不同仪器试验结果的差别是很大的。但是在评价它们时,主持者说:对于轴应变,除了0.286的结果很差(verypoor)以外,其他的曲线符合的很好(verywell);(b.体应变εv与轴向应变εz间试验曲线)的曲线认为符合得很优良(excellent)。对比我们的一些论文中理论与实际曲线二者丝丝入扣的符合,就显得很不真实。在这两个试验中试样的破坏形态也有很大不同:空心圆柱试样发生颈缩;立方体试样产生V形的剪切带。这些差别可能是由于试样的制样方法不同,试样中的实际应力分布不同和试验中的边界条件不同引起的。

2.土工离心机模型试验

1986年由欧洲共同体资助,发起“土工离心机的合作试验”③。参赛者有三家:英国的剑桥大学、法国的道桥中心研究室和丹麦的工程院。试验的内容是模拟饱和砂土地基上的圆形浅基础的承载力和荷载—沉降关系。试验土料统一为巴黎盆地天然沉积的一种均匀石英细砂。模型地基的孔隙比规定为e=0.66(相对密度Dr=86%),规定圆形基础的模型尺寸为直径D=56.6mm,离心加速度=28.2g,基底完全粗糙。此前,由丹麦岩土研究所对于这种土进行了物性试验和三轴试验,其结果公布于众。要求荷载—沉降关系表示成无量纲的变量q/γˊnb-s/b公关系曲线。

其中:

q=基础上施加的荷载(kPa)

γˊ=乙土的浮容重(kN-m3)

n=重力加速度水平,即模型比尺

b=模型基础的尺寸(m)

s=基础的中心垂直沉降(m)

同时也进行了相同条件下的现场载荷试验,以便与模型试验结果对比。

这三家使出了浑身解数,精心制样、安装、运转和量测,反复摸索,反复校验,校正各种参数和影响因素。剑桥大学还在离心机上作了静力触探试验。最后,剑桥大学提交了一组试验结果,另外两家按要求给出了一条曲线。图2(圆形天然浅基础的试验荷载-沉降关系曲线)表示了其试验结果,其中剑桥大学是笔者选取的最接近于要求的条件的试验结果(e=0.664)。

可见,这种世界先进水平的土工离心模型试验的误差在±30%以上。值得提出的是,这是一种条件非常简单明确的模型试验。而现场的工程实际情况的条件和影响因素远比这复杂。在这个试验中,加载速率、模型地基砂的密度、制样方法和运行程序对试验结果都有影响。例如剑桥大学的试验表明,砂土的孔隙比变化0.01(相当于相对密度变化3%),则其承载力变化18%,如图3(地基承载力与模型地基孔隙比间关系—剑桥大学试验结果)所示。而由于模型地基是先制样,后运转,保证地基内砂土处处均匀,孔隙比误差在0.01范围内是有较大难度的。

3.单桩的动测法的考试

1992年在荷兰海牙进行了一次动测桩的“考试”④。在第一轮,10根预制桩预先被沉入地基,桩径250mm,桩长18m(7#桩17m)。要求测出其预制的“缺陷”。其中一根桩完整无缺;其余的9根桩各有缺陷:颈缩、扩径和在不同部位的10mm宽,130mm深的刻槽。事先由特尔夫公司进行了地基勘察,将土层资料公布于众。有12家具有国际声誉的公司参赛,用小应变动测法检测。结果是:平均测对4根;最多对7根,最少对两根。没有一家测出那根完整无损的桩。他们认为对于只有10mm宽的缺痕很难分辨。

第二轮是沉入11.5m-19m长的5根桩,然后用静载荷试验测出极限承载力。10家公司用大应变动测法测试其极限承载力。其结果也不乐观。比如,由静载试验为340kN的一根桩,各家给出的结果分布在90kN-510kN的范围。

4.堤防隐患检测的“大比武”

我国目前有各类堤防25万公里,很多已具有几百年的历史。是民堤逐年加高培厚或者在汛期抢修形成的。地质条件及堤身土料和质量千差万别,隐患很多。1998年洪水期间发生的许多险情和决口都是由于渗透通道形成的管涌和蚁穴鼠洞、裂隙异物和局部疏松土体等造成的。为此水利部和防汛办于1999年3月在湖南宜阳召开了“堤防隐患综合检测技术检验会”也北被称为“大比武”。

有我国的十几家科研院所、大专院校和少数厂家(包括美国的劳雷公司)参加。检测堤段位于宜阳的一段废堤上。每个参赛的检测方法负责200米堤段,时间是两小时。几处“隐患”是事先人工布置的,埋设了稻草、钢管,模拟蚁穴和鼠洞。一般在两米深范围内。人们使用的测试手段包括:高密度电阻率法、瞬变电磁法、地震波法、弹性波法和探地雷达等。这些方法都有一定的分辨率限制,即分辨尺寸与深度之比一般是相对固定的。因而两米深的隐患的检测不应算是难题。检测结果聘请有关专家评审,打分。图4(堤防隐患的检测结果评分)所给的分数只是相对的。组织者对于测试结果是不满意的。参赛者各自对其结果的误差的原因进行了解释。针对这种结果,水利部斥资几百万,开展专题研究,目标是“傻瓜”式的快速检测仪器和方法。关键问题可能是要结合各地具体情况和长期的抗洪防汛经验,因地制宜,积累资料和经验,合理判释,仪器才会发挥作用。很难想象,可以身背“傻瓜机”,走遍天下都会灵验。

土的本构关系的检验

80年代以来,关于土的本构关系的“考试”至少进行了3次。1980年美国和加拿大召开了“岩土工程中极限平衡、塑性理论和一般的应力应变关系北美研讨会”⑤。会前用两种天然粘土、一种重塑的高岭粘土和渥太华砂进行了一系列试验。试验包括:

平均主应力p=常数的三轴试验,

b=常数的真三轴试验

砂土在π平面上应力路径为圆周的真三轴试验

天然粘土大主应力方向与其沉积方向成不同角度的三轴试验。

事先将土的物性参数和基本试验的结果公开提供。然后在全世界范围征求参赛者。参加预测的有个不同国家的17个本构模型。从给出的结果看,轴向应力应变关系(σ1-σ3)~ε1预测的精度一般尚可;体应变预测的精度差别很大。对于应力路径在π平面上为圆周的情况,许多模型无能为力。由于原状土的各向异性,对于其循环加载和超固结性状很难预测,只有少数模型参加了预测。结果表明,没有一个模型能够合理地预测所有的试验情况。正如会议主席Finn所说:“没有给任何一个本构模型戴上王冠”。这也是符合当前的土力学理论发展的现状的。

1982年在法国召开了“土的本构关系国际研讨会”人们用不同的理论模型对砂土和粘土的复杂应力路径和应变路径的试验结果进行了类似的预测。如上所述,也对试验本身进行了检验⑥。

1987年在美国克里夫兰召开了“非粘性土的本构关系国际研讨会”⑦。会议征求对真三轴试验和空心扭剪试验结果用理论模型进行预测。共有世界各国的32个土的本构模型参赛。其中包括:

3个次弹性模型(H)

3个增量非线性弹性模型(I)

1个内时模型(E)

9个具有一个屈服面的弹塑性模型(EP1)

10个具有两个屈服面的弹塑性模型(EP2)

6个其他形式的弹塑性模型(EP)

会议将预测结果与试验结果比较,按四个单项评分。评分的标准见图5(本结构模型预测的评分标准)。规定了上下限,按统计方法打分。图6(轴向应力应变关系得分的直方图—满分100)与图7(体应变与轴向应变关系得分的直方图—满分100)表示出b=常数的真三轴试验的预测得分情况。可见其轴向应力应变关系预测经过还差强人意;而体应变的预测则基本是全不及格。

这些“考试”基本上反映了人们当前认识和描述土的应力应变关系的能力和水平。它表明,即使对于实验室制作的重塑土试样,其应力应变关系也是相当复杂的。现有的关于土的本构关系的数学模型的描述能力在精度和条件方面都是有限的。有的模型使用了20多个,甚至40多个常数,结果仍然不另人满意。

1.土工加筋挡土墙的计算

60年代以来,随着计算机和计算技术的发展,土工数值计算大大加强了我们解决复杂的岩土工程边值问题的能力。有人提出可将土力学分成理论土力学、实验土力学和计算土力学三部分。由于它几乎可以精神任何边值问题,似乎一台打计算机,几页打印纸,就可以驰骋在岩土工程的所有领域。这种表现上的简单、快捷和“精确”,常使青年岩土工作者产生误解,忽视了其与实际工程问题间的距离,轻视在岩土工程实践中积累经验的重要意义。

加筋土的计算是岩土数值计算中很有代表性的课题。它涉及到土的本构模型,筋材的应力应变关系模型和筋土间的界面模型及这些模型涉及的参数。目前已经有较多的计算程序和经验。1991年在美国的科罗拉多大学,由美国联邦公路局资助,在足尺试验的基础上进行了加筋土计算的竞赛⑧。

目标试验是在一个高3.05米,宽1.22米,长2.084米的大型的试验槽中进行的。铺设了12层长为1.68米的无纺土工织物,作成土工织布加筋挡土墙。墙顶采用气囊加压。气囊下铺设5厘米的砂垫层。试验用的土料有两种:一种是均匀的砂土,D50=0.42m;另一种为粉质粘土,塑限Wp=19%,液限Wl=37%。事先公布了砂土的三轴试验,粘土的不同排水条件下的三轴试验,土工布的拉伸试验和筋土问的界面直剪试验等试验的结果。征求世界各国同行们进行数值计算,预算试验观测结果。预测项日有:

(1)两种加筋挡土墙在顶部加载103.5kPa以后的墙顶最大位移、不同位置的墙面位移及筋的应变

(2)在加载100小时后的以上各项位移和应变

共有15个不同国家的大学和研究单位参赛。包括美国的科罗拉多大学等8家,英国的哥拉斯格大学等两家,日本的东京大学等3家。中国和加拿大各一家。其中14家参加了荷载—变形和应变关系的预测。计算的结果见图8(砂土加筋挡土墙的墙顶最大位移计算的误差)和图9(粘土加筋挡土墙的墙顶最大位移计算的误差)。它们分别表示了砂土和粘土在上述荷载下的墙顶最大位移的预测误差。有几家没有预测粘土加筋挡土墙,有几家计算得到的结果表明,在此荷载下挡土墙早就破坏。只有少数计算的误差在30%以内。

对于砂土加筋挡土墙试验的破坏荷载是207kPa,预测值从10kPa到517kPa不等。粘土加筋挡土墙在荷载加到230kPa时由于气囊爆破而未能继续试验,但挡土墙并没有破坏。计算的破坏荷载在21kPa到207kPa之间。其误差之大令人沮丧。

2.土的液化分析方法的检验

在1989-1994年间由美国NSF拨款350万美元,资助用离心机模型试验来检验地震反应分析方法。这是NSF历年来投入单项经费最多的项目。项目简称VELACS。参加的单位和个人包括:美国加州大学戴维斯分校,加州理工大学,英国剑桥大学等7座大学;其中有10名美国国家科学院院士和英国皇家学会会员。参加考试的考生有美、加、日和欧洲的23个数值计算专家和研究组。

项目动用了9台带有振动台的土工离心机,并且进行了平行试验。模拟地震的振动模型试验内容包括:

(1)水平自由地基

(2)倾斜地基

3)组合地基(一半是密砂,另一半是松砂)

(4)成层水平地基(刚性箱和柔性箱各一种)

(5)护岸的重力式挡土墙

(6)堤坝

(7)心墙坝

(8)砂基础上的刚性建筑物

涉及以上9种边值问题的模型试验,都是相当简单的工程问题。在土工离心机试验的基础上,提出了三类考题:

A在离心机试验前,提供试验的初始条件和边界条件,在尚无任何试验资料的情况下,进行数值计算。是一种“盲测”。

B离心试验完成以后,但不公布试验结果。但向计算者提供试验的较为详细的条件和细节。

C公布试验结果,让“考生”用自己的数值计算进行计算,比较。

考试的成绩按照ABC的次序有所提高,对于A类考题,有30多个数值计算模型参加考试。预测的地震反应加速度比较接近;计算的静孔压和沉降量与试验量测的结果比较,趋势还是相同的。但二者差别很大,多达几十倍。但是在试验后,考虑了试验中的具体条件量测方法,修正计算条件和参数,计算结果明显改善。

结论与讨论

土的力学性质是非常复杂多变的,岩土工程问题具有很强的不确定性。目前我们的理论分析、数值计算和勘探试验还远不能精确定量地描述,反映和预测它们。对此应当有清醒的认识。但是正确的理论和有效的方法应当能够揭示土受力变形的基本规律,反映岩土工程中的影响因素及影响的范围。

对于岩土工程问题,正面的纯理论和数值预测和计算,往往是很难奏效的。必须详细地了解实际的条件和过程,熟悉当地的情况,积累经验,对理论和参数进行合理修正;在工程中不断观测和积累数据,在其基础上合理选取参数,再计算和预测以后的变化,往往达到很高的精度。因而,有人提出在复杂的岩土工程中需要“理论导向,经验判断,精心观测,合理反算”。这是非常中肯和宝贵的认识。

在土力学和岩土工程中逐步引进不确定性的理论方法是一个重要的发展方向。

参考文献

①ConstitutiveRelationforSoil,Ed.Gudehus,G.,1984

②Bianchini,G.et.al,,ComplexStressPathsandValidationofConstitutiveModel,GeotechnicalTesting,Journal,1991,14(1):13-25

③Corte,J.F.Etal.,.ModelingofTheBehaviorofShallowFoundation_ACooperativeTestProgramme,Centrifuge88,Corte(Ed)1988Balkema,Rotterdam,ISBN9061118138

④盛崇文,从桩的测法谈起。地基处理,1996,7(3)

篇2

1.1岩土工程地质灾害主要类型特征分析

从上世纪80年代开始,地质工程学就在我国诞生了,地质工程学主要就是对地质灾害的防治所进行研究的。地质灾害工程涵盖着对地质灾害的防治以及岩土两个重要的层面,其中的岩土工程则是施工间所设计到的开挖岩土体的加固处理。从岩土工程地质灾害的主要类型特征层面,不同的地质灾害类型就有着不同的特征,岩土工程中的泥石流地质灾害类型是降水作用下,沟谷以及山坡等出现的携带大量石块及泥沙物体的洪流,主要是表现为固体流动和液体流动相结合的混合物,这一地质灾害类型受到弃土弃渣的防护不合理所致,再有就是在开挖过程中没有科学化进行。再者,岩土工程地质灾害中的滑坡类型也比较常见,主要是地下水以及河流的冲刷等使得斜坡的岩体或者土地的软弱地带发生的下滑情况。滑坡地质灾害主要的由于强降雨或者强降雪所致,还有就是受到地表水冲刷、浸泡等也比较容易发生滑坡地质灾害。岩土工程地质灾害类型中的崩塌也是比较常见的灾害类型,这一地质灾害主要就是由于根部的虚空使得陡坡裂缝分割岩体而发生局部的折断等状况,这样就失去了原有的稳定性鞥发生翻滚。崩塌地质灾害主要是受到矿产资源开采及道路边坡开挖影响比较严重。另外,岩土工程地质灾害中的地面变形也是常见灾害之一,这一类型的地质灾害主要有地面的沉降额塌陷,或者是出现裂缝等。地面变形的地质灾害受到区域内地表水的大量抽取以及表面的熔岩和对矿产的不合理开采的影响比较严重,所以在对岩土工程中地质灾害的防治过程中就要能够结合实际进行处理。

1.2岩土工程地质灾害的成因分析

岩土工程地质灾害的成因根据类型的不同也会有着多种成因,主要体现在受到地形地貌的影响比较显著,我国是地质灾害最为严重的国家之一,每年由于地质灾害所造成的损失比较巨大,这对多个地区的经济发展有了限制。从岩土工程地质灾害的主要成因层面来看,分为自然因素及人为活动因素,其中的人为活动因素是造成地质灾害比较重要的影响因素,由于在一些建设和开发开采等活动的实施下,就对原有的地质自然形态造成了破坏,从而引发了一些列的灾害,其发生和地质本身的关系并不大,主要就是由于人为破坏的。对于岩土工程的地质灾害的发生是在自然地质演变和气候的变化下逐渐形成的不稳定状况,经过人为活动对这一不稳定活动的破坏,加快了地质灾害的发生。地质灾害的发生对人们的经济财产以及生命等都有着很大的危害,这也是灾难性的事故。另外就是岩土工程地质灾害的自然因素,这一影响因素也被称为是第一环境问题,不会因为历史变迁而发生变化。地形地貌的影响以及水文气候的特点和地质环境的特点等都会对岩土工程地质灾害的发生起到促进作用。

2岩土工程地质灾害的有效防治措施探究

第一,对岩土工程地质灾害的防治要从多方面进行考虑分析,采取多样化的防治措施,由于地质灾害的发生需要一定的条件促进才能形成,所以为能够将岩土工程地质灾害得到有效防治,就要从源头上进行消除。首先是对岩土工程的实施过程中,要能对地质灾害的勘察得到充分重视,地质灾害额发生和地质状况有着紧密的联系,这就要对地质的实际状态加强勘察,进而保障岩土工程施工中的安全性。具体的措施就是先成立地质勘察小组,对岩土工程施工的地区进行实际的勘察,对施工场地的地质特征以及形成原因加以详细化分析,然后对地质灾害发生可能程度进行评估,并要定期的到现场实施观察。第二,当前我国的科学技术有了很大程度的发展,将其在岩土工程施工的有效应用对地质灾害的防治就有着积极作用。从我国地质灾害监测预警体系的发展过程中来看,有的是通过先进仪器设备诶等进行的专业监测,还有的是通过群众参与的群测群防。总体而言,对岩土工程施工过程中的地质灾害防治要能将“感”、“传”、“知”、“用”这几个层面得到准确的掌握,其中的感就是对监测数据进行采集,再通过移动终端对所采集的信息加以传递,这样就能通过卫星传回监测的数据,然后再对这些数据加以处理分析并建立模型,对地质灾害的状态以及发展趋势加以判断,最后就是采取辅的决策对地质灾害监测预警以及搬迁转移等措施提出。第三,对岩土工程地质灾害的防治还需要开展相应的防治工程设计,结合实际岩土工程所受到的灾害情况进行对防治的途径加以确定,然后再按照灾害的发生程度以及对防治目标的确定等对防治的实际强度和工作量详细的制定,例如采取支挡或者排水以及加固等方面的措施进行实施。从工程层面来看采取工程型防治是地质灾害最为主要的防治措施,工程开展过程中要进行实施削方减载,并把缘地表排水及开展前缘支挡的方法对实际的施工要求加以满足,在工程防治方面要能结合实际来采取相关措施。第四,而采用生物防治的措施,则主要是通过植树造林以及草坡护理等方式实施防治,这在环境保护以及防治的时间上都有着较好效果的呈现。还可再用地质灾害的避让措施的实施,岩土工程施工过程中通过避让措施能够对地质灾害的损失降到最低。对于灾害隐患点及变形斜坡在雨天所采取避让措施比较有效,如在下雨天可让比较容易发生地质灾害的群众及时的搬迁,在对这一措施实施过程中要能有效遵循就近以及不受灾害威胁的原则。对于有着较大危害的采取避让措施是比较有效的。

3结语

篇3

1.1人为因素

近年来,由于科技水平提高,岩土工程地质勘察设备和技术也不断提高,这也要求岩土工程地质勘察人员也需要具备更高的技术素养和实际操作能力,才能正确使用先进的勘察设备。但是,实际岩土工程一线地质勘察工作人员为农民工,他们不具备专业的技术知识和操作技能,也缺乏相应的安全意识和质量意识,导致地质勘察质量难以得到保证。不仅如此,许多岩土工程地质勘察工作的工期较短,促使勘察人员采用不规范、不科学的方法进行岩土勘察,导致勘察结果与实际结果的误差较大,严重干扰正常的岩土工程地质勘察工作,得出的勘察结果报表也不具有真实性。

1.2勘察方法

勘察方法问题主要表现在勘探钻进方法单一和取样方法不合理上。钻井措施需要根据地质条件选择勘探方法,这要求勘探单位对工程情况进行详细的地质调查,在根据勘探与布置勘探工程的结果选择勘探方法。但是一些勘探单位在未进行地质调查的情况下直接使用电力设备和机械设备进行钻进,不仅增加勘探时间,也消耗更多的资源。在取样方法上,勘探单位未根据设计勘察点的实际情况进行取样。如有些人员对软弱下卧层不进行取样分析,甚至因为表面上满足不少于件组的要求而将应当分层的层位加以合并,对数据的变异性不作检验、剔除。勘察结果经不得推敲,严重影响工程设计和建设质量。

1.3市场制度

虽然近年来我国岩土工程地质勘察单位的数量显著增加,但地质勘察市场化程度并不高,地质勘察市场制度严重缺失,市场调节作用失灵。而且许多新成立的地质勘察单位存在许多“水分”,存在许多皮包公司和外挂单位,严重扰乱地质勘察市场秩序,加剧行业内恶性竞争。激烈的恶性竞争导致一些地质勘察企业或单位为抢占勘察市场,采用压低报价方式提高市场竞争力。这种做法导致地质勘察单位为减少损失而采取偷工减料方式降低勘察成本,最终影响地质勘察质量。

2.岩土工程勘察质量控制对策勘察

2.1建立高水平勘察队伍

针对当前许多一线地质勘察人员非专业人员问题,首先可通过招聘方式引进专业人才,巩固一线地质勘察队伍,提高专业勘察能力。此外,还应针对当前一线勘察人员专业水平较低、知识结构陈旧问题,应加强人员培训工作,实现知识结构更新与新技术设备推广,提高岩土勘察工程人员的专业素质。最后,建立有效的激励机制。如建立两支或以上勘察队伍,实行内部竞争制度,促使勘察人员主动提高自身专业水平。

2.2运用新的勘察方法和技术

运用新的勘察方法和技术不仅可以提高勘察效率,还能提高勘察结果的质量和准确性,提高取样工作的精度。在选择钻进方法上,勘察人员要严格根据勘察规范做好实地地质勘察工作,并以此为基础选择正确的钻进方法;再结合更先进的钻探设备,改进传统钻探技术方法的不足。提高勘察方技术和方法的数字化水平,国际工程施工所采用的先进的设备一般都是数字化管理、智能控制。我国许多较为先进的岩体勘察部门也已经引进了先进的数字技术替代了传统的勘察技术。例如地形勘测方面,传统地形勘测需要借助手工测量,容易引起较大的误差。如采用新型数字化设备,可以方便地得到较为精确的测量结果。对于取样问题,应控制取样质量。如根据不同地质条件的不同选取不同的样本,如不同深度、不同类型的地质样本。

2.3完善岩土工程地质勘察制度

针对地质勘察市场混乱问题,必须建立有效的勘察监督制度,实行严格规范的勘察监督制度对勘察工作进行有效的监督,实行事前、事中和事后控制相结合,最大限度避免不当行为,保证勘察质量。严格市场准入机制,建立注册土木工程师制度。市场因素对勘察质量主要由于地质勘察资质门槛不高,导致地质勘察企业水平参差不齐。因而应尽快实施注册土木工程师制度,控制地质勘察企业及个人的职业资质。最后,加强勘察涉及单位的质量认证,健全质量管理。如采用PDCA循环思进行岩土工程勘察的实施和管理,提高勘察设计能力。

3.结语

篇4

1.1钻孔波速测试为了能够更好地对各类岩体土体的各种波速进行有效的确定,可以利用单孔波速测试手段,这样还可以有效地对相关的岩土参数进行确定,从而可以科学对民用建筑场地类别进行判断。而且利用钻孔波速进行测试,可以有效判断和评价地基的振动特性,有利于对建筑的抗震设计进行有效的指导。在利用钻孔波速进行测试时,需要在民用建筑下布置波速测试钻孔,将三分量检波器固定在孔内预定深度内,同时要对测试的垂直间距进行严格的控制,使其保持在1m左右,在测试时按照从下到上的顺序逐点进行。

1.2场地微振动测试为了能够更好地提高抗震设计的质量,可以对场地微震动进行测试,对脉动幅度值等参数进行确定,从而将场地内的地震区进行划分。另外,在室内外测试过程中,利用各种检测技术可以获取各种数据资料,通过对这些数据资料进行分析和研究,从而确保能够获得更加准确和可靠的岩土工程设计参数。

2地理信息系统

当前地理信息系统已经开始广泛应用在空间数据处理中,其主要是以地理坐标为主,通过勘察来获取某一区域内的数据资料,从而利用地理信息系统来有效管理岩土工程勘察信息。地理信息系统在应用过程中得以不断的完善,其功能也不断的增多,不仅具有输入、编辑、维护图形数据和属性数据的功能,同时对于文件型图形数据和关系型的属性数据还具有有效的连接功能,这样不仅有效确保了这两种不同的数据库能够互相进行访问,还可以对图形数据进行更好的分析。由于是完全面对用户进行界面设计,而且还能够提供相应的接口,这样可以有效确保二次开发的顺利进行。利用地理信息系统的空间信息处理能力,可以有效确保信息管理系统可视化功能的实现。当前地理信息系统技术和功能不断完善和发展,其应用领域也在不断的扩大。地理信息系统应用在民用建筑岩土工程勘察工作中,不仅可以将地质资料在工程中进行输入和查询,还可以使可视化综合动态查询和检索功能得以实现,有效确保了勘察信息的真实性和可靠性,这样就可以为勘察管理部门提供更真实的数据,确保其决策的科学性和合理性,有利于更好地指导岩土勘察工作的实施。

3遥感技术

利用遥感技术可以确保探测范围和信息量的进一步扩大,同时通过多种先进的技术手段,可以在短时间内即获取到相应的信息,可以实现动态的监测。而且利用遥感技术收集到信息后,可以对信息进行存贮、传输,这对于信息的进一步应用带来了较大的便利。在民用建筑岩土工程勘察中利用遥感技术,可以更好地显现出地域内的不同地貌特征,为工程建设方案的设计提供科学的依据,有利于更好地掌握复杂的地理环境。

4结语

篇5

(1)判别地层类型、场地类型和卓越周期。以某电排站的改建为例进行介绍,该电排站位于鄱阳湖附近,对场地的地层进行勘察得知,最上面的为素填土、粉砂、粉土,再往下是淤泥质粉质的黏土、粉质的黏土,最下面是强风化云母片岩石。为了建成抗震级数较大的电排站,采用波速测试的方法,首先判断场地的地层类型、场地的类型等。采用单孔检层法,根据建筑抗震的设计规范,对场地的类型进行判断。首先钻两个孔,测得它们的S波波速分别为206米/秒、203米/秒,相对应的覆盖层厚度为28米和30米,根据这些数据判断出此电排站场地的地层类型为中软土,场地类别是Ⅱ,根据计算公式确定场地的卓越周期分别是0.3883秒和0.3941秒。而对两个孔进行实地测量,采用地脉动法所得结果分别为0.3867秒和0.3927秒,实际测量结果与由公式计算的结果相比较,结果相差不多,数据比较吻合。由此可知,根据这种方法来确定的地层类型,场地类型和卓越周期是准确有效的。

(2)采用波速法计算岩土的工程动力参数。根据实地测量的S波和P波的弹性波速,利用相应的公式即可计算岩土的工程动力参数。其中μ表示泊松比,VP压缩波速度,VS表示剪切波速度,单位均为米/秒。上述电排站的工程,要对其抗震的稳定性进行验算,利用波速法测定各地层的弹性参数。根据单孔检层法测量的数据如下:全风化云母片的测试深度为3.5米,剪切波的平均速度为337米/秒,压缩波的平均速度为686米/秒;强风化云母片的测试深度为12米,剪切波的平均速度为646米/秒,压缩波的平均速度为1279米/秒;中风化云母片的测试深度为20米,剪切波的平均速度为1330米/秒,压缩波的平均速度为2500米/秒;微风化云母片的测试深度为25米,剪切波的平均速度为1868米/秒,压缩波的平均速度为3320米/秒;未风化云母片的测试深度为30米,剪切波的平均速度为2442米/秒,压缩波的平均速度为4130米/秒。由以上数据即可计算出岩土的弹性动力参数。

(3)岩土承载力基本值的估算。在这个项目中计算岩土承载力基本值的使用的是剪切波速法。通过大量的实践经验得出岩土的承载力基本值与剪切波速值存在一定的比例关系。淤泥岩土层的剪切波速值为60~80米/秒,对应的承载力基本值在3~4t/m2;岩土为淤泥质软弱土的剪切波速值为100~130米/秒,它对应的承载力基本值为7~9t/m2;软塑粉质粘土、粉土和松散砂组成的岩石的剪切波速值为140~180,其对应的承载力基本值在9~12范围内;软塑粉质粘土和稍密中细沙的岩土中的剪切波速值为200~220,岩土对应的承载力在14~16之间;硬塑粉质粘土和中密中粗砂组成的岩土中的剪切波速值为250~280,承载力基本值为18~21;硬塑粉质粘土、密实中粗纱、砾砂软质岩全风化层构成的岩土中的剪切波速值为300~360,对应的承载力基本值为24~28;由密实中粗砾砂、砾砂、全风化岩硬质岩全风化层的岩土层中的剪切波速值为400~450,对应的承载力基本值为24~28;最后,强风化岩的剪切波速值大于500,其对应的剪切波速值大于40。

(4)砂性土的地震液化式判别。砂性土的地震液化式的判别是根据地震的基本烈度Ⅶ判定,对场地在15米的深度范围之内的砂性土岩层进行判别。其中判别的过程是根据《岩土工程勘察规范》(GB50021—2001)号规范来确定。并通过标准中规定的公式计算临界剪切波速值,当场地砂性土层的剪切波速的实测值大于由公式计算所得的剪切波速的临界值时,就判定砂性土层不液化。通过对这个项目的场地进行实地的考察和分析,通过上文的判别方式对项目的砂性土层进行判别。得出孔深在5.0~8.7范围内的岩性土层为粉砂,剪切波速值的实测值为170~176,临界值在115~143范围内,所以液化式的判别结果为部分液化,其余孔深判定为不液化。所以通过判定,在场地的15米深度的范围内,粉砂层的剪切波速值的实测值小于临界值,所以为部分液化土层;粉土层的剪切波速值的实测值均大于临界值,所以判定为不液化土层。

2总结

篇6

水文地质问题一直是岩土工程勘察过程中重中之重,应当因地制宜,依据勘察工程过程中所处地域环境,进行水文地质勘察。制定相应的预防保护措施,以及施工计划,真正保证工程质量。岩土工程具有自身特性,岩土工程计算不精确的因素包括地质条件、计算模式以及计算参数。其中计算参数最难掌握,因此需要做好勘察。掌握最可信的地质条件以及原型实测结果,才能真正形成可靠科学实验。岩土工程勘察过程中的水文地质问题重要性无容忽视,可以说,水文地质以及工程地质两者之间关系密切,且相互影响促进。地下水作为岩土体当中的重要组成部分,必然会直接影响岩土体工程。同时,需要注意的是地下水同样也是基础工程建设当中的环境因素,关系建筑物本身的稳定性、安全性与耐久性。但是,地下水影响因素却常常被忽视。造成这种情况的主要原因是在工程建设开始之前,相关实际勘察工作往往很少将水文参数作为可利用信息资源。水文地质勘察只是一种象征性的工作被开展。而在形成具体的参数资料时,水文地质资料也只是被简单提及,被作为一般性的评价资料。因此,水文地质勘察工作的实际效用就得不到有效发挥。水文地质问题应当受到足够的重视,只有不断提高水文勘察工作能力与水平,才有可能真正提升工程勘察质量。因此,加强勘察工作中的水文地质研究至关重要。

2岩土工程勘察中水文地质重要问题

2.1地下水环境下动水压力影响分析针对岩土工程进行勘察的同时,勘察工作由于受到自然环境因素的影响。虽然说地下水环境下的动水压力因素影响相对较小,但是,这些因素一旦受人为因素的影响,必然会造成地下水当中的自然条件出现变化,甚至会造成地下水动水压力环境的失衡。出现动水压力以及动水压力过大就可能伴随产生多种恶劣工程危害,例如管涌、基坑突涌等问题。

2.2地下水水位变化造成的影响分析地下水水位下降可能造成十分严重的危害,总体来看,造成地下水水位下降的主要原因是人为造成的,例如地下水附近出现大规模地下水抽取,或者是在进行采矿的过程中,发生矿床疏干又或者是地下水上游出现筑坝、水库这些都有可能造成地下水水位出现补给不足情况。一旦发生地下水水位下降比例太大,就将会成为相关地质灾害的诱发原因。可能会造成地裂、沉降以及地面塌陷问题的发生。还会造成地下水水源枯竭、水质不断恶化情况出现。更是对岩土体以及建筑物安全性与稳定性造成了巨大威胁。

除此之外,地下水水位上升也可能造成严重危害。同时需要注意的是造成地下水水位上升的原因种类很多,其中地下水水位上升主要会受到地质因素的影响,例如含水层结构、总体岩性因素影响。另外,还会受到水文气象因素的影响,例如降雨量、气温以及相关人为因素的影响,例如工程项目施工或者是灌溉等。造成地下水水位上升的原因往往不是单一性的,而是多样性因素共同影响造成的。地下水水位出现上升情况还可能造成建筑物的腐蚀,加速斜坡或者是河岸土体出现滑移甚至崩塌情况。地下水水位上升还会造成土体结构发生软化,并进一步降低土层本身的承载能力。同时,还会使得土层本身的液化情况加剧。严重情况可能会造成流砂以及管涌等灾害的发生,为工程建设尤其是基础工程建设造成巨大破坏。除此之外,地下水水位频繁出现升降情况也可能会造成巨大危害。因为地下水水位发生升降变化,可能会造成建筑物膨胀性岩土发生膨胀变形情况发生。但是由于水位上升和下降频繁,岩土收缩变形的幅度越来越大,且受力持续加强,会造成地裂以及相关危害的产生。最终,建筑物尤其是轻型建筑物可能会受到严重损害。与此同时,因为地下水水位升降频繁,还会造成突然当中的水土流失进一步加剧,造成土壤承载能力急剧降低,可以说,这种情况将会导致岩土工程有关基础选型以及技术处理难题。

3结语

篇7

长期以来粗粒料引起的工程地质问题一直是全球性的难题。粗粒料的研究兴起于20世纪50年代后期,随着世界各国高土石坝工程的兴建,粗粒料被广泛应用,随着我国大型工程的广泛兴建,也不可避免的遇到了粗粒料特性问题,由于粗粒料具有物质组成的不均一性、颗粒破碎性、剪胀性、湿化性以及较强渗透性等诸多工程特性,加之岩土体中裂隙杂乱分布,使得各种大型粗粒料填筑工程显得异常困难。拟建场地位于强风化岩层出露区,根据“填挖平衡、就地取材”的原则,填筑材料必然要采用挖方区粉质粘土与强、中风化岩组成的粗粒料。虽然各相关行业都对其进行了一定的研究,但尚处于初期阶段,并不十分成熟,在民航领域还没有专门研究。而且机场粗粒料高填方与土石坝工程仍有很大的区别,有些经验也不适用。另外粗粒料造成的破坏是长期的、反复的和潜在的,而机场的建设周期又比较短,拟建机场工程填挖方高度均比较大,所以对于该工程而言,可能会遇到如下问题:1)粗粒料的工程特性;2)机场高填方地基的稳定与变形(沉降与差异沉降);3)高填方和深挖方边坡的稳定性;4)填挖交界面的处治。

2对存在岩土工程问题的分析

2.1粗粒料的工程特性工程填筑材料采用挖方区粉质粘土与强、中风化泥岩组成的粗粒料,其工程特性决定了存在如下岩土工程问题:1)粗粒料的级配。由于粗细颗粒的不均一性,在填筑体粗粒料中,泥岩、砂岩的大颗粒作骨架时,细料粉质粘土充填孔隙,充填愈好,土体密度愈大,其抗剪强度愈高,沉陷变形愈小;反之,则沉陷变形大,不利于岩土体工程的稳定性。泥岩作为填料时,破碎粒径指标、填充粉质粘土的粘度特征、粘粒含量、粗细粒的比例关系等对高填方工程至关重要,应进行重点研究。2)泥岩的遇水软化和崩解。该工程粗粒料主要由泥岩组成,泥岩在一定的应力状态下浸水后,由于颗粒间被水以及颗粒矿物浸水软化,颗粒发生相互滑移、破碎和重新排列,导致岩体软化;当水贯入泥岩的孔隙、裂隙中时,细小岩粒的吸附水膜便会增厚,部分胶结物会被软化或溶解,从而引起岩石颗粒的崩裂解体,产生岩土体变形失稳,使得控制地表沉降以及高填方边坡稳定性显得异常困难,因此研究泥岩遇水软化和崩解性对本工程的建设尤为重要。3)粗粒料的蠕变特性。粗粒料大多采用人工爆破等方法开采出来,往往存在很多微裂隙,加之棱角尖锐、填筑高,在高围压条件下产生蠕变,岩土体会沿着破裂面破碎,宏观上表现为开裂、折断或整块断裂等形式的颗粒破碎,从而引起高填方沉降变形以及边坡失稳等一系列岩土工程问题。4)粗粒料的强渗透性。粗粒料具有强渗透性,降水能较快的入渗填筑体,这在一定程度上加快了高填方破坏失稳的进程。因此应研究粗粒料的渗透特性,为坡面、道面的防水和排水设计方案提供依据。5)粗粒料的施工工艺。如何控制粗粒料填筑施工质量,如何确定其施工参数及采用哪种方法和控制指标对填筑体质量进行检测也是该工程存在的一个重要问题。

2.2高填方变形沉降变形是高填方工程中普遍存在,又没得到很好解决的问题,由于拟建机场工程填方高(预计最高达45m)、荷载大且填料具备颗粒破碎性、剪胀性、遇水软化崩解、蠕变、强渗水性等诸多工程特性,地面沉降控制难度极大。如何去监测,如何埋传感器,在哪些位置埋设能够有效的监测,采取哪些措施既能经济有效、又能降低总沉降量和工后沉降量,是本机场工程建设的另一核心技术难题。

2.3高边坡的稳定性高填挖边坡稳定性是一个必须重视的问题,包括挖方区、填方区两部分。对于挖方边坡,由于场地地形复杂,自然坡度陡,高差大,开挖卸荷对边坡稳定性影响较大,加之岩土体强风化、胶结程度低、节理裂隙发育等特性,一旦降水沿裂隙入渗,极易导致边坡滑动破坏,因此,需对其进行研究。对于填方边坡,由于本身填筑高,同时粗粒料具有颗粒不均一性、泥岩遇水软化、蠕变、强渗透性等工程特性,在外界诱发因素(降水、地震、施工振动等)的作用下,极可能引发失稳等岩土工程问题;因此,需要进行深入研究,采用不同的稳定性分析方法,探索粗粒料工程特性对边坡稳定性的影响程度,确定合理的填筑体边坡坡比。同时,拟建场区位于地震高发区,抗震设防烈度为8度,考虑到该工程的重要性需提高1度设防,即按9度考虑。因此,需高度重视地震工况下边坡的稳定性。

2.4填挖交界面的处治受地形地貌的限制,该机场建设中存在多处填挖方交界面,不可避免的面临填挖交界的处治问题。从总体上看,填挖交界处具有材料或结构的不一致性,在纵向上刚度出现差异,加之原地层是倾斜的,一旦工程处治不当,极易产生不均匀沉降、填挖交界处发生偏移,甚至滑动破坏,对于填挖交界的有效处治问题是该机场建设中亟待解决的又一个难题。

3岩土工程问题的解决方案

3.1解决方案由于该项目场地岩土工程条件的复杂性,仅靠室内试验参数进行数值计算及分析是不能满足要求的,通过现场试验与室内研究相结合的方案,结合实际工程,采用室内试验、现场试验、原位监测、理论分析与数值模拟相结合的手段,对该机场工程存在的岩土工程问题进行综合研究,是解决问题的最佳途径。

3.2试验研究的技术路线该处理方案的技术路线概括为:首先开展文献调研,收集资料,对研究现状、类似实例进行调查分析,寻求突破点进行初步研究;其次对粗粒料高填方工程技术方案进行初步论证,确定粗粒料高填方工程试验研究方案;再次进行粗粒料的工程特性试验及高填方稳定性理论分析,根据分析展开现场试验段研究,包括现场的模型试验、检测及监测等;并在此基础上探讨粗粒料工程特性的分析方法与处理对策,提出与粗粒料工程特性相适应的高填方问题的处理对策,通过高填方变形监测,对地基的稳定性做出准确评价,同时提出控制高填方沉降变形的工程措施,预测高填方的工后剩余沉降量,对研究结果进行初步总结,得出初步结论,进行粗粒料加筋处理与土方设计,待土方工程结束后对全场重要部位进行变形监测,并对试验段的监测数据进行处理分析,同理论分析及数值计算进行比较,验证所提出的分析方法与工程处理对策方法,必要时予以修正;最后编写试验研究总结报告。总技术路线如图1所示。

4结语

篇8

(1)深基坑的开挖。由于超高层建筑基础的埋深较大,因此,基坑的开挖深度也较大,必须重点针对深基坑开挖过程中在深度影响范围以内的地下水埋藏情况、岩土分布及力学特点等条件进行科学勘察,以便为各侧边的地质模型、降水设计及深基坑支护提供相应的参数。

(2)环保及抗震设计。必须详细地对基坑周围的建筑、地下设施、管道渗漏、车辆及道路载重等条件进行勘察,为基坑支护以及降水设计所需采取的施工监测及环保措施提出有利的建议。在抗震设计中,需要对建筑场地的类别及地基地震效应等进行有效地分析与判断,为土层的剖面、覆盖层厚度等提供相应的动力参数。

2岩土工程在超高层建筑勘察中的应用分析

2.1应用要点分析

(1)场地勘察及方案制订。在超高层建筑建设过程中,岩土工程勘察是一项基础性工作。一方面,需要对场地适宜与否、稳定与否进行科学地评价,并针对是否液化予以合理分析。同时,还需要对场地基土的岩土工程性质进行科学评价。例如,对基础持力层进行分析和评价,对桩基础、天然地基等进行分析、评价等。此外,有些现场还可能需要对溶洞、滑坡等进行评价等。另一方面,由于超高层建筑具有埋置深、荷载大等特点,因此,地基勘察相对更为复杂。此外,选取科学的基础方案可有些降低工程造价。

(2)深入勘察施工底层结构。为了满足基础类型设计及选择需求,必须详细地掌握施工地层的结构及其变化。一方面,为了尽量满足地层结构纵横变化方面的需求,要求勘察点之间的距离应尽量小,通常15-35m为宜;另一方面,勘察点深度应尽量深。为便于计算,会有不少于二分之一勘察孔总数的控制孔孔深超过压缩层预想的深度;此外,地质与水况条件应首先查明,若利用桩基,基坑将会很深,会为施工带来不少问题,要求施工人员必须在自身区域内对有关设备进行布置。入岩段进行打孔,并钻得岩心,获得岩石标本后科学判断,对岩石面进行确定。以所所掌握岩石规律及特性为依据,对基岩面标高的等高线图进行科学绘制,依据设计深度对岩石的深度进行控制,通过小径深度钻入,以防引发质量隐患。

2.2应用难点分析

(1)勘察点复杂情况及地下水位测量。首先,应依据某地基的等级开展勘查工作,针对所采集建筑的岩土试样,应开展科学的评价与分析,若存在如盐渍土、湿陷性土等特殊岩土,将会导致地基等级变化,致使勘查点之间的距离不合逻辑。为此,岩土工程在超高层建筑勘察应用时,必须全面负责;此外,勘查点深度也是难点之一。鉴于建筑结构形式及勘察深度各不相同,针对地质条件较好的密实性的碎石土区,应适度降低深度,就商场、地下室等多层框架结构建筑而言,因柱网荷载及基础面积较大,有些甚至会采用桩基,导致勘察更复杂;地下水测量时要求各个勘查点应同时开展测量,且需要在最后钻孔施工结束24h之后再进行,测量时应对地下水开采情况进行分析。

(2)试样采集及地震效应分析。试样采集应严格依据相关规范要求进行,因原状样的高度、数量不足,或密封性不佳等问题,导致土中含水量大量散失。不少勘察单位对于比重试验并未给予足够的重视,往往由经验进行估计,很少开展实测。岩土工程中此类误差在可接受范围内,但若涉及渗透流稳定研究等工程项目时,会带来严重影响,甚至得出错误结论;针对岩土情况的勘察,仍需充分考虑地震效应。某些勘察单位出于人力、经济、科级因素的考虑,往往依据已有经验对覆盖层的厚度及场地类别进行判断,对工程抗震造价带来不良后果。此外,地基处理之后,还需要考虑到剪切波速以及地基土的类别是否会改变。

3结语

篇9

当前有关采空区的地表破坏形式主要有三种,分别是塌陷和裂缝以及连续变形。而造成地表变形的原因有很多种,涉及到煤矿资源的开采方法和回采率以及煤层厚度埋深及地质构造、地下水以及岩层性质多因素。其中开采方法是最为重要的因素。比如如果开采深度和采厚的比值小于30,或者采空区域有大的断裂构造时,就容易造成地表破坏问题的出现。如果采用浅部开采模式,垮落带或者是破裂带就会直接到达地表,并且让地表产生塌陷。此时地表破坏形式多为塌陷坑,这时候就容易使得杆塔出现不均匀沉降最终造成杆塔倾倒。

2采空区岩土勘测方法分析

2.1采空区勘测的重点内容

采空区岩土勘测内容主要包括下面几个部分:(1)勘测矿层的分布和层数以及厚度等参数,并且对矿层的埋深特点和覆盖岩层的岩性及地质构造进行勘测。(2)分析矿层开采范围和深度以及厚度、时间以及顶板管理、空隙和积水等诸多元素。(3)全面了解地表变形特征分布情况,主要包括地表陷坑和台阶以及裂缝的位置和大小等诸多参考量,并且对开采边界和工作面推进方向进行分析。(4)分析地表移动盆地特征和划分中间区以及内外边缘区域,并进一步确认地表移动变形主要参数。(5)分析采空区附近的水资源的使用情况。

2.2设计阶段的勘测措施

为了有效提升设计的科学性和可实施性,需要对施工地段进行全面的勘测和考察,对采空区地表破坏形式进行分析,同时对电力工程涉及到采空区地段范围进行勘测,并设计符合这个地段的线路施工方案。在勘测任务下达之后,地质人员要和电力工程人员进行配合,遵循线和位的有效结合为基本原则,优先实施规避采空区的施工方案,特别是可能存在滑坡以及地陷地段要规避建筑施工。如果线路无法规避采空区,那么要对采空区相关资料进行全面勘测,然后选择通过采空区的最短路径。设计阶段的勘测任务主要包括以下方面:首先要对煤矿区井田分布现状,煤矿分布图进行勘测分析。然后要对煤层埋深及厚度进行勘测。接着是对各煤矿的开采方法和开采规划资料进行收集整理。重点了解老采空区主要范围和填充状况及相应的密实度,并分析该区域的上覆岩层的稳定性。而对于未来或者现在正出现的采空区,可以基于针对老采空区的勘测数据进行分析验算,从而预算未来和现在采空区的地表变形特征值,然后再结合《岩土工程勘察规范》的有关内容对电力工程的线路施工和杆塔建设进行规划,规避可能存在的采空区地表变形风险。对于老采空区和小窑采空区等区域,采用地质勘测方式不能够分析这些区域的特征时,还可以进行适当的物理钻探方式进行勘测,从而保障勘测的准确性。

2.3施工阶段的勘测措施

(1)注重上下结合的勘测方式。在电力工程施工时,需要将线路工程涉及到的地质条件和采空区的稳定性进行综合考量,特别是在采空区确立杆塔位置时,需要遵循下面的原则:①该区域地形平坦开阔;②地质构造相对简单且采空区上覆岩层厚度大,且硬度高,地表没有变形;③矿层较薄,且采空厚度薄,矿层埋深深度高。④矿区上存在的安全地段,比如主副巷道区域和通风井区域等。这些区域相对稳定,能够为杆塔提供良好支撑。如果没有准确的判断经验,则可以分析矿层深厚之比来进行确定。如果采深和采厚之比大于某一个数值,那么采空区地表变形程度就会较低,可以在此地段进行建设。采空区深厚比施工原则,当深厚比值区间在0~40时,不可以进行任何等级的电路施工;当深厚比值区间在40~100时,可以建立35kV以下的送电线路;当深厚比值区间在100~200可以建立110kV到220kV之间的送电线路,在200以上时,可以建设不同电压等级的送电线路。

(2)岩土勘测时紧密结合杆塔设计。在定位杆塔时若发现在构建杆塔时出现岩土工程稳定性需求和采空区地面稳定性相差很大时,为了保障杆塔地基的稳定性,应该针对这个采空区的地质结构进行一定的处理,从而让其稳定性能够满足实际需求,具体处理方法如下:①为了规避临空面问题,需要降低开放量,并采用高低腿基建模型,且进行浅埋操作。②对于已经勘测有裂缝或者塌陷的采空区,可以通过回填或者压力灌浆法进行重新加固,从而提升采空区地表的稳定性。③对于可能会影响塔基稳定性的矿洞或者巷道可以进行锚喷处理,或者架设顶板支护。④如果塔基部位可能会存在沉降,那么需要在四个塔基地基下设置整块混凝土结构进行固定,从而提升塔基稳定性,与此同时也可以采用桩基建设方法来进行建设,这样也能够提升塔基基础稳定性。

(3)完善质量监督管理体系构建。在施工阶段,要让勘测设计和施工单位以及监理单位和运行单位紧密结合起来,对施工环节进行全面的质量监管。而且这几个部门之间要相互配合才能够有效提升施工质量。特别是电力工程建设设计单位需要综合考量采空区具体情况进行精确设计,施工单位要按照标准规范进行施工,监理单位要对施工方和设计图纸的正确性进行监督,只有做到这三位一体的质量体系的构建和完善才能够有效提升电力工程建设质量。

3结语

篇10

关键词:施工;安全;环保

Abstract: this paper mainly introduces the multilayer, high-rise has about super-tall buildings construction the difficulties and new construction technology, and in the process of how to ensure safety construction, protection of the environment.

Key words: the construction; Security; Environmental protection

中图分类号:TU7 文献标识码:A文章编号:

1 多层建筑发展的新趋势

随着我国建筑业的不断进步和发展,我国多层建筑施工呈现出新的特点,随着老城区的新规划,建设部门兴建高楼,使得城区内的建筑空间越来越小,多层建筑密度越来越大,致使土建施工人员及管理人员对施工过程中的环境保护、安全防护等问题也变得非常突出。主要表面为以下两点:

一是多层建筑由单纯追求高度方面的发展,到同时追求形体的特异和立面的丰富多彩,在结构功能得到提升、造型优美新颖的同时,也使上部结构的施工技术难度大大增加。如模板体系,施工机械设备等。

二是从多层建筑一次建成交付使用,到为了进一步提高投资效率,而采用分阶段建设交付使用。因此在建设过程中也必然面临部分施工、部分开业或者上部施工、下部开业的情况,这对施工过程中的人员安全、场地利用和确保购物环境舒适等绿色施工技术提出了新的挑战。

2 高层建筑施工技术

2.1 深基坑施工的控制技术多层建筑深基坑的施工时,对周边环境或多或少存在一定的影响。

主要原因是深基坑土方开挖过程是土体卸载过程,会造成周边建筑、管线或地下结构产生一定量的沉降和偏移,因此,在深基坑施工过程中,对周边环境影响的控制是至关重要的。特别是紧邻“生命线”工程的多层建筑的施工,深基坑的施工过程中的变形控制的良好与否,事关“生命线”工程和超高层施工过程中的安全,需要特别关注。

实践证明,采用现代控制理论对深基坑施工过程进行控制,可以有效地解决这个难题。目前工程控制方法与系统主要有三大类:开环控制、闭环控制和自适应控制。其中开环控制属经典工程控制方法,非常成熟,但由于不存在反馈系统,开环控制不能根据施工过程情况调整控制措施,控制精度比较低。闭环控制属现代工程控制方法,由于包含反馈系统,能够根据结构状态监测结果不断调整控制措施,适合结构复杂的工程,控制精度比较高。自适应控制属最新的工程控制方法,理论研究和工程实践都取得一定成果,但总体上还处于探索阶段。在目前,闭环控制方法是深基坑施工过程控制中比较有效的方法。

基于上述分析和研究,特殊环境下深基坑施工的总体思路和方法是以现代工程控制理论为指导,以结构-岩同作用分析方法为手段,通过施工方案的优化达到施工过程环境受控的目的。

2.2 地上结构施工技术

2.2.1 斜爬模体系的设计和应用在以往多层建筑建造过程中,电动脚手及模板系统得到了广泛的应用,这在多层建筑结构立面垂直时此类体系具有良好的适应性,但当结构立面为斜面或者曲面的时候,这类体系会遇到很大的困难。而在闹市区的多层建筑施工时,通常均面临场地狭小,距离地面交通较近的实际情况,因此必须采用安全可靠的脚手和模板体系,这样才能既可以保证工程顺利的进行,又可以兼顾周边闹市区的安全。针对这个问题,经过研究开发,我们创新性地提出了一种可分离的斜爬模体系,可以充分适应高层建筑各种特殊外立面的要求。

2.2.2 可收分整体提升钢平台技术整体提升钢平台具有整体性好、安全性高、施工操作面大等优点,因此在多层建筑核芯筒施工中也得到了广泛的应用。但是如果核芯筒形状上下变化较大,则整体提升钢平台也就面临收分处理的困难。

针对这个问题,我们研究开发了可收分的整体提升钢平台体系。

其构成和工作原理如下:在建筑结构核芯筒剪力墙上设置格构柱,用钢梁和钢板搭设平台,将内外脚手悬挂于钢平台下,再采用提升设备将整个钢平台随楼层施工进行提升。如施工中要经历拆除部分内脚手和拆除部分钢梁的过程时,则在剪力墙增设悬锚脚手或钢桁架进行过渡,并随楼层上升逐层补缺,以满足施工操作。

2.2.3 超高空的钢结构塔桅安装技术多层建筑由于建筑造型或功能的需要,通常在结构顶部设置钢结构塔桅。目前顶部塔桅的施工方法主要有三种,一是采用塔吊散装,二是采用整体提升,三是采用直升飞机吊装。第一二种方法依赖于顶部的施工作业面和结构形式,第三种则风险很大。因此在顶部施工作业面有限,且塔桅高度高、重量重的情况下,其施工必然面临很大的困难,采用攀升吊技术就能很好的解决这上困难。

2.3 绿色施工技术在施工场地狭小的闹市区,进行多层建筑的建造,带来了许多以安全防护为重点的环境保护新问题和超常规垂直运输、交通组织以及营造购物环境舒适度等一系列绿色施工技术难题。

2.3.1 安全防护技术多层建筑续建工程中,如果建筑部分已投入商业运营,通常商场内购物、休闲、餐饮、娱乐设施齐全,顾客会络绎不绝,且由于地处闹市区,周边道路也通常是交通要道,人流、车流量极高,所以,安全防护的重点是防止发生超高层施工过程中的高空坠落对地面物品、人流和车流产生危害。针对此项问题,具体技术方案是:通过安全防护分析,确定需要实施防护的区域、需求和防护内容;确立不同阶段施工防护的特点和重点;考虑施工防护体系对行人、顾客和交通的影响,同时综合防护体系本身的强度要求、防火要求、维护方式、综合利用等因素。

2.3.2 环境保护技术建筑施工尤其是多层建筑的续建施工会对周围环境产生噪声、光的污染。因此,防止施工过程中的声、光对环境的影响、强化废弃物的合理处置是多层建筑续建施工中又一大难题。针对这种特殊条件下施工的噪音、光、施工污水、生活污水等污染源,其解决方案还是采用专门的措施,防止施工对环境的影响。如对混凝土浇捣等可能产生较大噪音的施工项目,通过设置隔离棚,将泵车产生的噪音隔离;在临近居民区的地方设置施工层隔音壁,来隔离噪音;设立特殊的施工污水汇集系统,将施工污水集中处理后排放;采用“立体场布”的思路,将场地设置在已建好的建筑结构上,设置空中材料周转场地,建立立体的材料堆放、接力运输的体系。为适应“立体场布”的需求,在垂直运输机械布置上,我们采取“高空接力安装技术”、特殊基础加固技术、电梯接力和超长扶墙等专门措施,解决续建工程带来的特殊难题。

2.3.3 混凝土回收利用技术由于在混凝土输送方面经常会遇到“如何穿越人行道和在营业中的楼层布置混凝土泵送以及结束时泵管中余下混凝土的处理”等问题,对此,我们设计了门架式泵管支架和配套的回收利用截止阀,解决了特殊的泵管布置和管中余料的回收问题。在地面上,通过交通组织,使人行道的一部分临时改成非机动车道,而将非机动车道利用来布置泵车,地面泵管利用门架式泵管架跨越人行道,这样可避免对交通产生影响;另外通过专门泵管支架系统的保护,可解决复杂路径泵管的布设问题。