节能技术论文范文
时间:2023-04-04 03:06:41
导语:如何才能写好一篇节能技术论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
(1)冷却效果不好,出冷却机熟料温度高达200~260℃,熟料和余风带走的热量高,热耗上升;(2)由于熟料温度长期过高,受窑偏析的影响细料侧纵梁出现受热变形,加之托轮、导向轮的磨损,导致篦床出现跑偏现象;(3)篦板与盲板间隙大,运行时漏料严重,带来设备安全运行隐患;(4)因熟料温度过高,导致破碎机锤头、熟料输送皮带等的使用寿命缩短,同时影响后续水泥粉磨系统的产量;(5)细料侧常有“红河”现象出现,侧边的篦板和盲板磨损严重,使用寿命短。
2原因分析
(1)产量提高后,篦床面积小,总风量偏少;(2)高温区的风量少,导致急冷效果差;(3)篦板间的缝隙以及篦板与盲板的间隙过大,造成严重漏料和气流短路;(4)风室间隔墙板密封失效,窜风严重。
3技术改造
针对冷却机存在的问题,厂方决定对篦冷机进行技术改造,提高热回收效率,改善冷却效果,消除设备故障隐患。降低熟料温度主要从三个方面着手解决,一是适当增加风量,优化风的分配;二是从结构上改变冷却方式;三是增加篦床面积提高篦冷机的能力。高温区温差大,热交换效果好,此处增加风量能提高急冷效果,增强热回收,但要注意冷风不能掺入过多,否则会造成二、三次风温降低,甚至影响窑系统煅烧。改变冷却方式是指在高温区将风室供风变为充气梁供风,从而达到强制冷却的效果。但充气梁不宜增加过多,否则会导致电耗升高,同时还要注意充气梁与风室间风压的匹配。增加篦床面积对提高设备性能是最为直接有效的。本着投资小、效果好的原则,结合冷却机实际运行情况,最终确定的技改方案如下:(1)将一段篦床从2.7m加宽至3.3m,面积增加5.6m2;将第室的矮墙减薄,面积增加1.8m2,使其总面积增加7.4m2。更换相关的篦板梁和篦板,现场修改上、下壳体和顶板,更换新的风管系统。(2)下料口固定篦床改为TCH型高效急冷模块,该模块采用多单元供风模式。每个单元配置独立风管和调节阀门,根据各区域料层厚度和熟料颗粒的不同调节风机阀门开度,使熟料在下料口得到最佳的骤冷效果。(3)高温区固定梁改为充气梁,同时更换相应的篦板,并配套加装独立的充气梁供风系统,加速熟料在该区域的冷却。(4)高温区细料侧设置通风侧吹盲板,保护边上的篦板,减轻红河带来的影响。(5)修复活动框架,更换已变形的纵梁,篦床重新找正。(6)更换阻力偏大的进风管道,降低压损。(7)优化风机配置,以适应提产的需求。(8)检修漏料锁风系统,减少风室漏风。(9)换上新型的活动框架纵梁穿过隔室的密封装置,避免风室间的窜风现象。
4调试过程
此次调试过程中,对冷却机的控制进行了调整。(1)由于篦床面积增加,一段传动转速降低了3~5转,确保二室压力在4.3~4.6kPa;(2)由于产量增加,二段转速增加2~3转,确保五室压力在1.7~1.9kPa;(3)此次技改后,额定风量增加79300m3/h,但实际用风量经计算只增加20000~35000m3/h。调试时对风机风门进行了合理调整,调整原则是:确保窑运行稳定,高温段风门大,低温段风门小,风量必须合理,风量过小则冷却效果差,窑内燃烧不充分,风量过大则火焰不稳定,即通常讲的坏“火头”。通过实践目前已确保风机风门控制合理。(4)此次冷却机技改增加风机4台,调整3台位置,额定风量增加79300m3/h,风机功率增加365kW。改造前,窑运行过程中,冷却机10台风机的风门都是全开98%,由于头排和高温风机功率并没有提高,加上窑系统用风量要非常合理,改造后,为确保稳定煅烧,投料量在175t/h时,新增加的4台风机如此配置:侧吹盲板风机G3门为15%,固定充气梁风机G12风门为70%,二室和三室两台串联在一起作充气梁风机,即G36和G37风门都为70%;原风机风量配置如下:一室风机、二室风机、充气梁G8和充气梁G9控制在80%,三室风机风门70%,四室风机风门60%,五室风机风门40%,六室风机风门30%。当产量提高到180t/h时,所有风机风门依次增加5%;当产量提高到185t/h时,所有风机风门再提高3%;当产量提高到188t/h时,所有风机风门再增加2%,侧吹盲板风机G34不调整。改造后的风机配置可以满足3000t/d产量,提产空间十分富余。
5效益分析
(1)提高熟料产量2.5~3.0t/h;(2)风机功率增加365kW,熟料电耗=(62.5×2750+365)/2810=61.3kWh/t,相比改造前下降1.2kWh/t,年运转率按300d,每年节约电费60.7万元;(3)耐热皮带技改前每年需要700m,改造后只需200m左右,节约15万元;(4)由于熟料冷却效果好,易磨性提高,水泥磨提产5~10t/h;(5)技改后冷却机地坑几乎不漏料,每年减少劳务费5万元左右;(6)熟料实物煤耗下降3~5kg/t,原煤按800元/吨计算,每年节约原煤费用269.8万元。
6结语
篇2
目前,在我国各大油田当中,抽油机井在所有的采油井当中所占的比例是最大的,而抽油机本身也是石油生产当中的一种最为重要的抽油设备,它运行的效率直接影响着石油生产的总量。然而,当油田开始生产的时候,抽油机井却在对抽油机进行电能传输的过程当中,损耗掉了大量的电能,比如:在大庆油田的石油生产过程当中,由抽油机井自身所消耗掉的总电能就达到了采油生产总耗电能的82.4%。由此可见,要想降低油田采油过程当中的耗电总量,就必须要对抽油机井系统的设备进行合理的改善。而目前最能够有效改善抽油机井这一现状的,就是将抽油机井节能技术广泛的应用在油田生产的过程当中。
2抽油机井各部分电能损耗情况
2.1各个节点对电能损耗的情况
抽油机井是一个集成式抽油系统,它主要由地上和井下两个部分组成,它同时具有八个相对来说非常重要的节点,比如:电机、抽油管道、皮带、井筒以及减速箱等。虽然,这八个节点都是抽油机井的重要组成部分,但是它们的实际运转效率却是大不相同的,比如:电机能够达到的最大运转效率是86%,皮带能够达到的最大运转效率是67%。
2.2“黏滞”引起的电能损耗
所谓“黏滞”引起的电能损耗,指的就是:抽油机井在进行采油的过程当中,被抽油机提升到地面上的部分溶液会跟抽油机井的抽油管道进行摩擦,从而让抽油机井损失了一部分的实际功率,最终导致抽油机井电能的进一步损耗。其中,引起电能损耗的主要因素有:抽油机井的冲次、溶液的稠度、冲程的大小以及油管的直径。其中,能够对溶液的稠度产生影响的因素又有很多,如:溶液自身的含水量、溶液的温度以及抽油管道的温度等等。
2.3系统运转时的参数引起的电能损耗
能够对抽油机井的井下功率造成影响的因素有很多,如:抽油机井运行时的参数、泵运转的实际情况以及井下抽油杆和抽油管道的组合方式等。而在这些因素当中,最为重要的就是抽油机井运行时的参数。因此,只要掌控好了抽油机井运行时的参数,就能够从很大程度上降低抽油机井井下部分的电能损耗。
3抽油机井节能技术在油田中的应用
为了能够有效改善抽油机井的现状,并让它为油田企业带来更大的经济效益,就必须要将抽油机井节能技术更为广泛地应用在油田生产的过程当中。传统的抽油机井节能技术主要是通过对抽油机井地面上的一些机械设备进行改进,来让抽油机井达到节能的目的。但是,这种传统的节能方法从一定程度上提高了油田企业的总投资量,且它在抽油机井实际运转参数的选择上,也受到了一定的限制,这就使得传统的节能技术,并不能够让抽油机井从本质上实现节能的目的。因此,对抽油机井进行合理地改造,是非常有必要的。就目前的情势来看,我国抽油机井节能技术有很多,如:具备两个转速的电机、直流的变频器以及直径口比较小的皮带轮等。现针对这些抽油机井节能技术,对它们在油田生产过程当中的应用进行全面的分析和探究:
3.1引入“双速”电机
所谓的“双速”电机指的就是:该电机本身就具备两个转速,其中一个转速为低档转速,而这个低档转速也恰恰是抽油机井目前最需要的。因为这种低档转速不仅能够提高抽油机井的工作效率,还能够大大降低抽油机井运行时对电能的损耗总量。因此,把这种具备两个转速的电机合理地应用到油田生产当中来是非常重要的。
3.2对抽油杆柱进行优化
抽油杆柱的优化可以从两个方面去进行考虑:
(1)对抽油机井的载荷进行合理的计算,计算出抽油机井的最大载荷和最小载荷,这样技术人员在对泵实施检查工作的时候,就可以把这个计算结果作为依据,然后有针对性地去对抽油机井杆柱的载荷进行合理的调整,从而使抽油机井达到节能的目的。
(2)计算出抽油机井的扭矩,再结合扭矩的实际情况来对抽油机井的杆柱进行合理的调整。值得提出来的是,抽油机井扭矩计算的最佳时机,应当是抽油机井的功率达到最大的时候。
3.3使用“过渡轮”对抽油机井的参数进行调整
目前,在抽油机井节能技术当中,“过渡轮”的使用是最能够有效改善抽油机井参数的一个办法。因此,将“过渡轮”应用到抽油机井当中,就可以对抽油机井的参数进行适当的调整。这样一来,就能够从很大程度上减少抽油机井运行时的电能损耗总量。
4试析抽油机井节能技术的应用给油田企业带来的影响
现针对抽油机井节能技术,对其在油田当中的应用给油田企业造成的影响进行仔细的分析和探究,并总结出以下几点:
(1)抽油机井节能技术在油田当中的应用,促进了油田企业的进一步发展。
(2)提高了油田企业的生产总量。
(3)大大降低了抽油机井在进行运转的过程当中,因各种因素损耗的电能总量。
(4)抽油机井节能技术的应用,从很大程度上延长了油田企业对抽油机井实施检泵工作的周期。
(5)从很大程度上提高了油田企业的总体经济效益。
5结束语
篇3
我国的在制冷空调行业起步较晚,但是经过了几十年的发展,虽然还存在一些不完善的方面,但是总体来说已经取得了一定的成绩。但是与发达国家先进的制冷空调相比较,我国的制冷空调在节能技术方面存在很大不足,大多是采用的国外先进技术,并没有自己的研发成果。瑕不掩瑜,我国的制冷企业已经充分注意到制冷空调节能技术的重要性,特别是近年来大力推动了新技术、新工艺的研发工作,目前已经具备了一定程度的研发能力,与西方发达国家在制冷空调节能技术之间的差距正在不断缩小。
2制冷空调技能技术
制冷空调节能技术主要的目的就是要实现合理用能,并且降低电力高峰期的符合,现阶段主要的制冷空调节能技术主要有七种,分别是:蓄冷技术、燃气技术、太阳能技术、热电冷联产技术、热泵技术、热声制冷技术以及人工智能技术。
2.1蓄冷技术
现阶段空调用电量已经占据了人们生活总耗电量中的70%左右,并且由于电力紧张以及能源紧缺现状的不断加剧,促进了制冷空调新技术的研发。蓄冷技术是在这种条件下被研发出来的,该技术就是使空调在非高峰期用电来保持最佳节能状态,此时空调系统的冷负荷由所需的潜热的形式释放冷量来满足,也就是通常所说的,空调系统冷负荷使用融冰释放的冷量来满足,蓄冷设备也就是储存冰的容器,这样的空调不仅可以提高本身的经济效率,还能够增强系统稳定性。按照我国每年新增3亿m2的商用建筑,如果均使用蓄冷空调系统,每年可为国家节电40亿元,节煤330万吨。
2.2燃气制冷技术
燃气空调的使用,不仅可以降低空调使用对于电网的负荷,也可以提高能源的一次利用率,对于减少污染,平衡冬夏季燃气用量具有非常重要的意义。经过相关部门的测算,如果燃气制冷量1×107万RT,消耗天然气约6×108m3,这些制冷量就相当于少发电3.5×107KW,这种技术不仅提高了电力设备的运转利用率,还能够节约发电设备的投资。随着我国城市燃气管网的逐步完善,燃气空调必然得到快速的发展和应用,此外国家也推出了一系列的政策支持燃气空调的发展,其对于提高能源利用率、缓解夏冬季用电高峰、提高能源供应安全具有非常重要的意义。
2.3太阳能制冷技术
目前太阳能空调主要有两条技术路线,分别是通过光热转换,以热能制冷,另一种是以光电转换,利用电力制冷,而现阶段应用较多的就是热能制冷。作为一种可再生的资源,太阳能的应用对于缓解能源供需矛盾、控制环境污染具有非常明显的效果。但是太阳能光伏/光热发电再制冷的技术在制冷空调中的应用并未取得显著地效果,一个原因是成本过高,另一个就是能源利用率较低。而利用太阳能进行光热直接驱动的空调虽然性能系数赶不上传统的机械式空调,但是由于其成本较低,并且具有较高的能源利用率,因此其是目前应用最为广泛的一种太阳能制冷空调。虽然太阳能具有可再生的特性,但是由于其能量供应具有随机性而且能源密度也较低,给其大规模扩展应用带来了一定的阻力。现阶段的太阳能制冷技术的应用首先就要解决其可靠性、稳定性,并且相应的提高系统性能系数以及效率。最后,也可以将太阳能制冷技术与其他能源技术结合,形成一个多能源系统,充分利用废热、废气以及其他能源。
2.4热泵技术
热泵技术主要有两种,分别是水源热泵技术和土壤源热泵技术。热泵技术具有性能可靠、无污染、高效节能的优点,可以在夏季制冷、冬季制热,并提供一定数量的生活热水,此外配套的热泵系统还具有结构简单、可靠性高、节能效果好的优点。鉴于其明显的节能降耗优势,其已经在国外得到了广泛的应用,并且在我国也有了很多的应用实例,通过对比,我们总结出:虽然热泵技术的初期投入与中央空调基本持平,但是其投入运行后的使用费用远远低于传统的中央空调。据相关部门估算,我国地级以上城市每年浅层地热能可利用资源量相当于3.56亿吨标准煤,扣除消耗电量,可节约相当于2.48亿吨标准煤。
2.5热电冷联产技术
作为一种综合利用能源的系统,热电冷联产技术不仅增加了热电联产中的夏季热负荷,提高了汽轮机组的负荷率,实现了机组效率的提升,还能够提高低品位热能的利用率。燃气轮机发电是以天然气为动力源,并且将废热直接排放到吸收式冷热水机组,长生了用于制冷的冷冻水,并且将热量应用在除湿型空调上面,这样就可以大幅度增加热电冷联产的综合效率。该技术的节能效果非常显著,至少在10%以上,因此我国近年来也开展了该技术的应用,例如上海的黄浦区中心医院以及浦东国际机场都采用了燃气轮机热电冷联产系统,具有非常明显的节能效果。
2.6热声制冷技术
作为一种新发展起来的制冷技术,热声制冷技术与传统的蒸汽压缩式制冷技术相比,取消了对于环境具有破坏作用的制冷剂,直接使用惰性气体或者惰性气体的混合物作为制冷剂,减少了对于温室效应的危害以及臭氧层的破坏。而且热声制冷技术具有结构简单可靠、无需特殊材质,在制造成本具有非常大的优势,而且它减少了活塞、剂的使用,在维护成本上同样具有非常明显的优势。此外,热声制冷技术几乎没有现阶段制冷系统的缺点,因此其可以成为未来制冷空调节能技术的主要发展方向。
2.7人工智能技术
随着科学技术的不断发展,人工智能技术已经广泛应用在了人工工作和生活中的各个方面,人工智能技术主要应用在智能控制、负荷预测以及故障检测和诊断等方面。但是由于人工智能技术在制冷空调中的应用仍处于初期阶段,仍存在很多的不足,所以我们应将传统的方针系统与人工智能制冷技能技术相结合,通过计算机技术的广泛应用,实现空调制冷效率的最大提升,并且实现最大化的节能效果。
3结束语
篇4
当外界气温大于26℃时,制冷主机的负载需求越大,空调的耗能就越高。制冷主机耗能在中央空调系统之中占有相当大的比重,除了制冷主机在满载运转时要有高效率性能外,还要确保主机可以在50%~70%负载率的条件下进行长时间、高效率的运转,才能取得最佳的节能效果。因此,制冷主机的节能方式如下:
1)首先根据建筑物的用途、考虑全年的空调负荷变化和制冷机部分负荷的调节特性,并综合考虑初投资和运行费、维护保养、环保、安全等因素,合理的选择制冷机的机型、单机容量、台数和全年的运行方式,提高制冷系统在部分负荷时的运行效率,降低运行费用。选用的制冷机的容量在考虑冷量损失的情况下,要与冷量负荷相适应。在冷量负荷经常变化的情况下,要选用多台制冷机,以便在运行中进行合理调配。
2)用户需要的冷负荷是变化的,在制冷装置的实际运行中,部分负荷运行所占的比较较大,所以要根据用户的需要和外界的环境变化调节制冷机的制冷量。从经济性、调节范围和操作等多个角度来说,一般采用进口导叶调节和改变转速的方法对制冷量进行调节。
3)对冷却水和冷冻水的水质进行管理,避免热交换器结垢影响热传递效率。制冷空调装置常用的是敞开式冷却水循环系统,吸热的冷却水在冷却塔与空气充分接触,逐渐蒸发,二氧化碳大量散失,溶解氧含量升高,水中Ca2+、Mg2+、溶解性固体、悬浮物逐渐增加,使冷却循环水的水质恶化,给系统带来结垢、腐蚀、污泥和菌藻等问题。从而造成系统热阻增大,热交换率降低,设备腐蚀及寿命缩短,能耗加大。故应重视冷却水循环过程中的水处理。所以,需要定期对水质进行加药,投加阻垢剂防止结垢,投加缓蚀剂防止腐蚀,投加杀生剂消灭微生物等等。同时进行排污处理并定期取水样进行化验。冷冻水的水温低,循环流动系统通常为封闭的,不与空气接触,因此冷冻水的水质管理和必要的水处理相对冷却水系统来说要简单得多。其工作目标主要是防止水对金属的腐蚀,可以通过添加合适的缓蚀剂予以解决。
4)定期清洗热交换器。对水质进行处理可以减少结垢、腐蚀的发生,但不能完全杜绝。在运行一段时间后还需要对热交换器定期进行物理清洗和化学清洗,防止或减少结垢、腐蚀,提高换热效率。
二、空气调节系统节能
(一)能量循环利用
新风量少了,室内的卫生条件则变差;新风量大了,又会加大空调负荷,造成能耗过大。所以在关系人体健康的同时,还要考虑到能耗费用。冬、夏季室外的环境温湿度与室内的温湿度标准相差较大,应采用最小新风量,减少新风处理量,降低能耗。在过渡季节,当外界空气的温湿度达到一定的条件时,可以采用全新风的送风方式,在满足室内的温湿度要求的同时,又能减少需要处理的空气量,降低空调系统耗能。可以采用CO2浓度控制器,在保证卫生、保持正压等基本要求下,控制新风量,从大自然中获得冷、热能,对能量进行充分利用,节约空调负荷,节省空调的运行费用。
(二)合理的参数设定
室内空气环境主要涉及的参数有温度、相对湿度等,要使空调系统能节能运行,就要对这些参数进行合理设定。空调房间内空气温度设定值与空调负荷和能耗有着密切关系。供冷时室温设定得越高或者供热时室温设定得越低,可以减小室内、外的温差,降低空调负荷,空调系统越节能。所以,在实际运行中,我们可以根据季节的不同,在设定参数时夏季取高值、冬季取低值,达到节能目的。在设定合理室温的同时,还须设定合理的室内湿度。除了一些工业生产厂房、实验室等需要较严格的工艺要求的建筑外,一般的商场、办公楼等建筑,都是以舒适性空调为主的。为了不浪费能量,室内相对湿度的设定,在夏季可适当降低,冬季可适当提高。所以,在满足室内环境要求的前提下,可适当降低室内的温湿度标准。
三、冷却水塔节能
冷却水塔工作原理是:空气经过风机抽动后,自进风网处进入冷却塔内。湿热的冷却水自布水盘经过填料流入塔内。当水滴和空气接触时:一方面由于空气与水的直接传热,另一方面由于水蒸汽表面和空气之间存在压力差,在压力的作用下产生蒸发现象,将水中的热量带走即蒸发传热,从而达到降温之目的。
1)冷却塔的位置应设置在通风良好的地方,例如室外绿化地带、室外地面上或在高层建筑主楼的屋顶上,同时远离高温或者有害气体,避免建筑物高温高湿排气或者不洁净的气体对冷却塔进行影响。
2)采用冷却塔变频技术。冷却塔变频技术主要是利用冷却水塔进出水温差对比,通过变频器改变冷却塔风机供电频率,不断改变冷却塔风机的转速,来达到调节风量以及减少风机能耗的效果。
3)对于一塔多风机的冷却塔,在保证冷却水温满足制冷机组正常运行的情况下,可以根据冷却水的回水温度,调整投入运转的风机数量,达到节能目的。而在多台制冷主机并联供冷的系统中,与其匹配的冷却塔也可采用并联形式。在过渡季节或外界温度较低,部分制冷主机运行时,利用并联的冷却塔,可以不开风机采用自然冷却的方法降低能耗。
四、总结
篇5
1.1方案的确定
经初步校核助燃风机、风管道等参数,能满足改烧焦炉煤气后的助燃风量供给,所以此次改造助燃风系统改动较小,只需改动烧嘴前风管道。焦炉煤气外网、炉前管道等系统都需重新设计、制作、安装。在烧结不停产的情况下,新点火炉在原点火炉外侧的轨道上施工,点火炉本体施工包括钢结构安装,耐材砌筑,烧嘴安装,离炉体1m之内的空、煤气管道安装等,在轨道上的施工时间大约8天左右。待炉本体施工完毕时,再停产进行旧点火炉的拆除及新点火炉的管道对接工作,时间大约需要2天。旧点火炉拆除的设备、材料可以用作其余点火炉改造时选用。
1.2原烧高炉煤气点火炉基本技术参数
点火炉的外形尺寸大约为长14.3m,宽7.4m,高3.0m。
1.3点火炉关键技术及参数
点火炉结构可简单分为烧嘴、燃烧室等主要部分,烧嘴一般安装在点火炉顶部。点火烧嘴的结构形式、火焰形状、刚性等对点火质量起着决定性作用。经研究探讨,决定采用高效节能点火烧嘴技术。
1.3.1高效节能点火烧嘴概述
高效节能点火烧嘴,独特的内部结构使其在烧结矿产量及质量均不受影响并略有提高的情况下,点火煤气消耗平均节约50%。高效节能点火烧嘴与传统的旧式点火器相比,具有如下特点:
(1)采用了先进的高温瞬时直接点火新技术,该点火器炉型合理,炉容小,炉膛低。
(2)高效节能烧嘴结构简单,设计新颖,可调节火焰长度,烧嘴头部设烧嘴砖,避开了炉内高温辐射,且烧嘴砖的材质为高合金耐热钢。因此,烧嘴寿命长,火焰沿台车宽度方向点火强度均匀、稳定,火焰不会回火和脱火。
(3)点火时间短,通常为50s左右。
(4)点火温度分布合理,高温集中在点火段,混合料面温度约1250℃,炉墙内表温度约1150℃,满足了高温瞬时直接点火的要求。
(5)炉内点火气氛理想,点火段含氧量大于2%,保温段含氧量大于10%。
(6)料面点火质量好,沿台车宽度方向点火均匀,不会产生过熔现象,提高了料层的透气性。
1.3.2高效节能点火烧嘴设计采用的主要技术措施
(1)该烧嘴采用二次风燃烧技术,火焰长度在一定的范围获得调节,而不改变火焰的刚度,有利于刚性火焰的形成,烧嘴对负荷的变动适应性增强。
(2)烧嘴砖为高合金耐热钢制作,有利于烧嘴使用寿命的延长。特别是在炉顶耐火材料有一定厚度的剥落的不利情况下,更显出其优越性。
(3)炉顶及炉墙均采用经过高温烘烤的高铝质浇注料预制块。非常容易地实现炉顶的更换及维修,并且烘炉时间大大缩短。
(4)炉膛高度约为300mm,实现了较先进的点火技术———高温、瞬时、直接冲击点火。
(5)较短的火焰及较小的炉容,减少了炉体的蓄热及散热,可大辐度节能。
(6)加大宽度方向两侧的烧嘴能量(增加20%的能力),在台车宽度方向上料面温度趋向一致,温差减小。
(7)烧嘴设计成分片式组装,每片设有4只小烧嘴,便于整体及单片更换和检修。每只小烧嘴前设有一只球阀。
1.3.3高效节能点火烧嘴技术指标及工艺要求:
(1)点火温度1150±50℃,点火时间45~60s,点火炉表面温度≤75℃。
(2)在料层平整状态下烧结饼表面点火均匀。
(3)采取一定的措施,确保点火炉内壁不严重粘料(结瘤)。
(4)能够适应烧结料层厚度500~700mm区间内的点火要求。
2应用效果及效益分析
2.1应用效果
截至2012年10月,承钢2号、3号、5号、6号烧结机点火炉已全部改造完毕,只有4号烧结机长期处于停产状态,点火炉未进行改造。点火炉采用新型节能技术后,与改造前比较,点火火焰均匀明亮,点火料面颜色不像烧高炉气时料面发黄,点火质量明显提高。
2.2效益分析
(1)节约煤气发电效益:1500万元/a改造前点火炉吨矿消耗47m3高炉煤气,按高炉煤气热耗0.148GJ/t折算成焦炉煤气吨矿消耗应为8m3/t,但实际改造后点火炉吨矿消耗焦炉煤气5.5m3/t,则吨矿少消耗焦炉煤气约2.5m3,折合高炉煤气节约量约13.5m3/t,说明点火炉改烧焦炉煤气后节能效果显著,吨矿热耗明显降低。承钢高炉煤气发电成本约4.5m3/kWh,外购电价格0.5元/kWh,5台烧结机年产量总共约1000万t。
(2)降低烧结自身返矿率效益:1100万元点火炉改烧焦炉煤气后,经跟踪测算,烧结自身返矿率至少降低1%,则5台烧结机自返配比降低1%,年成品矿可增加10万t,按照烧结矿加工成本110元/t计算,年创效=10×110=1100万元。年效益合计:1500+1100=2610万元
3结语
篇6
1.1高压变频节能技术原理
所谓高压变频技术,是通过调节电压的输出,控制风机的实际功率,从而进一步控制风机的转速,调节风机风量,在风机中应用高压变频技术,就可以使得出风口的挡板完全打开,利用变频技术从源头调节风机的风量输出。风机的电机转速公式为:n=(1-s)n0,n0=60f/p。其中n为实际转速,n0为理论转速,s是转差率,f是电机的运行频率(60是60s),p是电机极对数。由转速公式可看出,在不考虑转差率s的情况下(s=0~0.05),电机的实际转速n=60f/p,即n与f是成正比例相关的,n的值会随着f的增加而增加,随着f的减少而减少,所以控制功率的输出,来调节f的值,就能够完成对电机转速n的调节。
1.2高压变频节能技术优点
高压变频节能技术的应用,能够避免风量因为挡板的损失,提高风机的工作效率,降低电力的消耗。比起挡板调节风量,利用高压变频技术调节,在输送风量时更加精准,能够实现对锅炉负荷的精准控制。而且高压变频技术的应用,在风机启动时,能够对风机进行有效保护。传统的全压启动方式,对发动机和风机都会产生极大的冲击力,容易引发故障,甚至设备损坏。而高压变频技术使发动机缓慢启动,有效地避免了这个问题,极大地降低了设备故障率。
2热电厂锅炉风机高压变频节能技术改造方案
2.1高压变频器选型
高压变频器的选型需要考虑电压等级和投资成本的问题,如一台1120kW功率的风机,选择60kV电压等级的高压变频器显然就是不合理的,既无法对高压变频器进行充分利用,又增大了投资成本,另外在选型时还需要注意谐波污染问题。综合分析热电厂的实际需求,对比市面上的几种高压变频器型号(两电平型、多电平型、单元串联型等),选择单元串联型高压变频器是较为合适的。它采用的是近几年新出现的一种拓扑结构电路,所具有的优点有:功率因素高、抗干扰能力强、谐波污染小、造价低、故障不停机等。
2.2主系统改造方案
QF为真空断路器,QS1、QS2为高压隔离刀闸,KM1、KM2、KM3为高压真空接触器。当高压变频器投入使用时,应先将真空断路器QF闭合,再将高压隔离刀闸QS1、QS2闭合,之后将高压真空接触器KM1、KM2闭合,断开高压真空接触器KM3。当高压变频器发生故障时,高压变频器的控制保护系统将会自动断开高压真空接触器KM1、KM2,同时闭合高压真空接触器KM3,使高压电机从变频状态切换到工频状态下运行。而为了保证切换运行状态时安全可靠,需要设计电气互锁功能,即KM1和KM2闭合时,KM3无法闭合;而当KM3闭合时,KM1和KM2不能再闭合。
2.3高压变频节能技术改造方案注意事项
1)高压变频器在接线时,一定要注意输入端和输出端的区别,不可接反,以免在风机使用时引发事故。2)准确计算转子的临界转速,采取必要的技术保护措施,避免发生扭曲共振现象。3)安装完毕后,检查变频器柜体是否做好了相关接地工作。4)将预充电电源技术运营与风机启动模式中,避免全压启动对设备形成过大负荷。
3结束语
篇7
随着经济的发展和人民生活水平的提高,公共建筑和住宅的供热和空调已成为普遍的需求。在发达国家中,供热和空调的能耗可占到社会总能耗的25-30%。我国的能源结构主要依*矿物燃料,特别是煤炭。矿物燃料燃烧产生的大量污染物,包括大量SO2、NOX等有害气体以及CO2等温室效应气体。大量燃烧矿物燃料所产生的环境问题已日益成为各国政府和公众关注的焦点。我国的供热已经历了一家一户的小煤炉到燃煤锅炉的转变。现在又进一步禁止在城镇建设中小型燃煤锅炉房,体现了政府对保护大气环境的高度重视。因此,除了集中供热的型式以外,急需发展其他的替代供热方式。热泵就是能有效节省能源、减少大气污染和CO2排放的供热和空调新技术。
热泵(制冷机)是通过作功使热量从温度低的介质流向温度高的介质的装置。建筑的空调系统一般应满足冬季的供热和夏季制冷两种相反的要求。传统的空调系统通常需分别设置冷源(制冷机)和热源(锅炉)。建筑空调系统由于必须有冷源(制冷机),如果让它在冬季以热泵的模式运行,则可以省去锅炉和锅炉房,不但节省了初投资,而且全年仅采用电力这种清洁能源,大大减轻了供暖造成的大气污染问题。
采用热泵为建筑物供热可以大大降低一次能源的消耗。通常我们通过直接燃烧矿物燃料(煤、石油、天然气)产生热量,并通过若干个传热环节最终为建筑供热。在锅炉和供热管线没有热损失的理想情况下,一次能源利用率(即为建筑物供热的热量与燃料发热量之比)最高可为100%。但是,燃烧矿物燃料通常可产生1500-1800℃的高温,是高品位的热能,而建筑供热最终需要的是20-25℃的低品位的热能;直接燃烧矿物燃料为建筑供热意味着大量可用能的损失。如果先利用燃烧燃料产生的高温热能发电,然后利用电能驱动热泵从周围环境中吸收低品位的热能,适当提高温度再向建筑供热,就可以充分利用燃料中的高品位能量,大大降低用于供热的一次能源消耗。供热用热泵的性能系数,即供热量与消耗的电能之比,现在可达到3-4;火力发电站的效率可达35-58%(高值为燃气联合循环电站)。采用燃料发电再用热泵供热的方式,在现有先进技术条件下一次能源利用率可以达到200%以上。因此,采用热泵技术为建筑物供热可大大降低供热的燃料消耗,不仅节能,同时也大大降低了燃烧矿物燃料而引起的CO2和其他污染物的排放。
热泵利用的低温热源通常可以是环境(大气、地表水和大地)或各种废热。应该指出,由热泵从这些热源吸收的热量属于可再生的能源。
二、空调热泵的分类及其优缺点
以建筑物的空调(包括供热和制冷)为目的的热泵系统有许多种,例如有利用建筑通风系统的热量(冷量)的热回收型热泵和应用于大型建筑内部不同分区之间的水环热泵系统等。这里主要讨论利用周围环境作为空调冷热源的热泵系统。就其性质来分,国外的文献通常把它们分为空气源热泵(airsourceheatpump,ASHP)和地源热泵(groundsourceheatpump,GSHP)两大类。地源热泵又可进一步分为地表水热泵(surface-waterheatpump,SWHP)、地下水热泵(groundwaterheatpump,GWHP)和地下耦合热泵(ground-coupledheatpump,GCHP)。我国对热泵系统的术语尚未形成规范的用法。例如对地下水热泵系统有“地温空调”的商业名;而地下耦合热泵则在一些文献中称为“土壤源热泵”,或直接称为“地源热泵”。
空气源热泵以室外空气为一个热源。在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。空气源热泵系统简单,初投资较低。空气源热泵的主要缺点是在夏季高温和冬季寒冷天气时热泵的效率大大降低。而且,其制热量随室外空气温度降低而减少,这与建筑热负荷需求趋势正好相反。因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其他辅助热源对空气进行加热。此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。在寒冷地区和高湿度地区热泵蒸发器的结霜可成为较大的技术障碍。在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作。空气源热泵不适用于寒冷地区,在冬季气候较温和的地区,如我国长江中下游地区,已得到相当广泛的应用。
另一种热泵利用大地(土壤、地层、地下水)作为热源,可以称之为“地源热泵”。由于较深的地层中在未受干扰的情况下常年保持恒定的温度,远高于冬季的室外温度,又低于夏季的室外温度,因此地源热泵可克服空气源热泵的技术障碍,且效率大大提高。此外,冬季通过热泵把大地中的热量升高温度后对建筑供热,同时使大地中的温度降低,即蓄存了冷量,可供夏季使用;夏季通过热泵把建筑物中的热量传输给大地,对建筑物降温,同时在大地中蓄存热量以供冬季使用。这样在地源热泵系统中大地起到了蓄能器的作用,进一步提高了空调系统全年的能源利用效率。
地下水源热泵系统的热源是从水井或废弃的矿井中抽取的地下水。经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。最近几年地下水源热泵系统在我国得到了迅速发展。但是,应用这种地下水热泵系统也受到许多限制。首先,这种系统需要有丰富和稳定的地下水资源作为先决条件。因此在决定采用地下水热泵系统之前,一定要做详细的水文地质调查,并先打勘测井,以获取地下温度、地下水深度、水质和出水量等数据。地下水热泵系统的经济性与地下水层的深度有很大的关系。如果地下水位较低,不仅成井的费用增加,运行中水泵的耗电将大大降低系统的效率。此外,虽然理论上抽取的地下水将回灌到地下水层,但目前国内地下水回灌技术还不成熟,在很多地质条件下回灌的速度大大低于抽水的速度,从地下抽出来的水经过换热器后很难再被全部回灌到含水层内,造成地下水资源的流失。此外,即使能够把抽取的地下水全部回灌,怎样保证地下水层不受污染也是一个棘手的课题。水资源是当前最紧缺、最宝贵的资源,任何对水资源的浪费或污染都是绝对不可允许的。国外由于对环保和使用地下水的规定和立法越来越严格,地下水热泵的应用已逐渐减少。
地表水热泵系统的一个热源是池塘、湖泊或河溪中的地表水。在*近江河湖海等大体量自然水体的地方利用这些自然水体作为热泵的低温热源是值得考虑的一种空调热泵的型式。当然,这种地表水热泵系统也受到自然条件的限制。此外,由于地表水温度受气候的影响较大,与空气源热泵类似,当环境温度越低时热泵的供热量越小,而且热泵的性能系数也会降低。一定的地表水体能够承担的冷热负荷与其面积、深度和温度等多种因数有关,需要根据具体情况进行计算。这种热泵的换热对水体中生态环境的影响有时也需要预先加以考虑。
地下耦合热泵系统是利用地下岩土中热量的闭路循环的地源热泵系统。“地下耦合热泵”的名称直译自英文,不通俗。通常也称之为“闭路地源热泵”(closed-loopgroundsourceheatpump)以区别于地下水热泵系统,或直接称为“地源热泵”。它通过循环液(水或以水为主要成分的防冻液)在封闭地下埋管中的流动,实现系统与大地之间的传热。在冬季供热过程中,流体从地下收集热量,再通过系统把热量带到室内。夏季制冷时系统逆向运行,即从室内带走热量,再通过系统将热量送到地下岩土中。因此,地下耦合热泵系统保持了地下水热泵利用大地作为冷热源的优点,同时又不需要抽取地下水作为传热的介质。它是一种可持续发展的建筑节能新技术。1998年美国能源部颁布法规,要求在全国联邦政府机构的建筑中推广应用地下耦合热泵供热空调系统。为了表示支持这种节能环保的新技术,美国总统布什在他的得克萨斯州的宅邸中也安装了这种地源热泵空调系统(见2001年5月18日参考消息)。
三、地源热泵供热空调系统的经济性分析
地源热泵系统可实现对建筑物的供热和制冷,还可供生活热水,一机多用。一套系统可以代替原来的锅炉加制冷机的两套装置或系统。系统紧凑,省去了锅炉房和冷却塔,节省建筑空间,也有利于建筑的美观。地源热泵系统的另一个显著的特点是大大提高了一次能源的利用率,因此具有高效节能的优点。地源热泵比传统空调系统运行效率要高约40-60%。另外,地源温度较恒定的特性,使得热泵机组运行更可*、稳定,整个系统的维护费用也较锅炉-制冷机系统大大减少,保证了系统的高效性和经济性。超级秘书网
迄今为止制约地下耦合热泵系统在我国应用的障碍主要是在地下埋管的初投资较高,以及政府、建筑设计人员和公众对这一技术缺乏了解。地源热泵空调系统的经济性取决于多种因素。不同地区,不同地质条件,不同能源结构及价格等都将直接影响到其经济性。根据国外的经验,由于地源热泵运行费用低,增加的初投资可在3-7年内收回,地源热泵系统在整个服务周期内的平均费用将低于传统的空调系统。
篇8
在输水泵工频运转维持在一定速度的情况下,通过改变泵出口阀门来控制泵的运转,降低电机的负荷。假设水泵本是在点A运行的,在出口阀门全开的情况下,其出水量达到QA,扬程为HA。如今为了减少注水量,想要将流量降至QB,如果没有使用调速装置,那只能是通过关闭阀门的方式来对出水量进行调解,这种方法在出口阀门上就需作出QAx(HA-HB)的功,能耗较大,且出现故障的可能性较高,会缩短相关设备和设施的使用寿命。而变频调速系统,则是将AB视作泵的性能曲线,结合曲线QA计算在既定流量下所产生的相应的压力,在A点的水泵达到最高效率时,关闭阀门,而多出来的能耗则作为热量损失被流动的物质带走,从而实现对出水量的有效控制。而变频调速器,在这个过程中所承担的任务就是在任何的流量条件下,都能匹配出与之相应的泵的特性曲线,并且随着流量的减小,电机的运转速度也要相应的减慢,同时由于改变水流而产生的压差也需与电机的运转速度的平方呈正相关。进而根据实际的注水和出水变化来及时准确的调节水泵的扬程,有效降低能耗,实现节能减排的作用。
2油田供水系统与变频调速器的应用
在油田注水的过程中,注水站是满足油田注水系统的源头,且输水泵需要持续的变动外输泵的运转形式,来应对供水过程中输水量和压力的改变。在没有使用变频调速技术时,人们多数是通过对开泵台数和人工调节阀门的方式来控制水的流量,注水系统的负担较重,同时工作效率偏低。而在现实的生产工作中,一个承担着15座注水站的供水以及调节相关地区的供水平衡的供水站,假设其平均日供水在9000-10000m3之间,且拥有4台型号为LzA200-630D外输供水泵,平均每台的装机容量达132kW,日常工作中只运转其中的2台,其余两台备用。由于在实际的生产过程中,注水站的注水量直接与供水系统的日供水量向挂钩,假设油田供水系统的水压为1.1MPa,受注水量减小的影响,供水系统的供水压强增加,这时为了对水量进行高效的控制,人们采用变频调速器,通过实际的情况,来对正在运动的水泵进行变频调速,使之与实际的注水和输水相匹配。有研究报告曾表示在使用变频节能技术进行控制之前,我国油田供水系统的工作效率不足30%,而在使用变频节能技术后,效率提升了5个百分点,同时在供水过程的耗能远低于之前供需水的消耗。
3变频调速器在供水系统应用的优势分析
3.1减少管网穿孔和补漏次数
恒压变量给水是油田供水系统中变频节能技术所常用的一种措施,即为了使水泵出水口的压力维持在一个恒定的水平,将压力传感器设置在水泵机组的出水口,并将该压力值设为最不利于水泵出水所需的值。一旦管网出口的压力超出传感器上所设定的压力值,那么压力传感器就会将实际检测到的压力值传给PID调节器,由PID调节器对高于或者低于设定值的数据进行处理,将处理结果交给变频器,再由变频器对来改变电动机的运转速度,通过这样一个过程来达到恒压的目的。管网压力越趋于稳定,其在工作过程中所出现的压力失恒现象也就越少,同时由于管网压力过高而造成管网穿孔和补漏的次数也将明显降低,有研究者曾对此作出相关的统计和分析,发现使用变频调速技术而产生管网穿孔的概率仅为不适用变频调速技术的一半,换句话说即使用变频调速技术,管网穿孔的可能性将降低50%。管网穿孔的次数降低了相应的由此而产生的补漏的次数也必然会随着降低,减轻了维修人员工作负担,节约了维修成本,同时延长了管网等设备的使用寿命,有效的控制了油田供水系统的运转成本,提高了其工作效率。
3.2减少设备切换次数
通常在设计油田供水系统中的泵站时,一般都会对油田的用水量和实际所需水量做自己的考察、统计和分析,在充分考虑各种因素的基础上,来确定在泵站中所安装的水泵的型号、大小规模等,有针对性的选曲合适的水泵设备。比如,某中心泵站有六台卧式离心泵,其中有三台机是250S65A型号的,还有三台是350S75B型号的,通常白天运行一台350S75B型号的离心泵,晚上运行的则是一台250S65A型号的离心泵,在没有使用变频节能技术前由于频繁的切换水泵,使得电机水泵在启动时受到较大的冲击,知识水泵和电动机在运转中经常出现故障需要维修,加大了维系人员的劳动负担,同时缩减了设备的使用年限,加快了资产折旧的速度,增加了供水系统运转的成本。而随着变频调速器的投入,大大的减少了油田供水系统中水泵等设备的切换次数,减少了设备应频繁切换而造成的损失,延长了设备的使用时间,从侧面减少了油田供水所花费的成本。
3.3减少电机和管网的损耗
变频调速器除了具备过压、过流、过载、过热等保护功能,其自身还自带软启动功能。在未使用变频节能技术时,油田供水系统中的电动机一般都是以直接启动的方式加入系统的运转之中,然而这样的方式却会产生强大的电流冲击以及转矩冲击,这些都会对电动机本身的运转以及由其负载的水泵带来十分不利的影响,会增大电动机和管网的损耗。而变频调节技术具备的相对比较全面的保护功能,在其软启动功能的保护下,其电动机启动时所产生的启动电流仅为试运行电流的1-3倍,其在启动过程中所受到的冲击远小于直接启动所受到的冲击,电动机和管网因冲击而产生的折损明显缩小,机泵、管网等设备的使用寿命得以延长。此外,在实际的生产过程中,变频节能技术能够有效降低油田供水系统的用电量。将两台同类型的设备放在一起,一台使用工频设备,另一台使用变频设备,在同等的工作时间下,在经过研究对比后发现,使用变频设备平均每年可节约工业用电费用至少20多万元,在烧煤发电的形式下,平均每年减少烧煤量近40吨,这还只是一台机器的每年所减少的能耗。如果是一个颇具规模的油田生产基地,变频节能技术的运用,每年为其所省去的相关生产成本将是不可估量的。
4结语
篇9
1.1远程控制分合闸可行性
大多数岸桥采用10kV高压供电给主、副变压器,通常主、副变压器都处于合闸状态。主变压器主要供电给各主要机构(俯仰、起升、小车行走、大车行走)变频器、电机等驱动装置,副变压器主要供电给PLC、空调、电梯、灯光、加热器、制动器等控制、照明与辅助设备。主变压器的供电线路与副变压器的供电线路,为2条不同的独立线路,副变压器的分合闸状态不受主变压器的分合闸影响。岸桥在不作业时间,主变压器分闸后,副变压器仍可保持合闸状态,不影响上述控制、照明与辅助设备的正常使用。远程控制分合闸主变压器的实现方法,可通过在司机室操作台上加装1个主变压器远程控制开关,采用司机室到电气房或机械房的备用控制电缆将远程控制开关信号连接到主变压器分合闸回路,并对部分线路及PLC控制程序进行改造,使得司机在作业后操作此开关远程分闸岸桥主变压器,在作业前远程合闸主变压器恢复供电。另外,在控制软件程序中编入保护功能和在硬件上加装保护装置,确保岸桥作业时,司机即使误操作远程控制开关,主变压器也将无法分闸,避免了岸桥因此停电而发生事故。
1.2加装预励磁装置可行性
岸桥作业前,主变压器在合闸瞬间会产生很高的励磁涌流,一般可达主变压器额定电流6倍以上。这个瞬间励磁涌流会造成主变压器绕组变形和绝缘损坏,如果合闸次数过多会影响主变压器寿命。因此,为了降低主变压器合闸瞬间产生的励磁涌流,保护主变压器,采用在岸桥主变压器的接通主回路上加装1套预励磁装置,在合闸前先进行预励磁。该装置工作原理是,首先通过装置中的小容量预励磁变压器给供电变压器(主变)的二次侧预励磁,使供电变压器的铁心中产生正常工作电压的磁通量(即预励磁);然后再投供电变压器的一次侧(此时主变压器的铁心中通过预励磁建立稳态的交变磁通量)由于内部磁通量的稳定,不会造成供电变压器系统磁通的突变,励磁涌流很小;待供电变压器运行稳定后通过断路器将该装置切除。以某洋浦港2号岸桥为例,加装预励磁装置时。预励磁装置工作时,断路器QF3和QF4先闭合,预励磁变压器给主变压器的二次侧预励磁,同时在主变压器的一次侧感应出正常工作高压,几秒过后断路器QF1闭合,主变压器合闸;断路器QF1闭合几秒后,主变压器运行稳定,断路器QF3和QF4断开,停止预励磁。整个预励磁合闸过程,主变压器受励磁涌流的冲击非常小。
1.3加装三相避雷器可行性
岸桥作业后,主变压器分闸时,主变压器铁心中的磁场很快地消失,磁场的迅速变化,将在绕组中产生很高的瞬态电压,这可能使主变压器的绝缘薄弱处击穿。为了避免高压对变压器绝缘可能产生的损伤,可采用三相避雷器保护,三相避雷器安装于主变压器开关柜的出线侧。三相避雷器可释放变压器分闸时的过电压能量,保护主变压器免受瞬时过电压危害。
2节能效果
洋浦港曾在2012年对2号岸桥不作业时的能耗做过实际测试,保持副变压器合闸状态不变,当主变压器合闸时岸桥平均每小时电耗为20.82kW•h,当主变压器分闸时岸桥平均每小时电耗为14.57kW•h,主变压器分闸时岸桥每小时节约电能6.25kW•h。如果在岸桥不作业时分闸主变压器,按岸桥作业率20%计算,则每台岸桥每年可减少电耗6.25×24×365×(1-20%)=43800kW•h,节能效果明显,且岸桥作业率越低,节能效果就越明显。
3结束语
篇10
1.1浮油隔断技术
石油化工产生的废水成分复杂,在其表面也会有漂浮着许多颗粒性污垢,会产生较多的生物薄膜,这些杂物上面往往携带着很多的浮油,由于浮油的密度相对较小,因而这些杂物就漂浮在水面,将水和空气隔绝,水中需要氧气的生物就无法得以生存,分解能力便大幅度降低,对水的自净作用产生不利影响。在这样的情况下,浮油隔断技术便应运而生,在石油化工废水初步处理中,就使污水通过隔油池,将表面漂浮的物质除去,对污水进行有效的处理。一般对于隔油池的选用采用有斜面的隔油池,在斜面上的水流速度快,不会使浮油聚积在一块,浮油处理的效果较为理想,采用此方法可以将废水中的含油量降到10%以内。
1.2悬浮物粘附技术
经过隔油池的废水得到有效的处理,但是在废水中还是含有许许多多的浮化油和浮油,在处理中还需要运用到悬浮物粘附技术,该技术的采用将进一步强化废水中悬浮浮油的处理。详细的操作就是使用分散的、体积小的气泡,来将水中的悬浮物吸附到废水表面,再对悬浮物予以处理,将乳化油等浮油与水进行有效的分离。在实际生产中,通常采取涡凹这种粘附悬浮物的基础,在新疆以及内蒙古等地运用的较多,此类方法操作非常简便,有显著的粘附效果,其对乳化油、浮油和硫化物均有较强的粘附作用,有助于污水的进一步处理及净化。
1.3吸附技术
吸附技术的原理是运用活性炭等多孔物质将废水中的杂志吸附到表面,以此达到对废水中有害物质的清除目的,但是在处理成本上,活性炭的成本相对比较大,与此同时,对于使用过的活性炭的处理问题,如果没有与之相应的处理往往会引发二次污染,对于此类方法处理过的废水尚且具有较大的硬度,只能够对颗粒性的杂质加以处理。
1.4分离膜状物技术
分离膜状物的技术的使用也是非常广泛的,它的显著优点是可以有效处理废水中的离子以及微生物,还可以实现对工业废水的颜色和味道的处理,因而对废水的处理就变得更加深入了。同时,还有一个优点就是此类方法可以采用自动化处理,设备的体积小,缺点就是这种技术性非常高的产品需要企业有大量的资金及人力投入,因此,其实际运用就会由此受到一定的限制。此外,在废水量比较大的企业通常很少采用上述方法,因该技术的处理废水量小,这便在效率上难以避免的存在一系列缺陷及不足。
2现代的石油化工废水处理节能技术措施
2.1絮凝技术
在石油化工废水中经常用到的一种方法就是絮凝技术,就是向石油化工废水中加入一定量的化学物质,可以使石油化工废水中的悬浮物和其他物质聚积成体积较大的物质,从而沉淀下来,这样使得废水的净化变得非常容易了,通常使用此方法是和悬浮物粘附技术搭配使用,就有很好的效果,采用多样化的絮凝物质,有针对性的使用。现金使用的絮凝物质是从微生物中提取出来的,这种絮凝物有很好的运用市场,絮凝技术在有害物质的降解方面有很大的优势,污染也比较少,所以说絮凝技术的使用是石油化工污水处理中既环保有高效的方法。它的缺点就是在微生物提取过程中,操作方法比较复杂,是需要很高的科学技术做支撑的。
2.2氧化技术
氧化技术主要有光催化氧化法、湿式氧化法和臭氧氧化法,对于成分不同的石油化工废水要选择合适的氧化技术,使处理的效果达到最优、最经济、最安全。首先,光催化氧化法是将光辐射和氧气和双氧水等氧化剂有效的结合,使处理污水有更好的效果。在现在的生产中使用的有以太阳光为光源,以TiO2、ZnO等为催化剂,这种方法处理含有21种有机污染物的水,其主要产物是CO2,并不会出现二次污染的问题。现阶段,一种新的方法正处于研究阶段,具体而言就是利用二价铁和双氧水做氧化剂,运用紫外光,这样就使双氧水加快了产生氢氧根的速度,提高了氧化效率,这项技术的成熟使用还需要一段时间。其次,湿式氧化法分为催化湿式氧化法和湿式空气氧化法,催化湿式氧化法是将有机物在高温高压和催化剂的条件下,氧化分解成为CO2、水和氮气的过程,不产生有害的物质,这个过程中的化学反应时间短,提高了转化效率。湿式空气氧化法是利用空气中的氧气在高温高压条件下进行液相氧化的过程,这种技术能有效控制环境污染物,常用于处理有毒有害的、高浓度难降解的有机污染物。最后,臭氧氧化法运用也比较广泛,主要是因其处理过程并非会产生污泥和二次污染,但是其受限制的是投资费用相当高,处理的流量小。氧化完成后废水中的有机物被氧化成水和二氧化碳,大部分为氧化中间产物。在工程实际中,常常将臭氧氧化和活性炭吸附技术结合使用,在深度处理中被经常用到。
2.3多效蒸发废水回用技术
在石油化工生产中,一般生产环氧丙烷的过程中就会产生大量的废水,其中含有氯化钙,这种物质对环境的污染大,而且还会对生产设备产生腐蚀,企业生产中会有很大的损失。目前的处理方法是加入没有被污染的水,再添加化学试剂对废水中的氯化钙进行稀释,根据工程经验,一般废水和新水的比例在1:1.5,处理后的废水含盐量高,不能再次利用。为了提高废水的利用,多效蒸发废水回用技术就产生了,国内大型石化企业建成了这项技术,就是将环氧丙烷废水中的氯化钙进行浓缩,一般达到75%~80%,加工的成品还可以销售,这项技术可以对冷凝水进行回收使用,提高了废水的利用率,起到节能减排的作用。
3结语