纳米材料论文范文

时间:2023-03-27 11:31:44

导语:如何才能写好一篇纳米材料论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

纳米材料论文

篇1

纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的紫外可见光谱。可以看出,波长为368nm处出现一个比较强的金属锌及其氧化物吸收峰。在525nm处出现较宽的纳米Au的吸收峰[4]。纳米Au的吸收峰随Au含量的变大而不断变强,还伴随显著的红移现象[5]。可能是因为Au和金属锌及其氧化物之间的相互作用,致使纳米Au的吸收峰产生了显著的红移现象,可能给金属锌及其氧化物材料的气敏特性有重要作用。图2是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物的XRD谱图。可以看出,谱线中存在很明显的六方相特征衍射峰,和金属锌及其氧化物的晶面吻合[6]。另外,加入纳米Au修饰量的金属锌及其氧化物谱线出现新的衍射峰,其峰位与立方相Au的晶面一一对应。纳米Au修饰量的衍射峰随着Au含量的变大而不断的变强。图3是纯金属锌及其氧化物和纳米Au修饰量在为10%时的金属锌及其氧化物的SEM形貌。可以看出,金属锌及其氧化物是由大量向外辐射分布的六棱锥纳米分枝构成的复杂的花型结构。金属锌及其氧化物的六棱锥分枝的表面比较光滑。金属锌及其氧化物的表面上均匀的分布着纳米Au粒子,金属锌及其氧化物的六棱锥分枝的表面出现了粗化的现象。这种粗化现象会导致表面缺陷的增加,对金属锌及其氧化物材料气敏特性有积极作用。

2金属锌及其氧化物的气敏特性

图4是纯金属锌及其氧化物和不同纳米Au修饰量的金属锌及其氧化物气敏元件,在不同温度下对100μg/g丙酮的灵敏度图线。可以看出,纳米Au粒子可以有效地提高金属锌及其氧化物材料的灵敏氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。

图5为金属锌及其氧化物对不同气体的响应恢复动态曲线和灵敏度。可以看出,材料对还原性气体的灵敏度较高。另外,材料对丙酮的灵敏度比氢气、甲醛、苯和乙醇高得多,这说明Au修饰后金属锌及其氧化物对丙酮的选择性非常好,可以满足实际的丙酮气体检测要求。另外,材料各种气体的响应程度随气体浓度的增加基本呈线性逐渐变大。

3结论

篇2

1.1人工纳米材料造成内皮损伤:

血管内皮是血管壁以及血液之间单层性的细胞屏障。从生理解剖结构的角度上来说,血管内盘能够及时促进激活性子与抑制因子的合成、分泌反应,从而使血管系统完整性得到完成,确保血管张力处于平衡状态。相关研究中提示,对于存在有内皮功能障碍的人体而言,出现动脉粥样硬化及相关疾病的可能性将明显增大。从人工纳米材料的角度上来说,造成内皮损伤的机制主要包括如下几个方面:其一,在与细胞直接接触并产生介导反应的条件下诱发细胞机械性损伤;其二,对血管内皮细胞造成一定的刺激作用,通过释放炎性因子以及氧自由基成分的方式,造成细胞生长受阻;其三,对内皮细胞的生长产生抑制影响,组织缺血下的心血管重建受不良影响,可能表现为心肌缺血症状。

1.2人工纳米材料造成血栓损伤:

血小板在凝血、止血过程当中具有相当关键的作用。与之相对应的是,凝血机制的异常也会与血小板的聚集水平存在明显关系,由此可能产生血栓。人工纳米材料可能导致与血小板发生电荷中和反应,造成血小板的聚集。除此以外,在人工纳米颗粒材料所诱发的内皮损伤机制作用之下,组织纤溶酶原活性物的分泌水平有一定的降低趋势,血小板被激活,最终表现为凝血前状态,潜在诱发血栓等相关疾病的可能性。

2人工纳米材料对心血管系统的损伤机制

2.1纳米碳基物材料对心血管系统的损伤:

纳米碳基物是纳米材料中关键性的构成要素之一,以碳纳米管为主要代表。此类材料的主要特点在于:机械强度高、硬度高、粒径小。形状上与常规的石棉纤维材料相似。但在作用于生物体的过程当中,难以发生代谢。除此以外,此类纳米材料还具有良好的电子受体优势,能够与π电子系发生反应,促进材料与生物化学成分的有机结合。在纳米碳基物的影响下,对于心血管系统的损伤可能涉及到以下两个方面的问题:首先,从动物水平的角度上来说,血小板的凝聚很大程度上受到糖蛋白结合受体参与水平的影响。而在纳米碳基物的应用下,可能致使糖蛋白结合受体发生激活反应,诱发心血管损伤。相关研究人员在以大鼠为模型的受体试验中研究发现:多壁、单壁碳纳米管均会导致大鼠颈动脉血栓形成速度的增快,说明两种纳米碳基物均对于血小板聚集有促进影响。除此以外,其还有可能造成受体的自主神经系统被破坏,表现为炎性反应。有关研究人员同样以大鼠为模型,在暴露于碳纳米颗粒环境后,大鼠模型表现出心率的降低趋势,主要机制在于:碳纳米颗粒材料造成了交感神经、迷走神经的破坏,在心血管系统支配中无法保持平衡关系。对于人体而言,严重时可能诱发心律失常,乃至心原性猝死的问题。其次,从细胞水平的角度上来说,有关研究人员使用纳米炭黑颗粒对人脐静脉内皮细胞进行染毒,持续24.0h。观察发现:受到纳米碳黑颗粒材料的影响,造成细胞形态学发生改变,细胞质膜发生损伤,细胞增生反应受到了一定的抑制影响。除此以外,有关研究中还认为,对于纳米碳黑颗粒一类材料而言,会对内皮型一氧化氮合酶与间隙连接蛋白-37的合成反应造成不良影响,在降解内皮细胞质膜的情况下,可能诱发动脉粥样硬化等相关疾病。除对心血管系统造成损伤影响以外,在纳米炭黑颗粒材料作用之下,受体血管损伤后机体的自主修复功能也出现一定缺陷,故有关研究中通过大鼠模型试验证实:多壁碳纳米管材料会对大鼠血管外膜成纤维细胞活性造成抑制,造成模型内丙二醛含量的异常升高。

2.2纳米金属粉对心血管系统的损伤:

在纳米颗粒吸入并达到肺间质部位以后,可能穿过肺泡上皮细胞,经由间质组织,参与到受体的血液循环反应过程当中,或者是通过进入淋巴循环系统的方式,进一步分布扩散至全身。与此同时,纳米金属粉材料中释放的大比例金属离子也可能通过自由基产生的方式,造成心血管系统损伤加剧。在纳米金属粉的影响下,对于心血管系统的损伤可能涉及到以下两个方面的问题:首先,从动物水平的角度上来说,相关的试验研究中分析认为[4]:对于暴露在纳米金属粉环境下的小鼠模型而言,处死后解剖结果显示其肺部银含量可达到1.5~1.7ug单位。同时,随着处死时间的延长,肺部中的银检出含量将得到明显的减低。同时,体内团聚的纳米金属粉释放银离子在小鼠被处死7d后仍然可在肺泡巨噬细胞中被检出。根据相关的试验结果认为:虽气管滴注下的银纳米团颗粒以团聚体的方式残留在肺部,但呼吸暴露下的纳米银颗粒可能经由肺部进入血液循环系统,造成心血管系统的损伤。其次,从细胞水平的角度上来说,纳米金属粉所生成的银纳米颗粒以及金纳米颗粒都可能在氧化反应的作用之下对细胞凋亡产生一定的诱导反应,由此影响心血管的正常运行。有关研究中尝试以小鼠作为模型,对受体进行银纳米颗粒染毒,结果显示:银纳米颗粒可能造成小鼠受体中的成纤维细胞凋亡反应加剧。除此以外,在细胞色素C迅速释放的条件下,Bax蛋白成分白转移至线粒体内,由于在此类纳米材料的介导反应下,细胞凋亡具有线粒体依赖的特征,故而将导致活性氧自由基成分的提升,对应的JNK激酶的活性水平明显增长。

3结语

篇3

表1是纳米二氧化硅对抗压强度的影响。为了体现纳米二氧化硅的优势,用微米二氧化硅作对比试验。从表1可以看出每添加0.2gal/sk的纳米二氧化硅,强度形成速率就会从172psi/hr增大到460psi/hr。从抗压强度—时间图的线性部分可以计算强度形成速率。不含纳米二氧化硅的成分称为控体,水泥复合材料的最终强度是控体或控体中加微米二氧化硅的三倍。与控体相比,含有纳米二氧化硅的水泥浆的流变性能略高,但仍可浇注和泵送。

通常情况下,水泥浆中含有不同的添加剂,其大小一般是微米级。添加少量的纳米二氧化硅不能显著影响其力学性质,因为一旦这些粒子聚集在一起就不能达到预期的效果。在搅拌水泥浆的过程中,向其中加入纳米二氧化硅、胶体和水。由于都是纳米级物质—纳米二氧化硅颗粒和胶体颗粒有可能结合在一起,将有利于提高早期强度。

油井水泥主要包括四种固相:C3A,C4AF,C3S和C2S。其中C3A,C4AF控制水泥的流变和凝胶过程,C3S和C2S控制水泥的抗压强度。C3S和C2S与水相互作用时,它们形成C-S-H凝胶、CH(氢氧化钙)。C-S-H凝胶作为水泥粘结剂,能巩固水泥基体,提高水泥强度,加入纳米二氧化硅能加速C-S-H胶结,加速获得早期强度。此外在固相颗粒发生化学反应之前,二氧化硅颗粒很细小能填充到固相颗粒中,使其成为稠密的固体基质。

H级优质水泥,消泡剂0.05gal/sk,稳定剂0.2gal/sk,分散剂0.143gal/sk,密度16.4lbm/gal,收益率1.1ft3/sk纳米二氧化硅与其它添加剂形成协同作用,不会干扰其它添加剂的作用。按照稠化时间和泵入时间调整缓凝剂的量,能改进其力学性能。在泵入时间相近(一种大约6-7小时,另一种大约10-11小时),通过改变缓凝剂和纳米二氧化硅的量,设计了两种不同的水泥浆。从这两种情况中可看出有含有纳米二氧化硅的水泥浆较控体水泥浆能形成较高的早期强度和较高的最终强度。

纳米材料对漏失量的影响。单独使用纳米材料时可以减少漏失量,与传统防漏失剂配合使用时,表现为协同作用,也能辅助减少漏失量。这可能是因为它能填充水泥颗粒中的小缝隙。此外,研究结果还表明纳米二氧化硅用量一定时,各种温度下纳米二氧化硅的强度都有所改善,并且这种性能不会随温度改变。由于不受温度影响,使得这种材料能适应各种水泥浆设计方案和现场情况。

二、结论

篇4

1.1材料与试剂苹果渣:苹果榨汁干燥制得的干渣。试剂:甲基丙烯酸(MAA,纯度99%天津市科密欧化学试剂有限公司)、乙二醇二甲基丙烯酸酯(EDMA,作为交联剂纯度98%阿拉丁试剂公司)、偶氮二异丁腈(AIBN作为引发剂,上海试四赫维化工有限公司)、乙腈(色谱纯)、福林酚试剂(上海荔达生物科技有限公司)、没食子酸、无水乙醇、甲醇、无水Na2CO3。

1.2仪器与设备场发射扫描电镜(S-4800型,日本日立公司)、数控超声波清洗器(KO-600BD型,昆山市超声波仪器有限公司)、紫外分光光度计(UV-1700型,日本岛津)、恒温振荡器(SHA-C型,国华电器有限公司)、赛洛捷克MS-H-Pro数显型磁力搅拌器、真空干燥箱(DZF-6051型,上海精宏试验设备有限公司)、高速冷冻离心机(HC-3018R,安徽中科中佳科学仪器有限公司)。

1.3苹果渣多酚的超声波提取取150g苹果渣加入到1L体积分数50%的乙醇的水溶液中,避光静置12h后,按照0.142W/g的功率进行超声波辅助提取,超声波处理45min,处理温度40℃,对处理后提取液进行超滤,超滤后的提取液待测[19]。

1.4多酚标准曲线的绘制及含量测定

1.4.1多酚标准曲线的绘制分别准确吸取质量浓度为100μg/mL的没食子酸标准溶液0,0.05,0.10,0.15,0.20,0.25,0.30mL于5mL容量瓶中,均以蒸馏水补至2mL,加入1mL福林酚试剂,充分振荡后静置3-4min,加入10%的Na2CO3溶液1mL,充分振荡摇匀,蒸馏水定容至5mL,置于25℃恒温水浴锅中静止反应2h,于波长765nm处分别测定吸光度值,以多酚质量(μg)为横坐标,以吸光度为纵坐标绘制标准曲线[20]。

1.4.2多酚提取液样品多酚含量的测定吸取苹果渣多酚提取液10倍稀释液于5mL容量瓶中,测定其吸光度,以标准曲线计算样品多酚含量。

1.5甲基丙烯酸纳米材料的成型筛选在60℃条件下引发剂AIBN分解为2个相同的活性自由基基团,该自由基作为初始自由基引发甲基丙烯酸(MAA)和交联剂EDMA中双链的打开,使得2种物质相互交联成球,从而得到所需要的表面含羧基的纳米微球,如图1所示。

1.5.1引发剂偶氮二异丁腈对纳米材料成型向装有20mL乙腈溶液的4支试管中加入交联剂乙二醇二甲基丙烯酸酯2.5mmol,甲基丙烯酸2.5mmol,再分别加入引发剂偶氮二异丁腈0.25mmol、0.5mmol、1mmol和1.5mmol,充分溶解混匀后,超声脱气10min,再向每个试管中通入氩气5min以除净空气。

1.5.2甲基丙烯酸对纳米材料成型向装有20mL乙腈溶液的试管中加入交联剂乙二醇二甲基丙烯酸酯2.5mmol,引发剂偶氮二异丁腈1mmol,再分别加入甲基丙烯酸0.5mmol、1.5mmol、2.5mmol、3.5mmol,充分溶解混匀后,超声脱气10min,再向每个试管中通入氩气5min以除净空气。

1.5.3交联剂乙二醇二甲基丙烯酸酯对纳米材料成型向装有20mL乙腈溶液的试管中加入甲基丙烯酸2.5mmol,引发剂偶氮二异丁腈1mmol,再分别加入交联剂乙二醇二甲基丙烯酸酯0.5mmol、1.5mmol、2.5mmol、3.5mmol,充分溶解混匀后,超声脱气10min,再向每个试管中通入氩气5min以除净空气。

1.5.4溶剂乙腈对纳米材料成型向4个试管中分别固定加入1mmol引发剂偶氮二异丁腈,2.5mmol甲基丙烯酸,2.5mmol交联剂乙二醇二甲基丙烯酸酯,再向4个试管中分别加入10mL、20mL、40mL、60mL乙腈溶液,充分溶解混匀后,超声脱气10min,再向每个试管中通入氩气5min以除净空气。将1.5.1-1.5.4中除净空气后的试管在60℃恒温水浴中振荡12h,反应后离心,所得纳米材料用甲醇清洗3次,每次3h以除去未反应完全的物质,清洗后的材料在60℃真空条件下干燥,干燥后的材料进行场发射扫描电镜观察试验与苹果渣多酚提取液中多酚吸附分离试验。

1.6多酚吸附量称取各条件制备的纳米材料10mg于100mL离心管中,加入10mL稀释10倍的苹果渣多酚提取液,在恒温摇床上摇3h,11000r/min离心后取上清液1mL测定吸光度,同时以未加纳米材料的10mL多酚提取液做为空白对照,采用标准曲线法测定其多酚含量,按下式计算多酚吸附量。

1.7甲基丙烯酸纳米材料对多酚的解吸试验选取分离效果最好的甲基丙烯酸纳米材料进行苹果渣提取液中多酚吸附分离试验,步骤如1.6节。吸附多酚物质后的甲基丙烯酸纳米材料分别用4%NaOH溶液、1mol/LNaCl溶液、70%乙醇溶液进行解吸试验。

2结果与分析

2.1标准曲线的绘制以多酚质量为横坐标,吸光度为纵坐标,绘制多酚标准曲线如图2所示。由图2可知,多酚质量与吸光度呈正相关,曲线拟合度较好,回归方程为y=0.0219x+0.007,相关系数R2=0.9976,说明多酚质量与吸光度具有良好的线性关系。

2.2制备条件对甲基丙烯酸纳米材料成型的影响

2.2.1引发剂偶氮二异丁腈在甲基丙烯酸2.5mmol,乙二醇二甲基丙烯酸酯2.5mmol,乙腈20mL的体系条件下,分别添加偶氮二异丁腈0.25mmol、0.5mmol、1mmol和1.5mmol,对不同引发剂用量下制得的纳米材料进行场发射扫描电镜拍照,如图3所示。4种不同引发剂用量下制备的纳米材料进行苹果渣多酚提取液中多酚吸附分离试验结果如图4所示。引发剂AIBN分解温度为60℃,在制备过程中随着AIBN用量增加,引发剂所提供的初始自由基浓度增加,加快了自由基聚合的速度。由图3分析可知,偶氮二异丁腈的添加量对纳米材料的外貌尺寸影响不显著,当添加量为0.25mmol~1.5mmol时,纳米材料的分散性都较好。这可能是由于引发剂用量在0.25mmol~1.5mmol时,引发剂过饱和,导致聚合反应也处于饱和状态,所以制得的纳米材料分散性均较好。由图4可知,不同引发剂用量下制备的纳米材料对苹果渣多酚提取液中多酚吸附分离有一定影响,当偶氮二异丁腈添加量为1mmol时,纳米材料对多酚的吸附量最大,吸附质量比达到2.51mg/g。

2.2.2甲基丙烯酸在乙二醇二甲基丙烯酸酯2.5mmol,偶氮二异丁腈1mmol,乙腈20mL的体系条件下,分别添加甲基丙烯酸0.5mmol、1.5mmol、2.5mmol、3.5mmol,对不同甲基丙烯酸用量下制得的纳米材料进行场发射扫描电镜拍照,如图5所示。4种不同甲基丙烯酸用量下制备的纳米材料进行苹果渣多酚提取液中多酚吸附分离试验结果如图6所示。甲基丙烯酸作为材料合成主体,随着甲基丙烯酸用量的增加,活性自由基的受体增多,聚合反应链变长,甲基丙烯酸材料的尺寸增加。由图5可知,甲基丙烯酸添加量在0.5~2.5mmo期间,制得的纳米材料由成型差、粘连严重,逐渐形成分散性较好的球形;当添加量到3.5mmol时,纳米材料成型又变得较差,相互间粘连严重。这可能是因为甲基丙烯酸添加量少时,聚合反应不完全;甲基丙烯酸添加量超过2.5mmol时,反而使反应链过长,尺寸变大且粘连。通过对比发现,当甲基丙烯酸添加量为2.5mmol时,纳米材料成型最好。由图6可知,随着甲基丙烯酸添加量的增加,纳米材料的多酚分离量呈现先增加后减少的趋势,当甲基丙烯酸添加量为2.5mmol时,纳米材料对多酚的吸附量最大,吸附质量比达到2.18mg/g。可能原因是甲基丙烯酸添加量为2.5mmol时,纳米材料呈规则圆形,且分散性较好,具有较大的比表面积,有利于纳米材料表面的羧基与多酚的羟基结合。当添加量为3.5mmol时,虽然纳米材料具有更多的羧基基团,但是由于在此条件下材料成型较差且相互粘连,所以影响了材料的分离性能,反而导致分离多酚能力下降。

2.2.3交联剂乙二醇二甲基丙烯酸酯在甲基丙烯酸2.5mmol,偶氮二异丁腈1mmol,乙腈20mL的体系条件下,分别添加交联剂乙二醇二甲基丙烯酸酯0.5mmol、1.5mmol、2.5mmol、3.5mmol,对不同交联剂用量下制得的纳米材料进行场发射扫描电镜拍照,如图7所示。4种不同交联剂下制备的纳米材料进行苹果渣多酚提取液中多酚吸附试验如图8所示。交联剂用量决定了材料的交联密度,一般交联剂的用量越大,材料的刚性越好,越有利于才球形材料的制备。由图7可知,4种不同交联剂用量制得的材料都具有较好的形貌,都成规则圆形,且分散性良好。随着交联剂乙二醇二甲基丙烯酸酯添加量的增加纳米材料的尺寸先减小后增大,当乙二醇二甲基丙烯酸酯添加量为1.5和2.5mmol时纳米材料尺寸较小。由图8可知,随着乙二醇二甲基丙烯酸酯添加量的增加,制得的纳米材料吸附多酚的量先增加再减小,这可能与纳米材料的大小有关,当交联剂用量为0.5和3.5mmol时,纳米材料尺寸较大,相对比表面积较小,与多酚中的羟基接触的概率较小;当交联剂用量为1.5和3.5mmol时,制得的纳米材料尺寸较小,比表面积较大,吸附量相对较高。比较而言,当交联剂添加量为2.5mmol时,制得的纳米材料吸附多酚量最大,吸附质量比可达2.37mg/g。

2.2.4溶剂乙腈在甲基丙烯酸2.5mmol,偶氮二异丁腈1mmol,乙二醇二甲基丙烯酸酯2.5mmol的体系条件下,分别添加交联剂乙二醇二甲基丙烯酸酯0.5mmol、1.5mmol、2.5mmol、3.5mmol,对不同溶剂乙腈用量下制得的纳米材料进行场发射扫描电镜拍照,如图9所示。4种不同乙腈用量下制备的纳米材料进行苹果渣多酚提取液中多酚吸附试验如图10所示。随着溶剂用量的增加,反应体系中的各制备物质浓度降低,粘度降低,形成的聚合物核之间相互碰撞的几率降低,导致纳米材料颗粒之间发生相互粘连的情况降低。由图9可知,当乙腈添加量为10mL时,体系不能提供充分的溶剂进行反应,导致自由基聚合不完全;当乙腈添加量为20mL时,制得的纳米材料能够形成分散性较好的球形材料;当乙腈添加量为40和60mL时,制得的纳米材料成型则较差。因此,确定乙腈溶液用量20mL作为纳米材料较佳溶剂用量。由图10可知,随着乙腈用量的增加,制得的纳米材料吸附多酚的量先增加后减少,这是由于当乙腈用量为20mL时,制得的纳米材料尺寸小且粒径分布均匀;乙腈用量为40和60mL时材料成型太差,所以分离效果不好。因此,乙腈用量为20mL时制得的纳米材料吸附多酚量最大,吸附质量比达到1.91mg/g。

2.3甲基丙烯酸纳米材料吸附多酚的解吸试验在甲基丙烯酸2.5mmol、乙二醇二甲基丙烯酸酯2.5mmol、偶氮二异丁腈1mmol、乙腈20mL的最佳条件下制备纳米材料,制备的纳米材料对苹果渣多酚提取液中多酚的最大吸附量为33.42mg。选取4%NaOH溶液、1mol/LNaCl溶液、70%乙醇溶液作为解吸液,对纳米材料吸附的多酚物质进行解吸试验,三者多酚解吸率分别为:61.13%、8.22%、18.55%,可能原因是碱性溶液中的氢氧根离子有助于破坏酚羟基与羧基的相互作用力,使得多酚容易从纳米材料上解吸下来。

3结束语

篇5

1991年,我国召开纳米科技发展战略研讨会,制定了发展战略对策。十多年来,我国纳米材料和纳米结构研究取得了引人注目的成就。我国纳米材料领域的工作者们也以孜孜不倦的探索,推动着纳米材料这门学科不断地前进。这其中,就有一位年轻的学者――刘飞博士。

科研,瞄准前沿

一位年仅三十几岁的学者、一连串前沿成果,刘飞博士称得起“年轻有为”。然而,与大多数年轻人不同,刘飞博士一心一意地埋首于纳米材料领域的研究工作,不沾浮躁之风。在这条道路上,他潜心向前,以“学习”的态度行于斯、研于斯,在一维纳米材料的制备、表征与物性研究的领域上取得了一系列成绩:

首先,在微波等离子体化学气相沉积(MPCVD)设备中,刘飞使用α―Fe2O3(0001)为基底,以N2和H2为反应气源,首次制备出垂直于基底生长的Fe3O4纳米金字塔阵列。这种新型Fm04纳米材料的阵列很可能在垂直方向上的高密度信息存储中有着潜在的应用,其结果发表在高水平学术杂志AdvMater上。

其次,在单温管式炉设备中,刘飞使用热蒸发冷凝沉积技术在较低的生长温度(

与此同时,刘飞利用真空下高温碳热还原法,首次制备出了大面积垂直于si基底生长的单晶的Boron纳米线和纳米管。扫描电子显微技术(SEM)研究表明所制备出的硼纳米线的长度为5um,平均直径为30nm。透射电子显微镜技术(TEM)和元素维度分布谱技术(ElementMapping)的研究结果都证明所获得的硼纳米材料具有完美的单晶四方结构,它们的生长方向为[001]。电子能量损失谱技术(EELS)研究结果也表明纳米线中硼元素的同时使用开尔文探针技术(KelvlnProbe)首次测试出Boron纳米材料的功函数为4.4eV。并利用改装后的SEM系统中的在位物性测试技术对单根硼纳米线的电导率和场发射特性进行了一系列系统的研究。研究结果表明:单根硼纳米线的电导率为1-8×10-3(n・cm)-1,其开启电场为5.1v/μm,阈值电场为115V/μm;在保持场发射电流为1.05μA的一小时稳定性测试中,单根硼纳米线的电流波动性低于22%并且当电场强度提高到59~74V/μm,单根硼纳米线的场发射电流密度更是达到了2X105-4×105A/cm2,这完全可以满足场发射领域的需要。由于Boron一维纳米材料具有高熔点(2300℃)、高电导率,并且具有独特的“三芯键”结构以及优良的物理和化学特性,所以这种新型纳米材料的发现以及进一步研究很有可能为纳米科学和技术的发展开创了一个崭新的领域。相关科研成果分别发表在知名科学杂志AdvancedMaterla/sc和Uitramzcroscopy上,并由世界上著名的德国的“Nanowerk”网站和国内知名的“科学网”网站分别进行了“Spotlight”报导和专题报导。

除此以外,刘飞使用化学气相沉积技术实现了对不同形貌AIN纳米结构(纳米棒,纳米锥和纳米火山口)垂直阵列的可控生长。为了研究其纳米结构场发射特性的影响因素,刘飞对比了不同形貌氮化铝阵列的场发射特性。实验结果表明,氮化铝火山口阵列具有最好的场发射特性表现,其阈值电场为7.2V/μm,场发射电流的稳定性测试表明其电流波动小于4%。同时,所有三种氮化铝纳米结构阵列都具有和其他很多具有优良冷阴极纳米材料相比拟的场发射特性,这表明其在未来的场发射领域具有很大的应用前景,结果已发表在ChinesePhysicsB等杂志上。

未来,战机握在手中

学习和实践中,刘飞不仅积累了丰富的经验,也形成了一套独特的科研方法和理念,解决了很多工程实际应用的问题,赢得了良好的经济效益和社会声誉,并获得一项国家专利。他是成功的,当然,成功之人自有成功之道。

1995年9月,刘飞迈入吉林大学的校门,考进材料科学与工程专业,四年的本科学习,刘飞以他的聪明和勤奋赢得了老师和同学们的一致认可,连续三年获得“人民奖学金”,并于1999年获“系优秀学生”称号。同年,他以优异的成绩毕业,却并不满足于自己当时的所学,或许是源于心底的那一份母校情结,刘飞选择留在吉林大学进行硕士研究,在材料科学学院攻读材料物理与化学专业。硕士学习期间,刘飞在于文学教授的指导下进行了磁控溅射生长巨磁阻多层膜的研究工作,并于2002年7月完成硕士论文《Cu/Fe多层膜的表面、界面微结构研究》,获得工学硕士学位,其论文获得学校研究生论文比赛优胜奖,这位年轻的硕士研究生充分展露了他在科研领域的才华。

2002年9月,刘飞考入中国科学院物理研究所纳米物理与器件实验室,师从于高鸿钧研究员,攻读凝聚态物理博士学位,2005年9月获得理学博士学位,并于2004年获得“所长优秀奖学金”、2006年获得中国真空学会优秀博士论文奖学金。

在科学的道路上没有捷径,正因为艰难才去登攀,而站得更高才能看得更远,年轻的刘飞博士没有止步于一点点的成绩,在科学之路上,他选择一路向前。自2005年9月,刘飞博士在中山大学理工学院的显示材料与技术国家重点实验室参加工作以来,包括在中国科学院物理研究所攻读博士期间,他主持国家自然基金委――广东省联合基金重点基金一项、国家自然科学基金青年基金一项、教育部博士点新教师基金一项,并且参与了多项国家“973”和“863”项目,共发表了学术论文(SCI、EI和ISTP收录)二十余篇。

自此,在外人看来,他的人生似乎已经进入康庄大道了,然而,“人生也有涯,而知也无涯”,国际上风起云涌的科技发展愈来愈强烈地吸引着他的目光,视线的开阔,令他在学术上有了大幅的前进。目前,还有国家自然科学基金青年基金项目等4项国家和地方自然科学基金项目研究,在他的主持下紧锣密鼓地展开着。

篇6

论文摘要:充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。这里主要介绍纳米材料在化工领域中的几种应用。

纳米材料(又称超细微粒、超细粉末)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

一、纳米材料的特殊性质

(一)力学性质

高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。

(二)磁学性质

当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。

(三)电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

(四)热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

二、纳米材料在化工行业中的应用

(一)在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。

(二)在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。(三)在精细化工方面的应用

精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

参考文献:

[1]张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.

[2]严东生,冯端,材料新星?纳米材料科学,湖南科学技术出版社,1998年.

篇7

[论文摘要]科技的发展,使我们对物质的结构研究的越来越透彻。纳米技术便由此产生了,主要对纳米材料和纳米涂料的应用加以阐述。

一、纳米的发展历史

纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

二、纳米技术在防腐中的应用

纳米涂料必须满足两个条件:一是有一相尺寸在1~100nm;二是因为纳米相的存在而使涂料的性能有明显提高或具有新功能。纳米涂料性能改善主要包括:第一、施工性能的改善。利用纳米粒子粒径对流变性的影响,如纳米SiO2用于建筑涂料,可防止涂料的流挂;第二、耐候性的改善。利用纳米粒子对紫外线的吸收性,如利用纳米TiO2、SiO2可制得耐候性建筑外墙涂料、汽车面漆等;第三、力学性能的改善。利用纳米粒子与树脂之间强大的界面结合力,可提高涂层的强度、硬度、耐磨性、耐刮伤性等。纳米功能性涂料主要有抗菌涂料、界面涂料、隐身涂料、静电屏蔽涂料、隔热涂料、大气净化涂料、电绝缘涂料、磁性涂料等。

纳米技术的应用为涂料工业的发展开辟了一条新途径,目前用于涂料的纳米材料最多的是SiO2、TiO2、CaCO3、ZnO、Fe2O3等。由于纳米粒子的比表面大、表面自由能高,粒子之间极易团聚,纳米粒子的这种特性决定了纳米涂料不可能象颜料、添料与基料通过简单的混配得到。同时纳米粒子种类很多,性能各异,不是每一种纳米粒子和每一粒径范围的纳米粒子制得的涂料都能达到所期望的性能和功能,需要经过大量的实验研究工作,才有可能得到真正的纳米涂料。

纳米涂料虽然无毒,但由于改性技术原因,性能并不理想,加上价格太贵,难以推广;而三聚磷酸铝也因价格原因未能大量应用。国外公司如美国的Halox、Sherwin-williams、Mineralpigments、德国的Hrubach、法国的SNCZ、英国的BritishPetroleum、日本的帝国化工公司均推出了一系列无毒纳米防锈颜料,性能不错,甚至已可与铬酸盐相以前我国防锈颜料的开发整体水平落后于西方发达国家,仍然以红丹、铬酸盐、铁系颜料、磷酸锌等传统防锈颜料为主。红丹因其污染严重,对人体的伤害很大,目前已被许多国家相继淘汰和禁止使用;磷酸锌防锈颜料虽比。我国防锈涂料业也蓬勃发展,也可以生产纳米漆。

我国自主生产的产品目前已通过国家涂料质量监督检测中心、铁道部产品质量监督检验中心车辆检验站、机械科学院武汉材料保护研究所等国内多家权威机构的分析和检测,同时还经过加拿大国家涂料信息中心等国外权威机构的技术分析,结果表明其具有目前国内外同类产品无可比拟的防锈性能和环保优势,是防锈涂料领域划时代产品,复合铁钛粉及其防锈漆通过国家权威机构的鉴定后已在多个工业领域得到应用。

三、纳米材料在涂料中应用展前景预测

据估算,全球纳米技术的年产值已达到500亿美元。目前,发达国家政府和大的企业纷纷启动了发展纳米技术和纳米计划的研究计划。美国将纳米技术视为下一次工业革命的核心,2001年年初把纳米技术列为国家战略目标,在纳米科技基础研究方面的投资,从1997年的1亿多美元增加到2001年近5亿美元,准备像微电子技术那样在这一领域独占领先地位。日本也设立了纳米材料中心,把纳米技术列入新五年科技基本计划的研究开发重点,将以纳米技术为代表的新材料技术与生命科学、信息通信、环境保护等并列为四大重点发展领域。德国也把纳米材料列入21世纪科研的战略领域,全国有19家机构专门建立了纳米技术研究网。在人类进入21世纪之际,纳米科学技术的发展,对社会的发展和生存环境改善及人体健康的保障都将做出更大的贡献。从某种意义上说,21世纪将是一个纳米世纪。

由于表面纳米技术运用面广、产业化周期短、附加值高,所形成的高新技术和高技术产品、以及对传统产业和产品的改造升级,产业化市场前景极好。

在纳米功能和结构材料方面,将充分利用纳米材料的异常光学特性、电学特性、磁学特性、力学特性、敏感特性、催化与化学特性等开发高技术新产品,以及对传统材料改性;将重点突破各类纳米功能和结构材料的产业化关键技术、检测技术和表征技术。多功能的纳米复合材料、高性能的纳米硬质合金等为化工、建材、轻工、冶金等行业的跨越式发展提供了广泛的机遇。各类纳米材料的产业化可能形成一批大型企业或企业集团,将对国民经济产生重要影响;纳米技术的应用逐渐渗透到涉及国计民生的各个领域,将产生新的经济增长点。

纳米技术在涂料行业的应用和发展,促使涂料更新换代,为涂料成为真正的绿色环保产品开创了突破性的新纪元。

纳米涂料已被认定为北京奥运村建筑工程的专用产品,展示出该涂料在建筑领域里的应用价值。它利用独特的光催化技术对空气中有毒气体有强烈的分解,消除作用。对甲醛、氨气等有害气体有吸收和消除的功能,使室内空气更加清新。经测试,对各种霉菌的杀抑率达99%以上,有长期的防霉防藻效果。纳米改性内墙涂料,实际上是高级的卫生型涂料,适合于家庭、医院、宾馆和学校的涂装。纳米改性外墙涂料,利用纳米材料二元协同的荷叶双疏机理,较低的表面张力,具有高强的附着力,漆膜硬度高且有韧性,优良的自洁功能,强劲的抗粉尘和抗脏物的粘附能力,疏水性极佳,容易清洗污物的性能。耐洗性大于15000次,具有良好的保光保色性能,抗紫外线能力极强。使用寿命达15年以上。颗粒径细小,能深入墙体,与墙面的硅酸盐类物质配位反应,使其牢牢结合成一体,附着力强,不起皮,不剥落,抗老化。其纳米抗冻涂料,除具备纳米型涂料各种优良性之外,可在10℃到25℃之内正常施工。突破了建筑涂料要求墙体湿度在10%以下的规定,使建筑行业施工缩短了工期,提高了功效,又创造出高质量。

四、结语

由于目前应用纳米材料对涂料进行改性尚处在初级阶段,技术、工艺还不太成熟,需要探索和改进。但涂料的各种性能得到某些改进的试验结果足以证明,纳米改性涂料的市场前景是非常好的。

参考文献:

[1]桥本和仁等[J].现代化工.1996(8):25~28.

篇8

想要考研的你,提及纳米科学与技术专业,是否会列出“神秘”“高薪”“高就业率”“高科技”这一系列关键词呢?

真正的“高富帅”专业

如果一定要用一个词来形容纳米专业,那就是“高富帅”。

说它“高”,是因为它的的确确是高科技的产物。1纳米是1米的十亿分之一,20纳米也仅相当于1根头发丝的三千分之一。也正是这么小的尺寸,才能够用来做材料。不仅如此,纳米材料还都带着“特异功能”,具有奇异的化学物理特性。纳米虽小,用途却大,小尺寸成就大空间,真是高不可测。而研究生阶段需要学的课程也很“高”:纳米材料的结构、尺寸和形貌的表征技术、纳米粉体材料的制备与表面修饰、一维纳米材料的制备、纳米复合材料的制备、纳米结构材料的制备、纳米材料的物理特性与应用、纳米电子器件的基本原理和微加工技术、纳米材料与纳米技术的最新进展和发展趋势等都是该专业的主干课。是研究生的必修课,而新专业的科研空间更加广阔,所以发SCI的概率大大增加。想要写好论文,你就要了解纳米材料与技术的最新学科发展动向、理论前沿、应用前景等。而如果你打算游学海外,就更要在研究生阶段狂抓英语了。这一专业的专业英语词汇非常庞杂,有医学、化学、物理、材料学等诸多领域,需要系统地学习。笔者硕士一年级的时候大家每周都会用英报告,这样能有效提高英文水平,即使不打算出国,阅读国外文献也会非常流畅,开阔视野。纳米专业确实很“高”,但当你真正钻研进去,就会发现它的乐趣。

说它“富”,一点也不夸张。纳米技术、信息技术及生物技术被誉为本世纪社会经济发展的三大支柱。纳米从20世纪80年代末,90年代初开始起步,经历二十多年的发展,现在已经成为突飞猛进的前沿、交叉性新型学科。纳米技术作为朝阳产业,将在生物医学、航空航天、能源和环境等领域“大显身手”。美国国家科学基金会的纳米技术高级顾问米哈伊尔·罗科甚至预言:“由于纳米技术的出现,在今后30年中,人类文明所经历的变化将会比过去的整个20世纪都要多得多。”如此看来,纳米技术必将创造巨大的经济价值,同时也能为该专业的同学提供良好的职业发展平台。

说它“帅”,是因为它有独到魅力,吸引青年学子投其怀抱。其实,大部分工科生的研院生活都是相同的,读文献、做实验、组会、听报告,这些几乎就是我们读研生活的全部。想学好纳米专业,你首先要做个杂家。在研究生阶段,你要掌握数学、物理、化学等方面的基本理论和基本知识,学习环境纳米材料的绿色制备及其规模化,面向环境检测的纳米结构与器件的构筑原理、方法,并且了解纳米材料与纳米结构性能与机理。而做到这些还远远不够,因为理工科专业的直接目标在于应用,因此还需要学习纳米材料在污染治理中的应用原理、技术与装置研发、纳米材料的环境效应与安全性评估、纳米材料在节能和清洁能源中的应用等,掌握材料学的工艺装备、测试手段与评价技术,具备相应的科研能力,具有从事科学研究和解决工程中局部问题的能力。运用纳米技术解决这些问题和一般的常规思路有着很大的不同,有着前路未知的期盼和发现时的狂喜,为此我们都成为典型的“技术宅”,大部分时间会宅在实验室里,在外人看来,可能是只顾科研无心生活的“苦行僧”,而只有我们才能体会到纳米的“帅”及给我们生活所带来的乐趣。

想要学好纳米专业,团结协作的能力必不可缺。其学习都是以课题组和实验室为单位,很多作业和项目都是大家集体完成,比如开发一种新型的纳米材料,大家都有不同的分工,这就需要我们能紧密地合作与沟通,分担辛苦分享成功。

同时,我们还需要有极强的表达能力和动手实践的能力。我们学校经常举办学术沙龙,需要大家上台演讲,不仅本专业的导师在场,其他专业的学生和老师也会来听,并从不同角度提出意见,所以我们要足够有气场才能HOLD住场面。而实践方面,我们都有做老师科研助理的机会,同时开展自己的课题研究,不仅要写得好论文,还要做好实验。想读纳米专业,要做的功课非常多,你只有都尝试了,才能体会到这个专业的巨大魅力,才会在科技的海洋里尽情遨游。

就业面窄是误区

对于纳米科学与技术专业,很多人对它的认识存在误区。很多人认为,纳米作为高精尖技术与日常生活相距太远,所以想当然地认为其就业难。

其实,纳米真实地存在于我们的日常生活中,而随着科技的发展,未来有一天我们的衣食住行都将离不开纳米技术。所以如果你能有幸就读该专业研究生,并在学术上有所造诣,愿意将所学学以致用,那么你的就业前景无限光明!

那么纳米技术到底是怎样和实际生活联系起来的呢,而我们工科生,又将以何种方式参与这种科技改变人们生活的进程呢?

衣:在纺织和化纤制品中添纳米微粒,可以除味杀菌。化纤布结实耐磨,但会产生静电现象,加入少量金属纳米微粒就可消除静电,穿起来非常舒适。

食:利用纳米材料,冰箱的抗菌能力大大增强。纳米材料做的无菌餐具、无菌食品包装用品已经进入市场。利用纳米粉末,可以使废水有效净化,完全达到饮用标准,纳米食品色香味俱全,还对健康大有裨益。

住:对于我们这代人而言,居家做家务、清理房间是一大愁事,纳米技术的应用可以省下我们很多力气。通过纳米技术,墙面涂料的耐洗刷性可提高10倍。玻璃和瓷砖表面涂上纳米薄层,可以制成自洁玻璃和自洁瓷砖,完全不需要擦洗。含有纳米微粒的建筑材料,还可以吸收对人体有害的紫外线。既省时省力又对身体好。

行:在出行方面,纳米材料可以提高和改进交通工具的性能指标。纳米陶瓷有望成为汽车、轮船、飞机等发动机部件的理想材料,可以大大提高发动机效率、工作寿命和可靠性。纳米球添加剂可以在机车发动机加入,起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。纳米卫星可以随时向驾驶人员提供交通信息,帮助其安全驾驶。

而这些,只是纳米科技应用在生活中的很小一部分,纳米技术兴起晚,发展态势迅猛,更多的核心技术需要我们这一代去发掘,以期使之更好地为民生服务。可见纳米技术在日常生活中无处不在,各行各业都需要拥有高技术高学历的纳米技术专业人才,所以就业前景广阔。

具体的就业方向,男生、女生之间相差很大。纳米专业的大部分女硕士,特别是女博士一般选择到大学或科研院所做研究。研究领域涵盖纳米材料、黏合剂、涂料、电镀、陶瓷等相关领域,从事相关产品开发、生产和检测等方面。大部分男生会去纳米材料行业企业或传统材料相关企业供职。可以从事纳米材料表征、石墨烯及碳纳米材料研发、纳米材料改性、纳米材料合成、无机纳米材料制备以及交叉学科纳米材料应用的相关工作。

跨专业报考受青睐

纳米科学与技术是一个技术性很强的专业,不过并不限制跨专业报考,纳米科学与技术专业不仅不是个排外的“高富帅”,反而非常欢迎跨专业的学生融入其中,共同搭建纳米专业的大舞台。纳米科学与技术专业在工科或理科门类招生,不同学校有所不同,但都非常欢迎与之类似的材料专业同学报考,因为都涉及材料学的基础知识,所以学起来会得心应手。同时,理工科专业背景如物理、化学甚至数学这类基础学科出身的学生,也很受该专业欢迎。

在报考纳米科学与技术专业的学生中,也有一部分医学生。未来纳米技术应用于医学领域是大势所趋。利用纳米技术制成的微型药物输送器,可将适当剂量的药物,通过体外电磁信号的引导准确送达病灶部位,有效地起到治疗作用,同时可以减轻药物的不良的反应。用纳米制造成的微型机器人,它的体积可是小于红细胞的,你能想象到吗?通过它向病人血管中注射,能疏通脑血管的血栓,清除心脏动脉的脂肪和沉淀物,还可“嚼碎”泌尿系统的结石等。而随着纳米技术的发展,它与医学还会有更多的交叉。

院校介绍

对纳米科学与技术这种新兴学科来说,每个学校都有自己的特色和侧重,所以这里重点介绍一下。而通过这些不同院校的专业方向设置,我们也可以多角度地了解这一专业。

国家纳米科学中心

国家纳米科学中心是中国科学院与教育部共同建设并具有独立事业法人资格的全额拨款直属事业单位,自2005年开始招收研究生。现有博士学科专业点3个:凝聚态物理、物理化学和材料学;硕士学科专业点3个:生物物理、生物工程和材料工程。鉴于纳米科学与技术学科的前沿交叉特性,在招生阶段,现将该学科挂靠在物理学、化学、材料科学与工程和生物学4个一级学科下,并相应产生4个专业代码。涉及纳米科技系列进展、纳米检测系列讲、文献信息利用、人文系列讲座、纳米功能材料等课程。

国家纳米科学中心2013年在7个专业招收硕士研究生35人,专业包括纳米科学与技术、凝聚态物理、物理化学、材料学、生物物理学、材料工程和生物工程,研究方向涵盖高分子纳米功能材料、生物纳米结构、纳米医学、纳米复合材料、纳米电子学等几十个方向,方向非常细化,具有材料、半导体、物理、化学、微电子、生物、医药等专业背景的学生都可以报考。相信有志于纳米专业的学生,一定会在这里找到适合自己的研究方向。

国家纳米中心是比较典型的科研所,其吸引考生的除了实力,很重要的一点就是待遇优厚。该中心不需学生缴纳学费,如遇国家政策调整还会有高额的奖学金返还制度,硕士研究生根据不同年级,每个月可以拿到1300~2500元的奖学金,博士会拿到3100~4500元的奖学金。此外,还会有其他生活补助等。研究生公寓已经完全宾馆化管理,非常舒适。在国家纳米中心深造,没有经济上的后顾之忧,这样你才可以将全部精力投入到学习中去。

大连理工大学

大连理工大学的工程力学系开设生物与纳米力学专业,已然在行业内一枝独秀。该学科依托于工程力学系和工业装备结构分析国家重点实验室,软硬件条件优越,拥有先进的实验设备和仪器。学生有充足的动手实践机会,能在宏观、微观等不同层次上,进行跨学科的数值模拟和力学实验。同时,也有国家自然科学基金、重点基金、“863”“973”等众多项目和基金支持。

该专业现在有生物器官生物力学模型及新材料应用研究、分子模拟和计算机辅助药物分子设计、微纳米与多尺度力学研究、生物材料的力学行为及其多功能化4个研究方向,涉及到力学、医药、生物、机械、材料、电子、控制、测量、微纳科技等领域。

大连理工大学这个专业的直博生学制是4年,而一般的直博生需要学习5年时间,而分开读硕士和博士一般需要6至7年,这吸引了不少学生报考,因为可以节约1~3年时间。当然,在4年的时间里完成硕士和博士学业,是一件很具挑战的事情,需要最大限度地提升效率。

苏州大学

苏州大学纳米科学技术学院是苏州大学、苏州工业园区政府、加拿大滑铁卢大学携手共建的一所高起点、国际化的新型学院。该学院建立于2010年,由全球著名纳米与光电子材料学家、中国科学院院士、第三世界科学院院士李述汤教授担任院长,教学科研实力雄厚,是国内高校中为数不多的专门的纳米科学学院。招生方向涵盖纳米生物化学、纳米技术工程、纳米材料、有机无机复合纳米材料等。有关纳米的专业在物理、化学、生物学、材料科学与工程4个学科下招收学术型研究生,相关专业学生都可以报考。

需要提醒大家的是,苏州大学纳米科学技术学院初试提供详细的辅导书和真题,有意报考的同学要多关注学院的网站,以获得第一手信息。

武汉大学

武汉大学的纳米科学与技术专业在物理科学与技术学院和化学与分子科学学院均有招生,各有侧重。前者分为纳米复合材料、纳米光催化材料与技术、纳米光电子学、纳米管线阵列及其智能传感器、纳米材料制备与表征和纳米尺度结构与性能关系6个方向。后者在纳米催化、纳米生物医学、纳米材料分离分析、微纳传感技术和高分子纳米药物载体。很多方向在国内上处于领先地位,每年也有大量学生报考,竞争力较强。

武汉大学与国外多所大学有合作关系,大家如果在武大读研,出国交流、学习的机会比较多。

华中科技大学

华中科技大学是典型的工科学校,其纳米专业当然也首屈一指。华科的纳米专业同样是热门,除去每年招收本校内推的学生,考研的竞争非常激烈。

在培养模式方面,华科非常重视学、研、产相结合,科研成果转化率非常高。在就业方面,很多硕士研究生在各科研机构及高校任职。如果你求学在华科,就不用愁生活保障的问题,学校的奖励机制非常完善。学院对每位研究生在校期间将发放生活津贴,并设立各类奖学金以奖励优秀的研究生,其奖励比例达80%。

篇9

论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。

1应用于生物医学中的纳米材料的主要类型及其特性

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的De Mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献

[1]Philippe P,Nang Z L et al.Science,1999,283:1513

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441

[3]赖高惠编译.化工新型材料,2002,(5):40

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510

[9]刘新云.安徽化工,2002,(5):27-29

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71

[11]李沐纯等.中国现代医学杂志,2003,13:140-141

篇10

“弃暗投明”的新技术

宋延林笑着说,走上“纳米材料绿色制版技术”的研发之路,始自一次“意外”。

那是1995年,正在攻读博士学位的宋延林,琢磨着自己关于信息存储材料的研究工作。他不想重复别人的材料体系,于是有了一个大胆的想法:既然当时国际上主流的信息存储材料是无机材料,那么自己就挑战一下有机材料。

这在当时并不被人看好,但他与合作伙伴最终成功地将信息存储点的尺寸从 十几个纳米缩小至1.3个纳米。相关论文很快被国际权威学术期刊接受发表,研究成果亦被两院院士评选为1997年“中国十大科技进展”之一。“这给了我一个很大的启发,不是国外没有做过的事情就不能做。以前中国人总觉得引领科技进步的一定是西方国家,我们只能一味追赶,似乎最好的成绩也只能是缩小与国际先进水平的差距。但事实不应该是这样。”

从那天开始,宋延林就打定主意,要做与别人不一样的东西。多年以后,灵感聚焦于“印刷技术”。

从成像原理来看,印刷技术的发展可以划分为两大阶段:首先是“物理成像阶段”, 基于物理凹凸结构成像,譬如雕版印刷、木活字印刷、铅字印刷。接下来是“化学成像阶段”,基于化学感光成像,主要有两种技术,一种是激光照排技术,上世纪80年代由王选院士主持研发的汉字激光照排技术,目前仍是中国印刷业的主流技术;另一种是国际上流行的计算机直接制版(CTP)技术。

但无论是激光照排技术还是CTP技术,都是感光成像的过程。激光照排的过程与胶卷曝光类似:先将计算机处理的信息通过激光扫描到感光胶片上,再通过曝光、显影、定影得到一张底片,底片在涂有感光层的PS版上重复曝光、显影、冲洗的过程,得到最终印版。

“事实上,高质量的信息传输,应尽可能减少信息转换的环节。有没有一种办法,可以直接打印出印版,省略化学显影过程呢?”

宋延林首先考虑的是确定印版的材料要求。对于印刷而言,印版的图文区需要“沾油墨”,空白区则“不沾油墨”。高质量的印刷,要求两个区域必须形成足够大的反差,否则很容易“糊版”。宋延林根据信息存储中提高信噪比的要求和纳米材料控制表面性质的研究基础,在印版表面形成特殊的纳米结构,确保图文区和空白区有足够的反差,且界面清晰。

不过事情远没有大功告成,“耐印力”成为紧跟着必须面对的挑战。“如果要让这项技术走向市场,必须确保它可以满足常规生产要求。目前主流印刷版材的耐印力,比如印刷普通报纸,需要在10万份以上。最终我们通过纳米材料的复合增强,使新版材的耐印力达到同一水准。”

所谓“复合增强”,打个通俗的比方,和增强柏油马路耐磨性类似:只铺沥青的路面极易损坏,在沥青中掺入石子,就大大提高了耐磨性。“虽然听起来简单,但实际操作时,还要保证极其细微的纳米颗粒不团聚,特别是在南方、北方零上40℃至零下40℃的温差下,不沉淀,不堵头,打印出的墨滴大小要与版材表面张力、纳米孔的孔径形成定量可控的关系,实现所有这些,背后是一系列复杂细致的研究工作。”

除此之外,由于纳米材料绿色制版技术在国际上并无先例可循,因此亦没有成熟的配套设备。为此,技术团队还要开发针对报业、商业和票据类的设备及相应软件。

当一切都从理论化为现实,一种全新的印刷制版技术横空出世。宋延林一口气描述它的操作原理:“用计算机处理好全部图文信息,直接将印版打印出来,图文区是亲油的,空白区是亲水的,两者反差足够大,足够耐磨。”

新技术的优势显而易见。首先,传统的化学成像过程,印版与胶片的生产、运输和使用过程都要严格避光,非常麻烦。而纳米材料制版技术,则是基于“非感光”的全新原理,宋延林打趣说,有领导说这是个“弃暗投明”的新技术。

其次,依赖化学成像形成的印刷产业链,有两大无法根除的污染。

一是制版的污染。感光成像的化学冲洗过程,是将感光材料全面覆盖在版基上,然后根据实际图文情况,将“图文区”保留,“空白区”侵蚀掉。如此一来,80%以上的感光材料都被浪费,同时造成每年百万吨量级的废液排放。

二是版基的污染。目前主流印刷制版技术的铝版基制备,实际是一个电解氧化的过程,电解液里的浓酸,会腐蚀消耗铝材,再加之曝光过程中的损耗,大量的铝材变成污染物被浪费,并造成严重的金属离子污染。而废酸用石灰中和后,又会形成大量废渣。

“纳米材料印刷制版技术是用计算机直接打印制版,没有化学腐蚀过程,既不会形成废液、废渣污染,也不会损失铝材。被消耗的仅仅是打印的墨水,成本优势明显,有可观的利润空间,且可以通过鼠标简便操作。”宋延林说,这是令他自豪的一点。

他永远都记得,有一期《时代周刊》的封面触目惊心:一只巨大的iphone手机,连接着一座冒着黑烟的工厂,用醒目的字体探讨这只“神器”为什么会选择“made in china”(中国制造),结论有二:一靠“廉价人力”,二靠“超级污染”。“中国留给世界的印象,一定要改一改了!事实证明,我们可以拿出领先、环保的绿色解决方案。”

再见,试验室!