数控论文范文

时间:2023-04-11 18:32:42

导语:如何才能写好一篇数控论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

数控论文

篇1

[关键词]数控铣刀分类应用

中图分类号:TG21文献标识码:B文章编号:1671-7597(2008)0110042-01

近年来,随着数控机床的不断发展,数控机床刀具种类越来越多,其划分也越来越细,但无论样式如何改变,从总体上看,数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,而数控刀具中又以数控铣刀应用最为广泛,现就目前数控刀铣刀的类型总结如下。

一、数控铣刀的分类

(一)按制造铣刀所用的材料可分为

1.高速钢刀具;

2.硬质合金刀具;

3.金刚石刀具;

4.其他材料刀具,如立方氮化硼刀具、陶瓷刀具等。

(二)按铣刀结构形式不同可分为

1.整体式:将刀具和刀柄制成一体。

2.镶嵌式:可分为焊接式和机夹式。

3.减振式当刀具的工作臂长与直径之比较大时,为了减少刀具的振动,提高加工精度,多采用此类刀具。

4.内冷式:切削液通过刀体内部由喷孔喷射到刀具的切削刃部;

5.特殊型式:如复合刀具、可逆攻螺纹刀具等。

(三)按铣刀结构形式不同可分为

1.面铣刀(也叫端铣刀):面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。面铣刀多制成套式镶齿结构和刀片机夹可转位结构,刀齿材料为高速钢或硬质合金,刀体为40Cr。钻削刀具,包括钻头、铰刀、丝锥等;

2.模具铣刀:模具铣刀由立铣刀发展而成,可分为圆锥形立铣刀、圆柱形球头立铣刀和圆锥形球头立铣刀三种,其柄部有直柄、削平型直柄和莫氏锥柄。它的结构特点是球头或端面上布满切削刃,圆周刃与球头刃圆弧连接,可以作径向和轴向进给。铣刀工作部分用高速钢或硬质合金制造。

3.键槽铣刀:用于铣削键槽。

4.成形铣刀:切削刃与待加工面形状一致。

二、常用数控铣刀

现就几种目前比较常用的铣刀类型就其应用场合加以说明。

(一)单刃铣刀

该刀具加工效率高,采用优质的硬质合金作刀体,一般采用刃口锐磨工艺,以及高容量的排屑,使刀具在高速切割中有不粘屑,低发热,光洁度高等特点。它广泛应用于工艺品、电子、广告、装饰和木业加工等行业,适合工厂批量加工以及高要求的产品。

(二)两刃立铣刀和四刃立铣刀

该类刀具一般采用整体合金结构,其特点是拥有很强的稳定性,刀具可在加工面上稳固地工作,使加工质量得以有效的保证。适用材料范围广,如碳素钢、模具钢、合金钢、工具钢、不锈钢、钛合金、铸铁、适用于一般模具、机械零件加工。(三)螺纹铣刀

随着中国数控机床的发展,螺纹铣刀越来越得到人们的认可,它很好的加工性能,成为降低螺纹加工成本、提高效率、解决螺纹加工难题的有力加工刀具。由于目前螺纹铣刀的制造材料为硬质合金,加工线速度可达80~200m/min,而高速钢丝锥的加工线速度仅为10~30m/min,故螺纹铣刀适合高速切削,加工螺纹的表面光洁度也大幅提高。高硬度材料和高温合金材料,如钛合金、镍基合金的螺纹加工一直是一个比较困难的问题,主要是因为高速钢丝锥加工上述材料螺纹时,刀具寿命较短,而采用硬质合金螺纹铣刀对硬材料螺纹加工则是效果比较理想的解决方案.可加工硬度为HRC58~62。对高温合金材料的螺纹加工,螺纹铣刀同样显示出非常优异的加工性能和超乎预期的长寿命。对于相同螺距、不同直径的螺纹孔,采用丝锥加工需要多把刀具才能完成,但如采用螺纹铣刀加工,使用一把刀具即可。在丝锥磨损、加工螺纹尺寸小于公差后则无法继续使用,只能报废;而当螺纹铣刀磨损、加工螺纹孔尺寸小于公差时,可通过数控系统进行必要的刀具半径补偿调整后,就可继续加工出尺寸合格的螺纹。同样,为了获得高精度的螺纹孔,采用螺纹铣刀调整刀具半径的方法,比生产高精度丝锥要容易得多。对于小直径螺纹加工,特别是高硬度材料和高温材料的螺纹加工中,丝锥有时会折断,堵塞螺纹孔,甚至使零件报废;采用螺纹铣刀,由于刀具直径比加工的孔小,即使折断也不会堵塞螺纹孔,非常容易取出,不会导致零件报废;采用螺纹铣削,和丝锥相比,刀具切削力大幅降低,这一点对大直径螺纹加工时,尤为重要,解决了机床负荷太大,无法驱动丝锥正常加工的问题。

螺纹铣刀作为一种采用数控机床加工螺纹的刀具,成为一种目前广泛被采用的实用刀具类型。

三、结论

数控铣刀的种类多种多样,随着数控行业的日益发展,数控铣刀的类型和应用条件和场合也必将发生变化,我们仍要继续对其动态进行关注和研究,这是很有现实意义的。

参考文献:

[1]梁海、黄华剑,螺纹铣刀在数控加工中心上的应用[J].现代制造工程.2006,10:2931.

篇2

案例工件加工面积较大,机加工会产生较大的内应力,内应力较大而未及时予以去除时,会导致工件在运动过程中容易产生变形甚至形成裂纹,因而需要热处理去应力,这就需要机加工时考虑热处理后的装夹、碰数问题,将整个加工过程分成两个阶段:热处理前及热处理后。热处理前需去除大部分材料,只留精加工余量;热处理后需要清除预留的材料,并得到在精度要求范围内的最终零件,精加工使用加工精度较高的德马吉DMC64Iinear加工中心,有效行程640mm×600mm,数控系统为FANUC180i-MB,主轴最高转速12000r/min。热处理前的粗加工分正面、背面、及两侧面四个方位的加工,因热处理去应力后,工件会有所变形,需重新以一个准确的参考基准作为加工碰数基准,像这种大滑块一般以基准角碰数,这就需要一个准确的基准角。粗加工时,预留顶面材料,其平面作为热处理后研磨支撑平面,热处理后可通过磨床,研磨加工出基准角的三个基准面,研磨量为0.2mm,保证其垂直度。热处理后的精加工时,加工方位与热处理前一样,但因背部材料已去除,工件正面加工时(胶位面方向)如何装夹是要考虑的问题。如果用虎钳夹住尾部平位加工,其尾部平位与高度比为60∶322,大概为其总高度的1/6,有2/3的重量处于悬空状态,且正面有较多的材料需要去除,受力不均匀,容易在角位处产生较大内应力,有可能会产生变形或裂纹,并且这么大的滑块装夹、拖表不方便,对机床要求也较高,需要考虑其他装夹工艺。解决方案是在加工背部耐磨片槽时预留工艺凸台,这样在正面加工时可用工装板及垫块紧固装夹固定,其好处是装夹、对数方便,并能较好地平衡加工时的作用力,实用性强。热处理后精加工时,因正面已粗加工,按精加工时的方法将无法装夹固定,这时可考虑使用直角弯板装夹,在数控铣床上去除工艺台背面粗加工时,耐磨片槽后部有一大块相边区域需要去除材料,其尺寸达到261.5mm×174.8mm×280mm,常规的数控加工,需要用刀具一层层的切削,必定会占去较长的加工时间,并且损耗刀具,生产效率不高。通过分析对比,用线切割加工较为合适,不但能得到一块实用的材料,而且省下很多的时间,同时考虑工艺台,这样线割时将一起切割出来,留0.5mm作为热处理后精加工余量,这样背面方位加工只需加工耐磨片槽,大大节省时间,一举多得。

2滑块的数控加工

编程分热处理前的粗加工及热处理后的精加工,按不同的方位加工顶面方位、背面方位及正面方位。热处理前粗加工需要去除大部分材料,考虑装夹加工工艺,预留部分材料到热处理后,粗加工整体留预量0.3mm。因篇幅关系,下文重点介绍正面方位的数控编程加工,编程软件为UGNX7.5,机床使用德马吉DMC64Iinear加工中心,数控系统为FANUC180i-MB,主轴最高转速为12000r/min。正面装夹如图4所示,将已线切割余料的工件,通过螺钉与工装板、垫块紧固为整体,并固定于机床工作台上,基准角对刀。

(1)热处理前粗加工

加工编程前先设定加工坐标系、安全平面、材料毛坯及加工工件,粗加工使用型腔铣削加工,该模块提供粗切单个或多个型腔、沿任意形状切去大量毛坯材料以及可以加工出型芯的全部功能,最突出的功能是对非常复杂的形状产生刀具运动轨迹,确定走刀方式。零件正面方位的型腔铣削粗加工,加工余量0.3mm,用40R6的圆鼻刀完成主体大部分材料的去除工作,切削模式为跟随部件,封闭区域用螺旋进刀,开放区域用圆弧进刀,区域间的快速移刀为到达安全平面,区域内为前一平面;切削深度为顶面开始深70mm,每刀公共深度为恒定0.3mm,主轴转速为1800r/min,进给为2000mm/min。再采用35R5的圆鼻刀完成次级窄角位的材料的去除工作,加工方法设置与上述40R6刀具一样,控制切削范围,使用参考刀具42R8,对40R6未能加工的区域进行补刀。接着可用更小的刀具进行更小窄角位的材料去除工作,但因粗加工后需要热处理去应力,去应力并不会增加材料硬度,部分更窄角位的余料对整体应力影响不大,为减少工作量,提高加工效率,可不需要进一步粗加工。

(2)热处理后半精加工

热处理后材料已去除应力,可完全去除多余材料,但工件表面有变形,需通过磨床研磨加工,重新定好基准。研磨好三个基准面及工艺台面后,按图4所示正面装夹好,整体固定于德马吉DMC64Iinear加工中心上。因滑块正面为产品的表面,要求较高,且正面各层陡峭不一样,可通过切削层深度控制切削范围,分段进行加工,减少移刀时间,优化刀路。如图9所示,先用30R5圆鼻刀进行半精加工,去除热处理前的窄角位材料,切削模式使用轮廓铣加工,切削层深度0.3mm,切削余量为0.3mm,控制切削层深度为0~60mm,完成顶部较凸出部分的清角加工;接着用同样的刀具及加工参数控制切削深度为60~70mm,完成中间较平表面的加工;延续刀具及加工方法,控制切削深度为70~140mm,完成侧面垂直面的加工。完成上述刀路后,正面大部分余料已去除,但更窄角位处还有余量,延续上述的加工方法,使用型腔铣模块轮廓铣进一步清角,如图10所示,先用16R0.8的圆鼻刀,再用10R5、6R3的圆鼻刀逐级递减更换更小的刀具进行清角,进一步减少余量。完成窄角位半精加工后,延续半精加工的装夹方法,在同一机床上进行整体表面精加工,以减少装夹对刀过程中的误差。这里采用固定轴铣削加工,该模块提供了完全和综合的,用于产生3轴运动的刀具路径,实际上它能加工任何曲面模型和实体模型,可以用功能很强的方法来选择零件需要加工的表面或加工部位。有多种驱动方法和走刀方式可供选择,如沿边界、径向、螺旋线以及沿用户定义的方向驱动,此外,还可以容易地识别前道工序未能切除的区域和陡峭区,快速完成清除上一次加工的余量,提高工件的加工质量,使精加工时均匀切削。

3结束语

篇3

【论文摘要】:随着计算机业的快速发展,数控技术也发生了根本性的变革,是近年来应用领域中发展十分迅速的一项综合性的高新技术,文章结合国内外情况,分析了数控技术的发展趋势。

1.引言

数控技术是一门集计算机技术、自动化控制技术、测量技术、现代机械制造技术、微电子技术、信息处理技术等多学科交叉的综合技术,是近年来应用领域中发展十分迅速的一项综合性的高新技术。它是为适应高精度、高速度、复杂零件的加工而出现的,是实现自动化、数字化、柔性化、信息化、集成化、网络化的基础,是现代机床装备的灵魂和核心,有着广泛的应用领域和广阔的应用前景。

2.国内外数控系统的发展概况

随着计算机技术的高速发展,传统的制造业开始了根本性变革,各工业发达国家投入巨资,对现代制造技术进行研究开发,提出了全新的制造模式。在现代制造系统中,数控技术是关键技术,它集微电子、计算机、信息处理、自动检测、自动控制等高新技术于一体,具有高精度、高效率、柔性自动化等特点,对制造业实现柔性自动化、集成化、智能化起着举足轻重的作用。目前,数控技术正在发生根本性变革,由专用型封闭式开环控制模式向通用型开放式实时动态全闭环控制模式发展。在集成化基础上,数控系统实现了超薄型、超小型化;在智能化基础上,综合了计算机、多媒体、模糊控制、神经网络等多学科技术,数控系统实现了高速、高精、高效控制,加工过程中可以自动修正、调节与补偿各项参数,实现了在线诊断和智能化故障处理。

长期以来,我国的数控系统为传统的封闭式体系结构,CNC只能作为非智能的机床运动控制器。加工过程变量根据经验以固定参数形式事先设定,加工程序在实际加工前用手工方式或通过CAD/CAM及自动编程系统进行编制。CAD/CAM和CNC之间没有反馈控制环节,整个制造过程中CNC只是一个封闭式的开环执行机构。在复杂环境以及多变条件下,加工过程中的刀具组合、工件材料、主轴转速、进给速率、刀具轨迹、切削深度、步长、加工余量等加工参数,无法在现场环境下根据外部干扰和随机因素实时动态调整,更无法通过反馈控制环节随机修正CAD/CAM中的设定量,因而影响CNC的工作效率和产品加工质量。由此可见,传统CNC系统的这种固定程序控制模式和封闭式体系结构,限制了CNC向多变量智能化控制发展,己不适应日益复杂的制造过程,因此,大力发展以数控技术为核心的先进制造技术已成为我们国家加速经济发展、提高综合国力和国家地位的重要途径。

3.数控技术的发展趋势

数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业的发展起着越来越重要的作用。从目前世界上数控技术发展的趋势来看,主要有如下几个方面:

3.1高精度、高速度的发展趋势

尽管十多年前就出现高精度高速度的趋势,但是科学技术的发展是没有止境的,高精度、高速度的内涵也在不断变化,目前正在向着精度和速度的极限发展。

效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工。近来采用大型整体铝合金坯料"掏空"的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。

3.25轴联动加工和复合加工机床快速发展

采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。3.3智能化、开放式、网络化成为当代数控系统发展的主要趋势

21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。

目前许多国家对开放式数控系统进行研究,数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心。网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,反映了数控机床加工向网络化方向发展的趋势。

4.结束语

随着人们对数控技术重视,它的发展越发迅速。文中简要陈述当前的发展趋势,另外数控技术的正不断走向集成化,并行化,仍有广阔的发展空间。

参考文献

[1]王立新.浅谈数控技术的发展趋势[J].赤峰学院学报.2007.

[2]董淳.数控系统技术发展的新趋势[J].可编程控制器与工厂自动化.2006.

篇4

相信现如今大家的毕业论文已经撰写到尾声了吧,但是撰写论文时少不了遇到很多困难,那么你知道数控毕业论文致谢词应该怎么写吗?下面是学术参考网小编的分享,欢迎阅读!

在本论文的撰写过程中,从论文选题到搜集资料,从开题报告、写初稿到反复修改,期间经历了发愁不知如何着手、急躁、彷徨,到最终完成论文的那种喜悦心情。如今,伴随着这篇毕业论文的最终成稿,复杂的心情烟消云散,自己甚至还有一点成就感。钟海雄老师他作为我的指导老师都始终给予我细心的指导和不懈的支持。在钟海雄老师身上我不仅学到了许多的专业知识,更感受到他工作中的兢兢业业,生活中的平易近人。此外,钟老师严谨的治学态度和忘我的工作精神值得我去学习。正是由于他在百忙之中多次审阅全文,对细节进行修改,并为本文的撰写提供了许多中肯而且宝贵的意见,本文才得以成型。在此向×老师致以诚挚的谢意和崇高的敬意。

随着毕业论文的完成,意味着我即将告别这所学校,即将告别我的学生时代。心中有太多太多的不舍。但人应该向前看,迎接下一个程途。很感谢这三年来在我的成长道路上扶持过我,指点过我的人。感谢所有在大学期间传授我知识的老师。同时我想特别感谢×××老师,她给了我很多帮助。赵老师在我眼里是个很有耐心很乐于帮助学生解决问题的老师,她平易近人,教学认真严谨。此外还要感谢我的家人以及我的同学们,是他们给了我关怀,帮助,给了我力量。同时还再次感谢我的指导老师——钟海雄老师。

现在已经是踏入社会。这就要求自己得多一份责任和承担。我知道要面对的抉择和困难会很多,但是不管前途多么的未知和艰难,我会毫无畏惧地前行!我相信我自己。

篇5

为了提高齿轮加工精度和加工效率,到了20世纪80年代以后,国内外开始对齿轮加工机床进行数控化改造和生产数控齿轮加工机床。特别是近年来,由于微电子技术的迅速发展和以现代控制理论为基础的高精度、高速响应交流伺服系统的出现,为齿轮加工数控系统的发展提供了良好的条件和机遇。我们将齿轮加工系统分为全功能和非全功能两大类。

差动挂轮箱

非全功能齿轮加工数控系统的结构

配这类数控系统的机床进给轴为数控轴,多采用伺服系统。由于80年代齿轮加工数控化刚开始起步,当时数控技术无法满足齿轮加机床展成分度链的高同步性的要求,因此展成分度链和差动链仍为传统的机械传动。这种数控加工方式,调整比机械式齿轮加工机床要方便的多。它们可以通过几个坐标轴的联动来实现齿向修形齿轮的加工,省去了传统加工修形齿轮所需要的靠模等装置,提高了生产率和加工精度。但是这类齿轮加工数控系统属经济型数控系统,由于其展成分度链和差动链仍为传统的机械式,齿轮加工精度取决于机械传动链的精度。目前这种齿轮加工数控系统多用于对现有机械式齿轮加工机床的数控改造。

全功能齿轮加工数控系统的结构

近年来,由于计算机技术的迅猛发展和高精度、高速响应的伺服系统的出现,全功能数控齿轮加工机床已成为国际市场上的主流产品。全功能数控指不仅齿轮机床的各轴进给运动是数控的,而且机床的展成运动和差动运动也是数控的。目前展成分度链和差动链的数控处理方法不尽相同,有基于软件插补以及基于硬件控制的两种类型。

分度挂轮箱

基于软件差补的齿轮加工数控系统

这类数控系统的刀具主轴一般采用变频装置控制,工件主轴通过数控指令经伺服电动机直接驱动。目前国产数控齿轮加工机床所配置的数控系统大多为国外知名品牌的通用数控系统,因而都是采用这种基于软件插补的数控加工方式。

基于软件插补方法的优点是工件主轴的转速完全由数控系统的软件控制,因此,可以通过编制适当的软件,用通用的刀具来高精度快速地加工非圆齿轮、修形齿轮,且加工精度远远高于传统的机械靠模加工方法。

目前,由于控制精度、动态响应等方面的原因,基于软件插补的齿轮加工数控系统还不能胜任高速高精度磨齿机的要求。随着计算机速度的不断提高、新控制方法的出现和控制精度的提高,这种方法的应用面越来越广。基于硬件控制的齿轮加工数控系统在传统齿轮机床的展成分度链中,刀具和工件是由同一个电动机来拖动的,传动链很长,并常需要采用精度不易提高的传动元件(如锥齿轮、万向联轴节等),所以提高机床精度受到限制。

目前多采用光电盘脉冲分频分度传动链。砂轮主轴以固定转速旋转,并带动发信元件(如光电盘),光电盘信号经数字分频后,控制工件轴伺服电机以一定的转速旋转以实现精确分度传动关系。同时把机床的差动链也纳入控制系统。

基于硬件控制的齿轮加工数控系统的优点:采用硬件控制,特别是采用高同步精度的锁相伺服控制时,精度高,响应速度快。缺点:机构上比较复杂,比软件插补的方式多一个硬件控制电路部分。硬件控制的电子齿轮比(差动系数、主传动比),目前还不能做到实时修改,即不能实时改变工件主轴的转速,因而不能用于加工非圆齿轮等。

非全功能数控系统由于加工精度取决于机械传动链,仍存在交换挂轮,操作较繁,已较少使用。目前多用于现有机械式齿轮加工机床的数控化改造;基于软件插补的齿轮加工数控系统具有柔性大的优点,可以很方便地通过程序控制,能加工非圆齿轮和各种修形齿轮,因而在加工精度不高的滚齿机和插齿机中有广泛的应用;基于硬件控制的齿轮加工数控系统,由于展成运动是直接采用硬件控制,特别是采用跟踪精度极高的锁相伺服技术时,能很好地保证齿轮机床差动和展成运动精度,响应速度快,但柔性差,适于加工精度要求高的磨齿机。

全功能的齿轮加工数控系统在国际上已是主流产品,也必将在国内成为主流产品。

磨削技术除向超精密、高效率和超硬磨料方向发展外,自动化也是磨削技术发展的重要方向之一。

目前磨削自动化在CNC技术日趋成熟和普及基础上,正在进一步向数控化和智能化方向发展,许多专用磨削软件和系统已经商品化。磨削是一个复杂的多变量影响过程,对其信息化的智能化处理和决策,是实现柔性自动化和最优化的重要基础。目前磨削中人工智能的主要应用包括磨削过程建模、磨具和磨削参数合理选择、磨削过程监测预报和控制、自适应控制优化、智能化工艺设计和智能工艺库等方面。近几年来,磨削过程建模、模拟和仿真技术有很大发展,并已达到适用水平。

我国在磨削过程建模与模拟,声发射过程监测与识别,工件表面烧伤及残余应力预报,磨削加工误差在线检测、评价与补偿等方面都有许多成果,并已开发出了新型磨削机器人。

篇6

(一)企业调研

天津航空机电有限公司,天津市杰立信模具有限公司,天津龙舟工控设备有限公司,光电集团有限公司,天津汽车模具有限公司,三星电子显示器有限公司,中环三峰电子有限公司,东华医疗系统有限公司,天津索思仪表测控系统有限公司等十多家企业的数控技术专业的用人方向和岗位需求数据表明:目前,高职毕业生整体技能水平偏低、就业质量不高,不能在技能上适应企业的技术岗位。大中型企业对高职院校数控技术技能型人才的需求方向主要集中在:数控机床操作、数控编程与工艺、CAD/CAE/CAM设计、数控机床的维护与保养等。这也为数控技术专业人才培养指明了方向。

(二)院校调研

针对需求方向,分析了多所院校现开设相关职业技术课程如下:数控编程、数控操作、数控加工工艺、CAD/CAM(自动编程)、数控原理、数控机床的维修与维护等。院校开设课程的合理性调查统计数据显示:69%的被调查者认为“数控加工工艺”与“数控编程”为专业核心课程;41%认为“数控加工工艺与编程”课程应加大实践操作比例;61%认为仿真加工与机床操作的课时应增加;49%被调查者认为目前最感兴趣的课程为数控机床操作;认为数控机床的维修与维护知识在未来数控行业更重要的占被调查总数的42%。数据表明,围绕零件设计与加工及机床维修与保养等专业技能相关的课程,理论与实践脱节,毕业生就业质量不高,达不到应有的教学效果,与现存教学模式和课程体系安排有直接的关系。院校教学调研中暴露的问题主要有:课程体系缺乏职业性;理论与实践课程脱节;任务驱动教学模式趋于形式化。这就要求学校针对现行课程进行调整,将理论内容融于实际操作之中,重视操作技能的培养,重视关键能力的提高。

二、调研成果初探

教育部关于加强高职高专人才培养工作的意见中指出:高职教育的培养目标为高素质劳动者和高技能专门人才。以“应用”为主旨和特征构建课程体系和教学模式;实践教学的主要目的是培养学生的技术应用能力。针对企业用人方向和现有课程中理论与实践脱节的问题,我们结合学生的学习兴趣,将数控技术专业培养目标分为两方面:零件设计与加工人员,机床维修与保养人员。根据这一目标把本专业核心知识作模块细分:机械制造基础、数控车工实训、数控铣工实训、计算机辅助设计与制造、数控机床调试与维修。在教学上改进单一的“理论+实训”模式,根据企业的技能需求,采取“教、学、做”一体化的教学模式。

(一)教学改革实施

教师结合企业用人方向,制定教学目标,针对数控机床维护与维修模块进行了大胆的教学改革尝试。在数控机床维修实训教学中,学生通过亲自打开机床,自己动手拆卸零部件,认识各种零部件及其安装结构特点,先形成感性认知,后作理论理解,之后教师再引导学生对零部件做功能分类。先分出:机械部件、电器部件、液压控制元件等,再结合不同零件进行细化分析。机械部件又分为机床主体、主轴组件、导轨、滚珠丝杠螺母副等。与机械部分相关的理论,如零部件的工作原理、材料、装配关系、强度与刚度的校核等,尽可能在学生拆卸零部件环节中进行讲解。液压控制部件,主要明确液压系统的控制原理,要求学生能够看懂液压回路图,能分析执行元件的工作过程。电器部分在学生直观电器控制柜后,讲解柜中的所有电器元件的功能、作用以及电路的连接,要求学生看懂电路图。这样,可以将学科知识重新整合,将理论融于实践,使学生学有所获,迅速掌握专业技能。例如,在讲解机床机械结构部分时,把滚珠丝杠螺母副作为教学的基本载体,演示部件运动过程,讲解其传动原理,再讲零件结构,及其它相关类型的机械传动结构并绘制其零件图,从而学习零件的测量与绘制,认识零件材料的区别及用途。有了实践动手经验,再加上理论知识的学习,再次让学生动手,将拆卸的机床复原。这样,将所学多门课程的知识融合于实践操作训练之中,达到获取知识有深度、培养技能有特点的综合目标,满足企业高素质、技能型人才培养的需求。

(二)课程体系模块化

课程改革中,我们坚持“以服务为宗旨,以就业为导向,以能力为本位”的高等职业教育改革发展方向,不断探索,将专业知识和技术技能融合为一体,对陈旧的单科课程重新整合,改为模块化教学,建立“基于工作过程”教学模式,突出技术技能型人才培养的特点,制作了数控技术专业人才培养方案。根据就业方向不同,将本专业知识与技能划分为五个核心模块:机械制造基础、数控车工实训、数控铣工实训、计算机辅助设计与制造、数控机床维护与维修。每个核心模块涉及不同的专业基础知识与实践操作技能,面对不同的就业岗位。其中针对普通机加工人员,需要以机械制造基础为核心模块,包含:机械制图与公差配合、材料及热处理、普通机械加工实训(车、铣、钳工)、刀具与机床、切削原理等为基本知识与技能;数控加工人员,分为两个典型方向:数控车工和数控铣工,分别对应两个核心模块,包括:数控加工工艺知识、数控加工编程知识、数控仿真软件的应用、数控机床操作等基本知识和技能;零件设计与自动编程人员,核心模块为计算机辅助设计与制造,包括:机械制图与公差配合、材料及热处理、数控加工工艺、计算机辅助设计(AutoCAD软件应用)、计算机辅助制造(UG三围造型与自动编程)等基本知识和技能;机床维修与保养人员,核心模块为数控机床的调试与维修,包括:电工基础知识(电器元件介绍、电路图的绘制与识读)、安全用电常识、机床电气控制与PLC应用、液压与气压传动、数控机床与数控原理、数控机床使用及维护等基本知识和技能。综上,构建了数控技术专业以职业岗位(群)知识能力为核心的模块化教学内容,为实现理实结合的一体化教学提供了依据。

三、构建高职院校数控技术专业技能型人才培养模式

(一)实施“三明治”人才培养模式

“三明治”人才培养模式由教育家杜威提出,其核心是:“从活动中学,从经验中学”,即把知识的学习与具体的活动联系起来,充分体现了学与做的结合,知与行的统一。遵循“三明治”精神,以“实践—理论—实践”教学模式组织专业课程教学,要求学生对所学专业知识,先有感性认识,再上升到理论高度,最后用所学理论知识,指导实践操作,解决实践环节出现的一些问题,达到学有所用。在机械制造基础模块中,新模式教学将原有的车工实训、铣工实训及机械制造基础课程深层次结合,将原有的实践与理论知识点具体化。课程中先安排车工、铣工等实践操作练习,其间,学生认识机床、练习磨刀、加工小轴、六面体等,通过这些基本实操练习,学生了解切削加工的一般过程,理解刀具角度的定义及不同角度对加工的影响。先获得车削、铣削加工的感性认识;再学习切削原理知识,了解切削过程中的受力、变形、温度变化、刀具磨损等现象发生的原因,从而能够自己想办法,改变切削条件,控制加工过程,使得切削状态达到最佳,生产效率提高,加工质量提高等等。学习理论过程,结合第一阶段面临的诸如“抗刀”等实际问题,重点分析原因,明确加工条件的重要性,在方向上为第二阶段的实践练习奠基,从而提升下一阶段的实践操作练习的技能。通过知识迁移,会举一反三,学生根据零件质量要求,合理选择切削用量、刀具角度,加工出中等难度的零件,满足企业需求。这种“实践--理论--实践”交替的“三明治”教学模式,为企业培养技能型人才提供了可靠保证。学生毕业后,基本上能够动手操作,凭借学到的专业知识分析研究产品的加工方法,改进生产技术,凸显课程设置的职业化,对接岗位需求,能够为企业输送高素质高技能人才。

(二)编写任务驱动型教材

教学改革中注重深化基于工作过程的“做中学、学中做”的人才培养模式,与企业深度融合,使企业参与学生培养全过程,共同构建基于工作过程的实践教学课程体系。教学改革的核心任务是依据企业需求,编写任务驱动型教材。技能就像教材的骨骼一样,而知识是肉,要根据骨骼的状况来生长。传统教材以"肉"为主线,“骨头”居次,这样的教材基本是没有技能训练的。任务驱动型教材根据培养技能,分析学习需要,然后让学生学习这些知识并掌握这种技能。任务驱动型教材的特点是以任务为载体,以任务实施过程为线索,将专业知识穿插到任务实施过程中,在教师的指导下由学生自主完成任务,从而掌握所学知识点,并具备实践操作能力。针对这五门核心课程,本着工学结合的原则,本课题选用企业代表性产品,编写了任务驱动教材,配合实际教学。数控实训课程是集数控加工工艺、数控编程等多门理论课知识于一体的操作性很强的综合实训课程,是培养数控机床操作人员的核心课程。学生利用任务驱动型教材,不仅懂得了相关专业知识点,而且具备一定的实践操作能力,同时了解了企业常见的产品类型。任务驱动型教材使学生在加工产品的过程中获得成就感,有利于实践技能的获得。

(三)实施项目教学法

调查发现,以课本为中心的传统教学模式不能满足现今的教学要求;理实一体化教学因脱离企业项目和生产产品而流于形式。教师通过编写与企业技能需求对接的任务驱动型教材,开展与企业生产相关的产品项目教学法。“项目教学法”的特点是“以项目为主线、教师为指导、学生为主体”,改变了以往“教师讲,学生听”的被动教学模式,创造了学生主动参与、自主学习、开发创新的新型教学模式。项目教学法注重理论与实践相结合。每一个项目中包含来自生产车间的实际产品,与之相关的知识点,仿真加工,车间操作,实训报告等多个环节的内容,要求学生从认识项目开始,结合相关知识分析项目、制定工艺、编写程序、仿真加工、机床操作等最终加工出产品。通过转变学习方式,将课堂理论教学转为理实结合的一体化教学,营造了实践教学的学习环境,激发了学生的好奇心和创造力,培养了他们分析和解决实际问题的能力。教师通过对学生的指导,转变了传统的灌输式的教育观念和教学方式,从单纯的知识传递者变为学生学习的指导者和组织者。建立了全新的教学理念,提升了办学目标,通过项目教学法的实施,探索教学过程的组织形式,逐步完善核心课程在专业教学中的作用。

四、结语

篇7

1.1机架结构静力学分析(1)材料选取与有限元模型的建立机架采用GB/T3094-2000里的冷拔异型钢管,材料为Q235A钢。其主要性能参数如下:抗拉强度σb=375MPa,屈服强度σs=235MPa,弹性模量E=2.1×1011Pa,泊松比μ=0.25,密度ρ=7850kg/m3[3]。为了适应有限元计算,必须本体机构机架进行简化处理,略去许多不影响床身刚度的细微结构(如小倒角,小圆弧,小凸台,安装螺纹孔等)。计算立柱,床鞍,主轴箱等构件的重量并将上述重量均作为作用在床身上的附加质量处理,即在相应坐标位置创建质量单元模拟其质量,或者作为作用在床身上的附加载荷处理。简化后的模型如图2所示。本次网格划分方式同上述Y轴有限元网格划分方式。共得到18135个单元,75404个节点。划分结果如图3所示。(2)约束及载荷条件设置机架通过地脚螺钉与地基固定,简化为在地脚螺钉面上加全约束以达到约束的目的。机架受到的外力为运动系统的重力,运动系统工作时的反作用力,收到切削力作用时的扭矩。(3)有限元结果分析机架的变形对于运动系统的准确定位与安装以及精确加工来说影响较大,设计时比较关心。由图4可知,最大变形主要发生在上端横梁的两支撑腿之间,最大变形量为0.077287mm,这是因为上端横梁的钢管内无加强筋加固,这样就造成其抗弯和抗扭能力稍微薄弱。应力最大处发生在机架上端横梁中部上,大小为8.0461MPa,远小于材料的屈服强度值。综上,机架的最大应变和应力都发生在上方横梁处,但是各自的值都很小,都在企业机床标准允许的误差范围以及材料的屈服强度范围之内,故此可知机架的结构刚度和强度都能满足机床的正常使用要求。

1.2机架模态分析对于长期承受动力载荷的结构部件,一般需对其进行模态分析。因为模态分析不仅可以评价该结构的动态特性,还能够清楚认识该结构振动的形态,并了解其阻尼分布情况,进而提前避免可能会引起的共振。由于机架是一个连续体,质量和弹性是连续分布的,所以,应具有无穷多个自由度,也就有无穷多阶模态。由于激振力的频率一般都不太高,因而,只有最低阶的几阶频率才有可能与本体机构机架频率接近或重合产生共振。高阶模态的频率已高于可能出现的激振频率,一般不可能产生共振,对于加工质量的影响不大,所以只研究最低阶的几阶模态。本次研究对机架的前四阶模态进行了研究,其振型云图见图5。由上图5可以看出,一阶振型的共振频率是53.49Hz,大于35.35Hz的数控机床最低设计安全频率。一阶振型越高,本体机构机架的刚性越好。故此可知机架的设计能满足机床的使用要求[5]。

2运动系统设计及有限元分析

与普通数控机床的运动系统相比,消失模数控加工运动系统具有自己的特点,由于消失模加工的切削力较小,一般为10~50N左右,而且工件表面加工质量高,因而切削刀具转速很高,这就要求运动系统的重量要小,以便减小惯性力[6]。故此本次研究对运动系统采用轻量化结构设计,通过有限元分析指导其结构优化与设计。

2.1运动系统结构设计在运动系统的设计上,采用龙门式大跨度结构,具有5个运动轴,如图6所示,双X轴、单Y轴以及单Z轴均为丝杠传动,C轴固定于Z轴下方,A轴固定于C轴上。

2.2运动系统主承载轴有限元分析在消失模数控加工成形设备的运动系统中,Y轴的直线运动单元属于运动部件,Z轴单元是Y轴单元的负载,而X轴作用于主体机构机架上,故Y轴是运动系统的主承载轴。为满足加工精度的要求,Y轴的基座必须具有足够的刚度。而Y轴作为运动部件,为了降低惯性力需要降低自身重量。因此,主承载轴Y轴设计时,加入带孔的筋板以加强横梁的刚度,其不仅满足了使用性能,而且达到了减重的目的。对于运动系统主承载轴Y轴的结构,在切削加工时,通常会产生些许变形,这对于机床的加工精度非常不利。为此在设计运动系统时就需要合理布置横梁加强筋及截面导轨的布置方式。为了能够更好进行运动系统主承载轴结构轻量化设计,采用有限元方法进行结构的优化是很必要的。

2.2.1主承载轴结构静力学分析(1)材料选取及有限元模型的建立考虑到轻量化设计要求,运动系统主承载轴Y轴也采取Q235A钢,其主要性能参数如1.1。本次研究对主承载轴Y轴的机械结构进行几何建模,建模过程中做了相应的结构简化,如忽略过渡圆角、螺纹孔以及直径小于10mm孔等处,建立好的几何模型如图7所示。网格划分运用的是四面体与六面体结合的自动网格划分方式,并且采用了局部细化网格的方法来划分,得到28313个单元,63153个节点。建立好的有限元模型如图8所示。(2)边界条件设置及加载对主承载轴Y轴的有限元模型施加了如下的边界条件及载荷:考虑到运动系统的重力,施加了重力加速度条件;对主承载轴Y轴的底部施加了固定约束;考虑到主承载轴Y轴会在移动时产生加速度,对整个结构施加了最大为0.5mm/s的加速度载荷;Z轴通过滑块固定于Y轴侧面,Z轴和双摆头的重量对Y轴产生了力矩,故此对Y轴施加了力矩载荷。(3)有限元结果分析如图9所示主承载轴Y轴的最大变形量为0.025454mm,发生在主承载轴Y轴正中间靠前面的部位。最大变形值在企业机床标准允许的误差范围之内。主承载轴Y轴的最大主应力为4.091MPa,发生在主承载轴Y轴与Z轴的连接部位。最大应力值小于Q235A材料的屈服强度235MPa。由上可知,在静态受力分析中,受自重和Z轴重力对主承载轴Y轴的作用,最大应力点和最大变形处都处于主承载轴Y轴与Z轴连接处,这是因为主承载轴Y轴在中间部位受到来自Z轴的扭转力矩的缘故。综上,Y轴的最大变形和最大主应力都在允许范围内,故此其结构的刚度和强度皆能满足机床的使用要求和许用条件。

2.2.2主承载轴模态分析由图10看出,一阶振型的共振频率是95.882Hz,大于35.35Hz的数控机床最低设计安全频率。一阶振型越高,主承载轴Y轴的刚性越好。其次由于在高速切削设备中,主承载轴Y轴的振动模态相对位移量的大小主要影响到加工精度,所以要求主承载轴Y轴的振动模态相对位移量小。计算结果显示主承载轴Y轴的变形量非常小,对加工精度的影响微乎其微[5]。

3小结

篇8

虚拟样机产品涵盖了真实产品的全部关键特性,是产品的多领域数字化模型的集合,而虚拟样机技术就是一种以虚拟样机为基础的数字化设计方法。为降低成本,提高效率,我们就需要从源头抓起,在产品研发的初始期就应尽早发现产品设计的缺陷,在开始便加以改善,而通过对虚拟样机技术的运用,就可以快捷高效地达到该目的。相比较于传统的技术,虚拟样机技术更注重系统性,包括产品的整个生命线,对于各领域的虚拟化起到协同作用。在该技术领域内,研究的主要是创新设计方法和虚拟样机仿真技术,在此基础上进一步研究有关于新产品的开发与应用,已在方案的创新设计、修改、整机性能预测等多个方面进行了应用。

2、多轴联动复合数控机床的新型研发

多轴联动复合数控机床凭借其高精度,优工艺以及广用途,得到了愈来愈多的业界人士的高度关注,研制开发出了多类型具有不同作业功效的合成型数控机床。而比较具有代表性的多轴联动复合机有六轴联动混联数控机床、六轴联动卧式复合数控机床、五轴联动复合激光加工机床,以下对其进行逐个浅析。

(1)六轴联动混联数控机床所谓混联机床就是将串联与并联原理相结合。串联原理,具有大作业尺度、简洁运动算法的优越性;但其各轴的运动误差积累、悬臂结构难以达到更高的刚度、运动件质量过大就会影响速度的提升。而并联机构则有效地弥补了串联机构的缺点,运动误差不累加,刚度也较高运动件质量小,速度快。将这两者相结合的混连数控机床取其利,去其弊,其发展与应用前景都值得期待。

(2)六轴联动卧式复合数控机床HC80绝大部分的工序在一次装夹过程中就可以完成,特别是对于有相对位置要求的工序。这种设计解决了物流长度过长、基准转换过多,定位误差过大,工装夹具数量过大,占地面积过大,新产品实验周期过长等一系列重大问题。可以有效地提高了生产效率。

(3)五轴联动复合激光加工机床SLC-1是以三轴联动复合激光加工机床为基础,进行的进一步的开发研究成果,可实现空间复杂曲面激光淬火、激光切割、激光焊接等激光加工。在创新过程中,将五轴和三轴的本质区别作为了一个重点考虑方向。三轴加工时,在工件坐标系中其刀具周线固定不变;而五轴加工中却做了相应的创新改变,刀具轴线设计成了相应变化的,既保证了加工质量也提高了切削效率,同时避免其它因素的影响。但需要注意的是,自主研发的开放式数控系统,随着网络复杂程度的增加所需求解的非线性优化问题也会复杂化,我们需要选择最佳的网络结构。随着复合加工技术的发展大跨步发展,出现了多种组合的复合加工机床,有效地提高了加工效率。

3、机器人创新开发

机器人主要分为固定机器人和移动机器人两大类。其中的移动机朱志荣陕西荣天电气有限公司719000器人又可再分为轮式移动机器人、履带式移动机器人、步足移动机器人。自动导航轮式移动机器人包含了轮式移动机构和作业操作机构。而对于只含轮式移动机构的AGWMR也可将其称之为“自动导航车”。

(1)自动导航轮式移动物流机器人研发的轮式移动机器人主要分为两类:①2自由度和3自由度的AGV,导航方法包括视觉、超声波、无线遥控、激光扫描、陀螺、电子罗盘;②物流AGWMR,是由轮式移动机构和作业机器人相结合,其移动机构与AGV一样,1~6个自由度的物流作业机器人组成了作业部分。

(2)自动导航牵引车AGT50AGT50是轮式移动机器人,具有牵引移动功能,5000N的牵引力可以拖动多辆无人驾驶的拖车行驶。其导航方式与AGV相同,可作为参考选择配置。其自主开发的开放式数控系统,可以根据现实情况智能性选择可开环控制或闭环控制;其自动校正定位功能使作业更安全准确。

(3)作业机器人目前研发的作业机器人主要分为四大类,分别为:喷漆机器人、焊接机器人、切削机器人以及检测机器人。其中焊接机器人采用激光焊缝跟踪技术,而喷漆机器人采用的则是轨迹规划技术。在大尺寸长距离的情况下进行作业时,如大型罐、大型集装箱、长管道等的喷漆、焊接、局部切削加工及检测作业,上述机器人可以独立进行作业或者与AGV组成轮式移动运动机器人进行作业。为满足大尺寸、长距离情况下的作业位置和姿态定位要求,可将AGV与作业机器人自身位姿定位相结合,因为轮式移动机器人的作业精度低于上述作业的精度要求。

4、结语

篇9

1.1数控机床的工作场地选择

(1)避免阳光的直接照射和其它热辐射、避免太潮

湿或粉尘过多的场所,尽量在空调环境中使用,保持室温20℃左右。由于我国处于温带气候、受季风影响、温

度差异大,对于精度高、价格贵的数控机床,应置于有空调的房间中使用。(2)要避免有腐蚀气体的场所。因

腐蚀气体易使电子元件变质,或造成接触不良,或造成

元件短路,影响机床的正常运行。(3)要远离振动大的设备(如冲床、锻压设备等)。对于高精度的机床还应采用防振措施(如防振沟等)。(4)要远离强电磁干扰源,使

机床工作稳定。

1.2数控机床的电源

数控系统对电源要求较严,一般要求工作电压为220V±10%。针对我国供电工况,对于有条件的企业,可

为数控机床采取专线供电或增设稳压装置,以减少供电品质差的影响,为数控系统的正常运行提供有力保证。

1.3数控机床配置合适的自动编程系统

手工编程对于外形不太复杂或编程量不大的零件

程序,简单易行。当工件比较复杂时(如凸轮或多维空

间曲面等),手工编程周期长(数天或数周)、精度差、易

出错。因此,快速、准确地编制程序就成为提高数控机床使用率的重要环节;为此,有条件的用户最好配置必

要的自动编程系统,提高编程效率。

1.4数控机床配置必要的附件和刀具

为了充分发挥数控机床的加工能力,必须配备必要

的附件和刀具。切忌花了几十万元钱买来一台数控机床,因缺少一个几十元或几百元的附件或刀具而影响整

机的正常运行。由于单独签订合同购买附件的单价大大高于随同主机一起供货的附件单价,因此,有条件的企业尽量在购买主机时一并购置易损部件及其它附件。

1.5加工前的准备

加工前要审查工件的数控加工工艺性,应重视生

产技术准备工作(包括工件数控加工工艺分析、加工程

序编制、工装与刀具配置、原材料准备及试切加工等)

以缩短生产准备时间,充分提高数控机床的使用效率。

合理安排适合在数控机床加工的各种工件,安排好数控机床加工运转所需的节拍。

1.6为维修保养做好准备

建立一支高水平的维修队伍,保存好设备的完整

2.数控机床的常见故障

2.1故障发生的阶段

故障是指设备或系统因自身原因而丧失规定功能的现象。发生故障具有相同的规律,一般分为三个区域:

(1)初期运行区,故障率较高,故障曲线呈上升趋势,此区故障多数属于设计制造和装配缺陷造成的。(2)正常

运行区,此时故障曲线趋近水平,故障率低,此区故障一

般是由操作和维护不良造成的偶发事故。(3)衰老区,此区故障率大,故障曲线上升快,主要原因是运行过久、机

件老化和磨损过度造成的。

2.2故障的分类

按结构分为机械和电气两类;按故障源分为机械故障和控制故障两类;就其数控系统而言分为硬件故障、软件故障、干扰故障三类。要判断是机械方面故障

还是控制系统故障,其分析方法是:先检查控制系统,

看程序能否正常运行,显示和其它功能键是否正常,有无报警现象等;再检查电机和检测元件,是否能正常运转,有无间歇或抖动现象,有无定位不准等问题。如果没有上述问题,则可初步判断故障原因在机械方面,着重检查传动环节。检查传动环节时应使电机断电,用手动并配合打表检查机器。

3.数控系统的常见故障分析

(1)位置环。这使数控系统发出控制指令,并与位

置检测系统的反馈值相比较,进一步完成控制任务的

关键环节;它有很高的工作频度,并与外设相联接,容易发生故障。常见的故障有:1)位控环报警:可能是测量回路开路,测量系统损坏,位控单元内部损坏。2)不

发指令就运动,可能是漂移过高,正反馈,位控单元故

障,测量元件损坏。3)测量元件故障,一般表现为无反馈值;机床回不了基准点;高速时漏脉冲产生报警,可

能的原因是光栅或读头脏了;光栅坏了。

(2)伺服驱动系统。它与电源电网、机械系统等相关联,工作中一直处于频繁的启动和运行状态,也是故

障多发部位。其主要故障有:1)系统损坏。一般由网络电压波动太大或电压冲击造成。地区电网质量不好,会给

机床带来电压超限,尤其是瞬间超限,若无专门的电压监控仪,则很难测到。在查找故障原因时,要加以注意,

还有一些是由于特殊原因造成的损坏。2)加工时工件表面达不到要求,走圆弧插补轴换向时出现凸台,电机低

速爬行或振动,这类故障一般是由于伺服系统调整不当,各轴增益系统不相等或与电机匹配不合适引起,解

决办法是进行最佳化调节。3)保险烧断,或电机过热,以至烧坏,这类故障一般是机械负载过大或卡死。

(3)电源部分。电源失效或故障的直接结果是造成系统的停机或毁坏整个系统。一般在欧美国家,这类问

题较少,在设计方面的因素考虑的不多;但在中国由于电源波动较大、质量差,还隐藏有高频脉冲类的干扰,加上人为的因素(如突然拉闸断电等),这些原因可造成电源故障失控或损坏。再者,数控系统部分运行数

据、设定数据以及加工程序等一般存贮在RAM存贮器内,系统断电后依靠电源的后备蓄电池或锂电池保持。

因而,停机时间比较长,拔插电源或存贮器都可能造成数据丢失,使系统不能运行。

(4)可编程序控制器逻辑接口。数控系统的逻辑控制(如刀库管理,液压启动等),主要由PLC实现,必须采

集各控制点的状态信息(如断电器,伺服阀,指示灯等),它与外界繁多的各种信号源和执行元件相连接,

变化频繁,发生故障的可能性较多,故障类型较多。

(5)其它。由于环境条件,例如干扰,温度,湿度超过允许范围,操作不当,参数设定不当,都可能造成停

机或故障。不按操作规程拔插线路板,或无静电防护措施等,也可能造成停机故障甚至毁坏系统。

4常见故障的排除方法

(1)初始化复位法。一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次清

除故障;若系统工作存贮区由于掉电、拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录;若初始化后故障仍无排除,则需进行硬件诊断。

(2)参数更改、程序更正法。系统参数是系统功能的依据,参数设定有误可能造成系统的故障或某功能

无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,确保正常运行。

(3)调节、最佳化调整法。调节简单易行的办法,可通过对电位计的调节,修正系统故障。通过调节速度调

节器的比例系数和积分时间,可使伺服系统达到既有较高的动态响应特性,又不发生振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,先正向调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。

(4)备件替换法。采用好的备件替换诊断出的坏线路板,并做相应的初始化启动,使机床迅速投入正常运转,

然后将坏板修理或返修,这是目前最常用的排故办法。

(5)改善电源质量法。目前一般采用稳压电源,以改善电源波动。对于高频干扰可用电容滤波法,通过这

些预防性措施可减少电源板的故障。

(6)维修信息跟踪法。一些大的制造公司根据实际工作中属于设计缺陷造成的偶然故障,可以不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员,以此做为故障排除的依据,有利于正确彻底地排除故障。

础上已设计了一套新型应力应变测试系统,该系统集

数据采集和处理功能于一体,减少了中间环节,操作更便捷、更简单且测试结果更精确[22]。

结束语

SHPB装置是研究材料动载特性的理想工具,SHPB

测试装置的发展是力学、材料学、计算机等技术在应用

领域的综合集成。各学科的协同发展将有力地推动

SHPB技术应用范围的扩大以及SHPB测试技术的提高。

参考文献

[1]马哓青.冲击动力学[M].北京:北京理工大学出版社,1992.

[2]KolskyH.Aninvestigationofthemechanicalpropertiesofmaterials

atveryhighratesofloading[C].Proc.Phys.Soc.B62,1949:676~700.

篇10

采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation)实现的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高水平。

1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。

这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。

在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。

数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。

然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。

到了1960年以后,点位控制的数控机床得到了迅速的发展。因为点位控制的数控系统比起轮廓控制的数控系统要简单得多。因此,数控铣床、冲床、坐标镗床大量发展,据统计资料表明,到1966年实际使用的约6000台数控机床中,85%是点位控制的机床。

数控机床的发展中,值得一提的是加工中心。这是一种具有自动换刀装置的数控机床,它能实现工件一次装卡而进行多工序的加工。这种产品最初是在1959年3月,由美国卡耐·;特雷克公司(Keaney&TreckerCorp.)开发出来的。这种机床在刀库中装有丝锥、钻头、铰刀、铣刀等刀具,根据穿孔带的指令自动选择刀具,并通过机械手将刀具装在主轴上,对工件进行加工。它可缩短机床上零件的装卸时间和更换刀具的时间。加工中心现在已经成为数控机床中一种非常重要的品种,不仅有立式、卧式等用于箱体零件加工的镗铣类加工中心,还有用于回转整体零件加工的车削中心、磨削中心等。

1967年,英国首先把几台数控机床连接成具有柔性的加工系统,这就是所谓的柔性制造系统(FlexibleManufacturingSystem——FMS)之后,美、欧、日等也相继进行开发及应用。1974年以后,随着微电子技术的迅速发展,微处理器直接用于数控机床,使数控的软件功能加强,发展成计算机数字控制机床(简称为CNC机床),进一步推动了数控机床的普及应用和大力发展。

80年代,国际上出现了1~4台加工中心或车削中心为主体,再配上工件自动装卸和监控检验装置的柔性制造单元(FlexibleManufacturingCell——FMC)。这种单元投资少,见效快,既可单独长时间少人看管运行,也可集成到FMS或更高级的集成制造系统中使用。

目前,FMS也从切削加工向板材冷作、焊接、装配等领域扩展,从中小批量加工向大批量加工发展。

所以机床数控技术,被认为是现代机械自动化的基础技术。

那什么是车床呢?据资料所载,所谓车床,是主要用车刀对旋转的工件进行车削加工的机床。在车床上还可用钻头、扩孔钻、铰刀、丝锥、板牙和滚花工具等进行相应的加工。车床主要用于加工轴、盘、套和其他具有回转表面的工件,是机械制造和修配工厂中使用最广的一类机床。

古代的车床是靠手拉或脚踏,通过绳索使工件旋转,并手持刀具而进行切削的。1797年,英国机械发明家莫兹利创制了用丝杠传动刀架的现代车床,并于1800年采用交换齿轮,可改变进给速度和被加工螺纹的螺距。1817年,另一位英国人罗伯茨采用了四级带轮和背轮机构来改变主轴转速。

为了提高机械化自动化程度,1845年,美国的菲奇发明转塔车床;1848年,美国又出现回轮车床;1873年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床;20世纪初出现了由单独电机驱动的带有齿轮变速箱的车床。

第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效自动车床和专门化车床迅速发展。为了提高小批量工件的生产率,40年代末,带液压仿形装置的车床得到推广,与此同时,多刀车床也得到发展。50年代中,发展了带穿孔卡、插销板和拨码盘等的程序控制车床。数控技术于60年代开始用于车床,70年代后得到迅速发展。

车床依用途和功能区分为多种类型。

普通车床的加工对象广,主轴转速和进给量的调整范围大,能加工工件的内外表面、端面和内外螺纹。这种车床主要由工人手工操作,生产效率低,适用于单件、小批生产和修配车间。

转塔车床和回转车床具有能装多把刀具的转塔刀架或回轮刀架,能在工件的一次装夹中由工人依次使用不同刀具完成多种工序,适用于成批生产。

自动车床能按一定程序自动完成中小型工件的多工序加工,能自动上下料,重复加工一批同样的工件,适用于大批、大量生产。

多刀半自动车床有单轴、多轴、卧式和立式之分。单轴卧式的布局形式与普通车床相似,但两组刀架分别装在主轴的前后或上下,用于加工盘、环和轴类工件,其生产率比普通车床提高3~5倍。

仿形车床能仿照样板或样件的形状尺寸,自动完成工件的加工循环,适用于形状较复杂的工件的小批和成批生产,生产率比普通车床高10~15倍。有多刀架、多轴、卡盘式、立式等类型

立式车床的主轴垂直于水平面,工件装夹在水平的回转工作台上,刀架在横粱或立柱上移动。适用于加工较大、较重、难于在普通车床上安装的工件,一般分为单柱和双柱两大类。

铲齿车床在车削的同时,刀架周期地作径向往复运动,用于铲车铣刀、滚刀等的成形齿面。通常带有铲磨附件,由单独电动机驱动的小砂轮铲磨齿面。

专门车床是用于加工某类工件的特定表面的车床,如曲轴车床、凸轮轴车床、车轮车床、车轴车床、轧辊车床和钢锭车床等。联合车床主要用于车削加工,但附加一些特殊部件和附件后,还可进行镗、铣、钻、插、磨等加工,具有“一机多能”的特点,适用于工程车、船舶或移动修理站

看机床的水平主要看金属切削机床,其他机床技术和复杂性不高,就是近几年很流行的电加工机床,也只是方法的改变,没什么复杂性和科技含量。

我国的数控磨床水平不错,每年都有大量出口,因为它简单,基本属于劳动密集型。

金属加工主要是去除材料,得到想得到的金属形状。去除材料,主要靠车和铣,车床发展为数控车床,铣床发展为加工中心。高精度多轴机床,可以让复杂零件在精度和形状上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。零件精度高就意味着寿命长,可靠性好。

由普通发展到数控,一个人顶原来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个10年8年的不行,要是谁掌握了,那牛得很。现在用数控设备,只要你会编程,把参数输进去就可以了,很简单,刚毕业的技校学生都会,而且批量的产品质量也有保证。

自美国在50年代末搞出世界一台数控车床后,机床制造业就进入了数控时代,中国在六十年代也搞出了第一代数控机床,但后来中国进入了什么年代,大家都知道。等80年代我们再去看世界的数控机床水平,差距就是20年了,其实奋起直追还有希望,但国营工厂不思进取,到了90年代,我们再去看世界水平,已有30年的差距了。中国改革开放前走的是苏联的路子,什么叫苏联的路子,举个例子来讲:比如,生产一根轴,苏联的方式是建一个专用生产线,用多台专用机床,好处是批量很容易上去,但一旦这根轴的参数发生了变化,这条线就报废了,生产人员也就没事做了。在1960-1980年代,国营工厂一个产品生产几十年不变样。到了1980年代后,当时搞商品经济,这些厂不能迅速适应市场,经营就困难了,到了90年代就大量破产,大量职工下岗。现代的生产也有大批量生产,但主要是单件小批量,不管是那种,只要你的设备是数控的,适应起来就快。专业机床的路子已经到头了,;西方走的路和前苏联不一样,当年的“东芝”事件,就是日本东芝卖给苏联了几台五轴联动的数控铣床,让苏联在潜艇的推进螺旋桨上的制造,上了一个档次,让美国的声纳听不到潜艇声音了,所以美国要惩处东芝公司。由此也可见,前苏联的机床制造业也落后了,他们落后,我们就更不用说了。虽然,美国搞出了世界第一台数控机床,但数控机床的发展,还是要数德国。德国本来在机械方面就是世界第一,数控机床无非就是搞机电一体化,机械方面德国已没问题,剩下的就是电子系统方面,德国的电子系统工业本来就强大,所以在上世纪六、七十年代,德国就执机床界的牛耳了。

但日本人的强项就是仿造,从上世纪70年代起,日本大量从德国引进技术,消化后大量仿造,经过努力,日本在90年代起,就超越了德国,成为世界第一大数控机床生产国,直到现在还是。他们在机床制造水平上,有一些也走在了世界前面,如在机床复合(一机多种功能)化方面,是世界第一。数控机床的核心就在数控系统方面,日本目前在系统方面也排世界第一,主要是它的发拿科公司。第一代的系统用步进电机,我们现在也能造,第二代用交流伺服电机。现在的数控系统的核心就是交流伺服电机和系统内的逻辑控制软件,交流伺服电机我们国家目前还没有谁能制造,这是一个光学、机械、电子的综合体。逻辑控制软件就是控制机床的各轴运动,而这些轴是用伺服电机驱动的,一般的系统能同时控制3轴,高级系统能控制五轴,能控5轴的,五轴以上也没问题。我们国家也由有5轴系统,但“做秀”的成份多,还没实用化。我们的工厂用的五轴和五轴以上机床,100%进口。

机床是一个国家制造业水平高低的象征,其核心就是数控系统。我们目前不要说系统,就是国内造的质量稍微好一点的数控机床,所用的高精度滚珠丝杠,轴承都是进口的,主要是买日本的,我们自产的滚珠丝杠、轴承在精度、寿命方面都有问题。目前国内的各大机床厂,数控系统100%外购,各厂家一般都买日本发那科、三菱的系统,占80%以上,也有德国西门子的系统,但比较少。德国西门子系统为什么用的少呢?早期,德国系统不太能适合我们的电网,我们的电网稳定性不够,西门子系统的电子伺服模块容易烧坏。日本就不同了,他们的系统就烧不坏。近来西门子系统改进了不少,价格方面还是略高。德国人很不重视中国,所以他们的系统汉语化最近才有,不像日本,老早就有汉语化版的。

就国产高级数控机床而言,其利润的主体是被外国人拿走了,中国只是挣了一个辛苦钱。

美国为什么没有能成为数控机床制造大国呢?这个和他们当时制定产业政策的人有关,再加上当时美国的劳动力贵,买比制造划算。机床属于投资大,见效慢,回报率底的产业,而且需要技术积累。不太附和美国情况。但后来美国发现,机床属于战略物资,没有它,飞机、大炮、坦克、军舰的制造都有问题,所以他们重新制定政策,扶植了一些机床厂,规定了一些单位只能买国产设备,就是贵也得买,这就为美国保留了一些数控机床行业。美国机床在世界上没有什么竞争力。

欧洲的机床,除德国外,瑞士的也很好,要说超高精密机床,瑞士的相当好,但价格也是天价。一般用户用不起。意大利、英国、法国属于二流,中国很少买他们的机床。西班牙为了让中国进口他们的机床,不惜贷款给中国,但买的人也很少??借钱总是要还的。

韩国、台湾的数控机床制造能力比大陆地区略强,不过水平差不多。他们也是在上世纪90年代引进日本技术发展的。韩国应该好一点,它有自己制造的、已经商业化了的数控系统,但进口到中国的机床,应我们的要求,也换成了日本系统。我们对他们的系统信不过。韩国数控机床主要有两家:大宇和现代。大宇目前在我国设有合资企业。台湾机床和我们大体一样,自己造机械部分,系统采购日本的。但他们的机床质量差,寿命短,目前在大陆影响很坏。其实他们比我们国产的要好一点。但我们自己的差,我们还能容忍,台湾的机床是用美金买来的,用的不好,那火就大了。台湾最主要的几家机床厂已打算把工厂迁往大陆,大部分都在上海。这些厂目前在国内的竞争中,也打着“国产”的旗号。

近来随着中国的经济发展,也引起了世界一些主要机床厂商的注意,2000年,日本最大的机床制造商“马扎克”在中国银川设立了一家数控机床合资厂,据说制造水平相当高,号称“智能化、网络化”工厂,和世界同步。今年日本另外一家大机床厂大隈公司在北京设立了一家能年产1000台数控机床的控股公司,德国的一家很有名的企业也在上海设立了工厂。

目前,国家制定了一些政策,鼓励国民使用国产数控机床,各厂家也在努力追赶。国内买机床最多的是军工企业,一个购买计划里,80%是进口,国产机床满足不了需要。今后五年内,这个趋势不会改变。不过就目前国内的需要来讲,我国的数控机床目前能满足中低档产品的订货。

美、德、日三国是当今世上在数控机床科研、设计、制造和使用上,技术最先进、经验最多的国家。因其社会条件不同,各有特点。

1.美国的数控发展史

美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究“效率”和“创新”,注重基础科研。因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。由於美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重於基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。

2.德国的数控发展史

德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。,於1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。德国的数控机床质量及性能良好、先进实用、货真价实,出口遍及世界。尤其是大型、重型、精密数控机床。德国特别重视数控机床主机及配套件之先进实用,其机、电、液、气、光、刀具、测量、数控系统、各种功能部件,在质量、性能上居世界前列。如西门子公司之数控系统,均为世界闻名,竞相采用。

3.日本的数控发展史

日本政府对机床工业之发展异常重视,通过规划、法规(如“机振法”、“机电法”、“机信法”等)引导发展。在重视人才及机床元部件配套上学习德国,在质量管理及数控机床技术上学习美国,甚至青出于蓝而胜于蓝。自1958年研制出第一台数控机床后,1978年产量(7,342台)超过美国(5,688台),至今产量、出口量一直居世界首位(2001年产量46,604台,出口27,409台,占59%)。战略上先仿后创,先生产量大而广的中档数控机床,大量出口,占去世界广大市场。在上世纪80年代开始进一步加强科研,向高性能数控机床发展。日本FANUC公司战略正确,仿创结合,针对性地发展市场所需各种低中高档数控系统,在技术上领先,在产量上居世界第一。该公司现有职工3,674人,科研人员超过600人,月产能力7,000套,销售额在世界市场上占50%,在国内约占70%,对加速日本和世界数控机床的发展起了重大促进作用。

4.我国的现状

我国数控技术的发展起步于二十世纪五十年代,中国于1958年研制出第一台数控机床,发展过程大致可分为两大阶段。在1958~1979年间为第一阶段,从1979年至今为第二阶段。第一阶段中对数控机床特点、发展条件缺乏认识,在人员素质差、基础薄弱、配套件不过关的情况下,一哄而上又一哄而下,曾三起三落、终因表现欠佳,无法用于生产而停顿。主要存在的问题是盲目性大,缺乏实事求是的科学精神。在第二阶段从日、德、美、西班牙先后引进数控系统技术,从日、美、德、意、英、法、瑞士、匈、奥、韩国、台湾省共11国(地区)引进数控机床先进技术和合作、合资生产,解决了可靠性、稳定性问题,数控机床开始正式生产和使用,并逐步向前发展。通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。 

 在20余年间,数控机床的设计和制造技术有较大提高,主要表现在三大方面:培训一批设计、制造、使用和维护的人才;通过合作生产先进数控机床,使设计、制造、使用水平大大提高,缩小了与世界先进技术的差距;通过利用国外先进元部件、数控系统配套,开始能自行设计及制造高速、高性能、五面或五轴联动加工的数控机床,供应国内市场的需求,但对关键技术的试验、消化、掌握及创新却较差。至今许多重要功能部件、自动化刀具、数控系统依靠国外技术支撑,不能独立发展,基本上处于从仿制走向自行开发阶段,与日本数控机床的水平差距很大。存在的主要问题包括:缺乏象日本“机电法”、“机信法”那样的指引;严重缺乏各方面专家人才和熟练技术工人;缺少深入系统的科研工作;元部件和数控系统不配套;企业和专业间缺乏合作,基本上孤军作战,虽然厂多人众,但形成不了合力。我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3%和34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主机消费高达94.6亿美元,国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控,系统生产应用推广不力及数控人才缺乏等。我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之问的差距。

2003年开始,中国就成了全球最大的机床消费国,也是世界上最大的数控机床进口国。目前正在提高机械加工设备的数控化率,1999年,我们国家机械加工设备数控华率是5-8%,目前预计是15-20%之间。一、什么是数控机床车、铣、刨、磨、镗、钻、电火花、剪板、折弯、激光切割等等都是机械加工方法,所谓机械加工,就是把金属毛坯零件加工成所需要的形状,包含尺寸精度和几何精度两个方面。能完成以上功能的设备都称为机床,数控机床就是在普通机床上发展过来的,数控的意思就是数字控制。给机床装上数控系统后,机床就成了数控机床。当然,普通机床发展到数控机床不只是加装系统这么简单,例如:从铣床发展到加工中心,机床结构发生变化,最主要的是加了刀库,大幅度提高了精度。加工中心最主要的功能是铣、镗、钻的功能。我们一般所说的数控设备,主要是指数控车床和加工中心。我国目前各种门类的数控机床都能生产,水平参差不齐,有的是世界水平,有的比国外落后10-15年,但如果国家支持,追赶起来也不是什么问题,例如:去年,沈阳机床集团收购了德国西思机床公司,意义很大,如果大力消化技术,可以缩短不少差距。大连机床公司也从德国引进了不少先进技术。上海一家企业购买日本著名的机床制造商池贝。,近几年随着中国制造的崛起,欧洲不少企业倒闭或者被兼并,如马毫、斯滨纳等。日本经济不景气,有不少在80年代很出名的机床制造商倒闭,例如:新泻铁工所。二、数控设备的发展方向六个方面:智能化、网络化、高速、高精度、符合、环保。目前德国和瑞士的机床精度最高,综合起来,德国的水平最高,日本的产值最大。美国的机床业一般。中国大陆、韩国。台湾属于同一水平。但就门类、种类多少而言,我们应该能进世界前4名。三、数控系统 由显示器、控制器伺服、伺服电机、和各种开关、传感器构成。目前世界最大的三家厂商是:日本发那客、德国西门子、日本三菱;其余还有法国扭姆、西班牙凡高等。国内由华中数控、航天数控等。国内的数控系统刚刚开始产业化、水平质量一般。高档次的系统全都是进口。华中数控这几年发展迅速,软件水平相当不错,但差就差在电器硬件上,故障率比较高。华中数控也有意向数控机床业进军,但机床的硬件方面不行,质量精度一般。目前国内一些大厂还没有采用华中数控的。广州机床厂的简易数控系统也不错。我们国家机床业最薄弱的环节在数控系统。

四、机床精度1、机械加工机床精度分静精度、加工精度(包括尺寸精度和几何精度)、定位精度、重复定位精度等5种。2、机床精度体系:目前我们国家内承认的大致是四种体系:德国VDI标准、日本JIS标准、国际标准ISO标准、国标GB,国标和国际标准差不多。3、看一台机床水平的高低,要看它的重复定位精度,一台机床的重复定位精度如果能达到0.005mm(ISO标准.、统计法),就是一台高精度机床,在0.005mm(ISO标准.、统计法)以下,就是超高精度机床,高精度的机床,要有最好的轴承、丝杠。;4、加工出高精度零件,不只要求机床精度高,还要有好的工艺方法、好的夹具、好的刀具。五、目前世界著名机床厂商在我国的投资情况1、2000年,世界最大的专业机床制造商马扎克(MAZAK)在宁夏银川投资建了名为“宁夏小巨人机床公司”的机床公司,生产数控车床、立式加工中心和车铣复合中心。机床质量不错,目前效益良好,年产600台,目前正在建2期工程,建成后可以年产1200台。2、2003年,德国著名的机床制造商德马吉在上海投资建厂,目前年组装生产数控车床和立式加工中心120台左右。3、2002年,日本著名的机床生产商大隈公司和北京第一机床厂合资建厂,年生产能力为1000台,生产数控车床、立式加工中心、卧式加工中心。4、韩国大宇在山东青岛投资建厂,目前生产能力不知。5、台湾省的著名机床制造商友嘉在浙江萧山投资建厂,年生产能力800台。5、民营企业进入机床行业情况1、浙江日发公司,2000年投产,生产数控车床、加工中心。年生产能力300台。2.2004年,浙江宁波著名的铸塑机厂商海天公司投资生产机床,主要是从日本引进技术,目前刚开始,起点比较高。3.2002年,西安北村投产,名字象日本的,其实老板是中国人,采用日本技术。生产小型仪表数控车床,水平相当不错。六、军工企业技改情况军工企业得到国家拨款开始于当年“大使馆被炸”,后来台湾上台后,大规模技改开始了,军工企业进入新一轮的技改高峰,我们很多军工企业开始停止购买普通设备。尤其是近3年来,我们的军工企业从欧洲和日本买了大批量的先进数控机床。也从国内机床厂哪里采购了大批普通数控机床,国内机床厂商为了迎接这次大技改,也引进了不少先进技术,争取军工企业的高端订单。听在军工企业的朋友讲,如果再能“顶”三年,我们的整体水平会上一个台阶。 其实,总书记掌权以来,已经把国防事业提到了和经济发展一样的高度上,他说,我们要建立和经济发展相适应的国防能力,相信再过10年,随着我国国防工业和汽车行业的发展,我们国家会诞生世界水平的机床制造商,也将会超越日本,成为世界第一机床生产大国。

参考文献:

1.《机床与液压》20041No171995-2005TsinghuaTongfang OpticalDiscCo¸,Ltd¸Allrightsreserved

4.《机床数控系统的发展趋势》黄勇陈子辰浙江大学

5.《中国机械工程》

6.《数控机床及应用》作者:李佳

7.《机械设计与制造工程》2001年第30卷第1期

8《机电新产品导报》2005年第12期

9.《瞭望》2007年第37期

10.机械》2007年第34卷第8期