大跨度桥梁工程论文范文
时间:2023-04-10 04:16:05
导语:如何才能写好一篇大跨度桥梁工程论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。
篇1
关键词:公路工程;大跨度桥梁;施工监理;要点
中图分类号:E271文献标识码: A
1、我国大跨度桥梁工程监理综述
工程建设监理是通过监理人员自身的经验与工程建设的相关知识所提供的监理服务,旨在最大程度上使得路桥项目在计划投资和进度以及质量目标之内竣工并投入使用。工程建设监理并不直接地进行生产活动,而是在最大程度上去实现或者追求工程目标。
大跨度桥梁施工监理指的是大跨度桥梁施工建设单位授权于监理单位,并签订监理合同,在合同约定的范围之内,根据相关的技术规范、建设合同以及法律、法规对建设项目的设计进行监督。监理人员在项目施工的过程中是代表业主的利益对施工的单位进行监理。近些年,由于我国大跨度桥梁工程的规范化管理,监理人员要胜任监理工作,需要不断地加强自身的基本素质,主要有:其一,对施工设计文件、施工技术要求以及施工图纸要清楚地了解并掌握,还要熟悉项目数量与相关的文字说明;其二,对合同执行过程中,要掌握承包人同监理间有关项目实施的函件、会议记录以及监理工程师签订的报表以及批准的技术方案和施工方案等等;其三,了解并掌握我国相关工程建设法律。法规以及有关部门所制定的技术标准和规范等;其四,对承包商与建设中一位之间所签订的合同内容,尤其是与费用、工期以及质量相关的规定和条款要熟悉与掌握,并且对监理单位与建设单位所签订的监理委托合同书的内容,例如有关监理单位的监理职责权利的规定进行仔细的了解;其五,熟悉我国和行业颁布的技术规程标准,了解政府部门批准的建设规划和计划。
2我国公路工程的大跨度桥梁施工监理要点分析
2.1严格做好进场原材料的把关工作
大跨度桥梁工程材料的质量对于项目质量事故以及经济损失的避免具有重要的作用。一旦由于工程材料质量低劣而出现的质量事故通常难以修复,所以,要做好进场材料的检验以及复测工作,对于检测出含有不合格或者不达标的原材料,应严禁进场和使用。此外,在材料进场的过程中,监理单位要仔细核对并清点所用材料的数量、型号以及规格,切实做好工程材料进场的控制工作。
2.2做好安全保障监理工作
一方面,安全保障监理需要监理工程师加强大跨度桥梁工程质量监理,进而凭借高质量的项目产品保证项目运行安全,同时,监理工程师还要对项目安全设施以及警示标志进行全面地检查,以便及时地提醒大跨度桥梁施工人员注意施工安全,进而确保大跨度桥梁的安全施工;另一方面,应组建一支具有高素质业务的大跨度桥梁施工监理工程师队伍。需要路桥监理工程人员不断地进行学习,加强自身专业知识的学习,从而积累丰富的大跨度桥梁施工经验。此外,有关单位还应加强监理人员的培训工作,提高其法律、法规以及技术规范意识,从而有效地实现大跨度桥梁工程监理的综合效果。
2.3大跨度桥梁施工人员的资质审查
在施工单位开工之前,大跨度桥梁监理工程师要对承包商的技术人员以及施工队伍的业务素质进行全面的审查,特别是特种作业操作证书,确定其是否同施工的相关要求相符合。
2.4大跨度桥梁施工测量的监理
作为施工的基础性工作,大跨度桥梁施工测量是施工的直接依据。而控制大跨度桥梁质量的重点工作就是对施工工艺、测量精度进行严格的控制。为此,监理人员要规范大跨度桥梁施工测量程序,根据大跨度桥梁的勘测规程,进行常规测量复核。针对于特大大跨度桥梁的桥位校测,监理人员应进行全程监测。如果监理人员在监理过程中发现施工测量不符合相关要求应进行及实地处理,待充分确认达规之后,监理工程师才能够执笔签字。在大跨度桥梁施工测量的监理中,主要涉及到以下几方面的工作内容:基点埋石牢靠与否、布网通视与否,确保无干扰、大跨度桥梁测量资料的核对与复测以及编号清晰与否等等。
2.5大跨度桥梁施工阶段的质量监理
2.5.1基础工程施工监理。作为大跨度桥梁最下部结构,基础的作用是承载大跨度桥梁上部的全部荷载,同时,将其与下部结构的荷载一并传至地基。大跨度桥梁基础是相对隐蔽性的工作,所以应选用具有丰富经验的监理工程师到达施工现场,对施工的程序进行现场拍照并做好资料保存工作。另外,在大跨度桥梁基础项目施工的过程中,还应做好:在不同地质条件下的地基加固、基层基底的处理以及地基处理等工作,从而确保大跨度桥梁最下部结构―基础的质量。
2.5.2大跨度桥梁的上部结构。对于大跨度桥梁上部结构而言,其施工程序以及施工技术具有相对的复杂性,需要施工工艺达到精确性,因而,在很大程度上加大了监理工作的难度。为此,在大跨度桥梁施工中,监理人员要严格要求施工承包商根据设计图纸进行,同时还要做好如下施工工序:诸如预应力的张拉、施工混凝上塌落度控制、振捣、砼成品养护、所需钢筋骨架的焊接等等。除此之外,还要做好旁站监理制度,从而保证大跨度桥梁结构有较好的承载能力。
2.5.3桥台与桥墩的施工监理。在桥台与桥墩的施工过程中,监理工程师一方面要对外观是否平滑与美观引起足够的重视,避免由于混凝上的振捣不均匀亦或是其他方面的施工不合理而造成的外观质量的缺陷;另一方面,要注重注意大跨度桥梁结构物的每一个部位的外形及其尺寸是否同施工设计图纸相符合,具有一致性。其次一定要注意支座的安装方向,梁体必须与支座密贴。
2.5.4桥面系监理。鉴于桥面敞露在外界,因而天气状况对其有很大的影响。如果在大跨度桥梁施工中,对桥面不引起足够的重视,则会导致桥面损坏后的维修以及修补的问题。因此,监理人员应对桥面进行及时地监理。针对于桥面部分的监理,主要抓住以下几个构造方面:灯柱、缘石、伸缩缝、栏杆、桥面铺装、人行道以及防水、排水设备等等。具体到桥面工程的监理,监理人员要对影响桥面标高的种种因素进行严格的控制,诸如,悬臂部分施工过程中的梁体变形、现浇箱梁的支架沉降以及预应力的预拱度值等等,这些因素不能较好的得到控制,就会在很大程度上加大大跨度桥梁顶面标高的变化。因此,在进行桥面施工的过程中,监理工程师要根据相关的监理制度进行严格的监理,对开工申请报告、钢筋的绑扎、混凝上的振捣、模板的架立、进场材料的审查、预应力的张拉等一系列施工工艺程序进行严格的把关,从而预防出现意外安全事故。
结束语
综上所述,大跨度桥梁工程质量的好与坏关系着人们的生命财产,是百年大计。公路工程的大跨度桥梁施工监理工作显得尤为重要,作为监理人员,应着重做好以下几方面的工作:其一,大跨度桥梁施工人员的资质审查工作;其二,大跨度桥梁施工测量的监理;其三,安全保障监理;其四,进场材料的把关;其五,大跨度桥梁施工阶段的质量监理。同时,遵循相关技术规范以及法律、法规,切实履行监理人员职责,从而保证大跨度桥梁施工质量,提高投资效益。
参考文献:
[l]王爱娟.公路与大跨度桥梁工程监理工作探讨[J].科学之友,2012,09:70-71
篇2
“桥梁工程”课程教学内容与教学方法的改革
“桥梁工程”教学内容的改革应以培养工程能力强的应用型人才为目标,注重理论知识在实践中的应用,体现素质教育和工程能力的培养。因此,必须优化课程结构,充实课程内容,在授课过程中加强工程能力的培养。1.优化重组教学内容,不断充实课程内容由于本课程只有48学时,这就需要教师明确教学目标,优化重组教学内容,在教学内容上进行适当取舍,精简教材。在教学过程中应突出重点和难点,使学生重点掌握基本桥型的基本构造原理和设计计算方法,对于大跨度桥梁着重讲构造原理和施工方法。如在讲解悬索桥时,引用具体的工程案例(如日本明石海峡大桥),重点讲解悬索桥的构造特点和常用的施工方法,对于悬索桥的设计计算只做一般性的了解,这样使教学过程难点减少,也符合我院该门课程学时少的特点和学生的实际情况。要不断充实课程教学内容。随着我国现代化建设的不断发展,桥梁工程建设技术不断革新,新技术、新方法、新材料、新工艺不断涌现。因此,这就要求教师及时了解当今桥梁工程的发展趋势和最新发展成果,定期在原有教学内容的基础上增加新内容,紧跟国内外的先进的施工技术,实现教学内容与实际工程的紧密结合。此外,教学内容还应与教师的科研成果紧密结合,教师应把科研的新成果、新观点、新见解不断充实到教学内容中,引导学生进入学科前沿,这样可以激发学生的学习热情,树立学生的自豪感。2.加强工程资料在教学中的应用为了增加学生的感性认识,在教学过程中需要引入大量的工程内容,包括工程图片、工程图纸、工程案例和工程录像等内容,突出课程的工程特性。[5]在教学过程中,教师应根据具体的教学内容,结合一些工程案例或一些国内外着名的桥梁予以详细讲解,再适当穿插一些桥梁施工过程的照片或播放施工过程的视频资料,这样,一方面可以使学生加深对桥梁构造和施工方法的理解,激发学生的学习兴趣,培养学生的工程意识和工程思维方式,使课堂教学更生动活泼;另一方面,工程实例与理论教学的结合,弥补了缺少实践环节的不足,使教学内容得以拓展,大大提高了该课程的教学质量。3.倡导启发、讨论式教学方法在教学中引入并倡导启发式、讨论式教学方法,由过去“以教师为主体”的传统教学模式向“以学生为主体、教师为主导”的新型教学模式转变,[2,3,6]改变以往“填鸭式”的教学模式,启发学生思考,变被动、机械、死记硬背式的学习为积极主动的学习。例如,在讲授“预应力混凝土连续梁桥”时,可引导学生思考两个问题:当需要的跨径大于40~50m时,还能否应用混凝土简支梁,会出现什么问题;面对桥梁大跨度的需求,有哪些解决途径。这样可启发学生思考,并组织学生展开讨论,使学生各抒己见,在讨论中获得更为全面的知识,从而训练学生的思维,培养学生独立思考和解决问题的能力,对培养学生的专业素养具有重要作用。4.充分利用网络化教学,有效延伸课堂教学除课堂学习外,充分利用校园网资源,建立了桥梁在线网络课堂,并建立了课程网站。将基本教学资料,如多媒体课件、练习题及模拟试题等挂在课程网页上,学生可以随时阅读和下载复习。同时将各类桥梁的图片、施工动画及视频资料等在校园网上,这样可以将教学内容直观、生动地反映在学生面前,提高了学生的感性认识,从而可以有效地延伸课堂教学,深受学生欢迎。同时,还开辟课程答疑、讨论专区,利用该平台学生可以完成习题的练习和答疑,并对重点问题和难点问题进行讨论,通过网上留言、学生提问、学生自答、教师解答等方式提高学生学习的主动性和创造性。
改革考核方式,突出工程应用能力和创新能力考核
为了适应当前素质教育的要求,培养出适应社会需要的综合素质高,能独立思考和解决各种实际工程问题的高级土木工程专业技术人才,就必须摒弃过去那种只重分数而轻能力的单一的试卷考核方式,建立一种新的考核方式,在强调学生考试成绩的同时,也注重对学生学习过程、学习态度、创新意识,解决问题等能力的考核,力争对学生作出全面、客观公正的评价。“桥梁工程”课程成绩评定时主要考虑学生基础知识、基础能力和工程应用及创新能力的考核,见图1。基础知识和能力的考核主要包括课堂表现、课后作业及理论考试等。课后作业可以分为两个层次,第一个层次为课后的手算作业题,目的是让学生熟悉传统的桥梁设计计算方法,加深对相应理论知识的理解;第二个层次为综合应用题,需要学生运用相应的桥梁计算软件(如桥梁博士、Midas等),用电算的手段来完成,可以提高学生计算机应用水平,也让教学更贴近行业发展与工程实践,缩短学生毕业后在工作岗位的磨合期。对于理论考试试题,减少死记硬背型的考题,增加综合性、灵活性大的题目,注重考查学生分析问题和解决问题的能力。工程应用及创新能力考核主要包括课程论文、读书报告及科技活动等。课程论文主要是指在教学过程中布置的一些探讨性较强的小论文,目的是让学生运用所学的专业知识,通过查阅相关文献提出自己的见解,并锻炼学生科技论文的写作能力。读书报告是为了扩展学生的知识面,要求每个学生在整个教学过程中完成2~3本桥梁工程相关书籍的阅读,并撰写读书报告。科技活动的内容主要是指依托我校的学生科技周活动,开展桥梁设计大赛、专题讲座、桥梁摄影等活动,目的是激发学生的学习兴趣,增强学生的工程创新能力。其中桥梁设计大赛涉及结构的选型、计算等方面的知识,通过做模型,学生既掌握了桥梁结构的构造特点,又加深了对桥梁结构计算理论的理解。因此,设计大赛既是课堂教学的一种有益的补充,也是学生进行实践的一次机会。在科技活动中还可以举办专题讲座,邀请一些学者、专家、教授,向学生传授先进的工程设计、施工、管理等方面的知识和宝贵的经验,引导学生进入学科前沿,拓宽学生的视野和知识面。根据我们构建的“桥梁工程”成绩评定系统,改变以往单一的试卷考试的考核方式,将课堂表现、作业完成情况、读书报告、课程论文及科技活动情况等方面纳入平时成绩的考核中,其中课堂表现占平时成绩的20%,作业完成情况占30%,读书报告占20%,课程论文占20%,科技活动占10%。课程的最后成绩由平时成绩(占40%)和理论考试成绩(占60%)组成。
篇3
关键词:桥梁;施工技术;裂缝
1 桥梁施工技术概述
下面简要介绍几种较为常见的桥梁施工技术。
1.1 大跨度桥梁施工技术
大跨度桥梁最为显著的特点之一是桥梁结构跨度长、体量大、对施工技术要求较高。此类桥梁较为常用的施工技术有:直接利用钢护筒作为平台的支撑结构、超大直径的钻孔灌注桩、刚性导向定位系统、爬模系统等。
1.2 桥梁冬季施工技术
由于受桥梁工程项目施工进度要求的影响,有些桥梁需要在冬季进行施工建设。在冬季进行混凝土桥梁施工时,需要注意的方面较多,特别是混凝土拌和。拌和站需要采用全封闭式的暖棚,同时各种原材料也需要存放在暖棚当中或是采取相应的保温措施;拌和混凝土时所用的水应当进行加热处理;混凝土运输过程中也需要采取相应的保温措施;混凝土养护需要采用蓄热技术等等。
1.3 山区桥梁施工技术
国内有很多桥梁工程都是建设在山区当中,由于山区本身的地形地貌、水文条件都比较复杂,并且还伴有岩溶、滑坡、陡崖等不良地质情况,从而使得山区桥梁施工难度较大。山区桥梁施工的特点可以概括为以下几个方面:施工周期长、机械设备投入比例大、高墩施工定位难度大等等。
1.4 既有线桥梁改建施工技术
现阶段,在国内既有线桥梁的改建过程中,D型钢便梁架空方案是应用最多的一种,这是因为该方案的施工技术比较成熟,具体如下:按照实际架空位置对临时桥墩进行施工,同时调整线路上的超高,然后采用D型钢便梁架空线路;施工新桥墩和桥台,并按照换梁期间的架空要求对架空钢便桥的位置进行调整,以此来形成对位架空的条件;将旧的梁和墩台以及临时桥墩进行拆除,然后进行移梁和捆梁作业;最后进行逐孔混凝土梁换移。该施工方案的特点是能够有效减少封闭作业的时间,从而使改建过程中对车辆通行的影响降至最低,同时,施工困难段采用钢塔代替枕木进行架空,进一步提高了安全性。
1.5 桥梁施工方法
无论任何一种桥梁类型,其施工大体上都分为两个部分,即基础施工和上部结构施工。
1.5.1 基础施工。通过对大量的桥梁工程进行分析后发现,大部分工程都对结构本身的安全性、稳定性和经济效益比较重视。由于桥梁基础工程基本都是在地面以下或是水中,使得基础工程施工难免会涉及水和岩土等方面的问题,这在一定程度上增加了基础施工的复杂程度,并且也导致了无法采用统一的模式对桥梁基础进行施工。所以基础施工的形式分成了以下几类:扩大基础、桩与管桩基础、沉井基础、地下连续墙基础以及组合式基础等等。
1.5.2 预应力混凝土施工。为了进一步确保施工质量,预应力张拉应当根据相关规范的规定要求进行,同时完成张拉之后应当立即进行灌浆,这样可以有效降低应力损失。在张拉的过程中除了应当控制好应力值以外,还应当对预应力筋的增长值进行抽查,并根据均匀对称的原则进行张拉,这有助于提高结构本身的抗裂性。
1.5.3 承台施工。为了确保桥台基础开挖施工的顺利进行,在施工过程中,需要采取相应的降水措施,大量工程实践表明,轻型井降水是最为经济且实用的方法之一。在实际应用中,只需要做好井点分级布设和计算即可。此外,井点的平面布设在很大程度上取决于地下水的补给方式、基坑平面形状以及降水深度,故此,在工程中,可以根据具体情况,选用最合适的布置形式。
2 桥梁裂缝的成因解析
引起桥梁工程裂缝的原因非常复杂,并且种类也十分繁多,想要进一步揭示桥梁病害的机理就必须对裂缝的形成原因进行全面系统的分析。
2.1 荷载原因造成的桥梁裂缝
桥梁结构在动荷载、静荷载以及次应力作用下产生出来的裂缝称之为荷载裂缝。这类裂缝大体上又可分为以下两种:
2.1.1 直接应力裂缝。具体是指由外部荷载引起的直接应力造成的裂缝。这种裂缝产生的原因主要与桥梁结构设计、施工以及使用有关。首先,在设计方面通常都是因为计算错误、模型设计的不合理、力学假设与实际受力情况不符造成的;其次,在施工方面多数都是由于施工人员马虎大意造成的,如施工设备和材料随意堆放等等;再次,使用方面主要与车辆超载有关。
2.2.2 次应力裂缝。具体是指由外部荷载引起的次生应力造成的裂缝。截面刚度变化时引起次应力裂缝最主要的原因之一,尤其是在大跨度预应力桥梁结构中,这种裂缝最为常见。
2.2 温度变化引起的桥梁裂缝
通常情况下,当大体积混凝土基础浇筑在比较坚硬的基岩上时,由于结构本身的整体性要求使之无法采取隔离层等保护措施,这样一来混凝土在大气温度及自身水化热温度的双重作用下,其内部便会产生出较大的温度,同时,在降温收缩的过程中,变形会受到基岩约束,从而是混凝土结构内部产生出较大的拉应力,由此便会形成裂缝。此类裂缝一般都会出现在混凝土浇筑完成后的2-3月左右,裂缝较深,并呈贯穿性分布,其会对桥梁结构的整体性造成一定程度的破坏。
2.3 收缩原因引起的桥梁裂缝
在桥梁工程施工过程中,混凝土由于自身收缩形成的裂缝是最为常见的一种,具体可分为塑性收缩和干缩两种。
2.3.1 塑性收缩裂缝。在实际施工过程中,混凝土的塑性收缩多出现在浇筑后的3-5h左右,这是因为此时的水泥水化反应最为激烈,水分蒸发的速度也非常快,混凝土由于失水便会收缩,其中的骨料因为自重原因会出现下沉的现象,同时混凝土因为浇筑的时间较短尚未达到硬化的程度,这样便会产生塑性收缩,从而形成裂缝。
2.3.2 干缩裂缝。由于混凝土表层中的水分蒸发速度较快,而混凝土结构内部的水分损失相对较慢,这样一来便会使表面与内部产生不均匀的收缩现象。因为混凝土表面的收缩变形受到内部混凝土的约束,从而使得混凝土表面需要承受一定的拉力,当该拉力超过混凝土的极限抗拉强度时,便会形成裂缝。
2.4 地基基础变形引起的桥梁裂缝
因为地基基础的水平位移或是竖向的不均匀沉降,会使桥梁结构中产生出一定的附加应力,当这部应力超出混凝土的抗拉极限时,便会造成结构开裂。引起地基基础变形的原因主要有以下几个方面:其一,地质勘测不到位;其二,地基的地质差异较大;其三,桥梁结构各个部分的荷载差异较大;其四,原有的地基条件发生变化。
2.5 钢筋锈蚀引起的桥梁裂缝
目前,基本上所有新建的桥梁采用的都是钢混结构,这种结构的桥梁最为显著的特点是稳定性高。然而,由于混凝土本身的质量较差,或是保护层的厚度不够,便会使混凝土保护层受到二氧化碳的侵蚀,从而导致钢筋周围的混凝土碱度下降,这样一来会造成钢筋表面的氧化膜被破坏,致使钢筋发生锈蚀反应,由此生成的氢氧化铁,其体积会增大2-4倍左右,这一过程会产生相应的膨胀应力,进而造成保护层混凝土开裂,这种情况在沿海地区的桥梁中最为常见。
3 桥梁结构裂缝的有效处理方法
3.1 桥梁裂缝修补方法
在对桥梁裂缝进行修补时,可以采取以下方法:其一,表面封闭法。该方法具体是指采用抹浆、凿槽嵌补、喷浆、填缝的方法对桥梁结构表面的裂缝进行封闭式处理;其二,压力灌浆法。采用水泥或是化学材料作为主要的灌浆材料,并用相应的设备将浆液灌注到桥梁结构内部的裂缝当中;其三,表面粘贴法。通过在桥梁结构表面存在裂缝的位置处粘贴玻璃布或是钢板的方法,来封闭已经形成的裂缝,该方法除了能够起到修补裂缝的作用,而且还能进一步提高桥梁结构本身的强度和刚度,有助于确保结构整体的稳定性。
3.2 桥梁加固方法
3.2.1 增大截面法。这种加固方法主要是指采用钢筋混凝土来增大桥梁结构截面面积,以此来达到进一步提高结构承载力的目的。该方法显著的优点是工艺简单、适用性强等等。
3.2.2 碳纤维加固法。这种方法的优点如下:无需增加恒载及断面尺寸、能够适应不同的构件形状、便于成型、不会损伤原结构、能改善构件的受力性能等等。
3.2.3 其它加固方法。外包钢加固法、锚栓钢板加固法、锚喷混凝土加固法等等。参考文献
[1] 张燮.80米钢—混凝土组合结构桥梁施工过程中的关键技术及控制措施研究[D].兰州交通大学,2012(9).
[2] 雷俊卿.马少飞.提升桥梁混凝土耐久性的施工技术对策[A].全国既有桥梁加固、改造与评价学术会议论文集[C].2008(11).
篇4
关键词:连续刚构桥,悬臂浇筑,合拢
1.引言
桥梁是公路、铁路线路的重要组成部分,大跨度桥梁的结构形式变化多样,连续刚构桥的桥墩纵向刚度较小,在竖向荷载作用下,基本上属于一种无推力结构,而上部结构具有连续梁施工的一般特点,因此有较好的技术经济性,同时预应力技术的迅速发展使连续刚构桥得到了较快发展,因而连续刚构桥以其优良的性能在桥梁建设中占有重要的地位。因此,连续刚构桥的施工对桥梁建设和国民经济的发展有着重要意义。
2.连续刚构桥的特点
桥梁上部结构和桥墩整体刚性连接,在竖向荷载作用下,主梁在墩顶截面产生负弯矩,桥墩也承受弯矩作用,这种桥型即为连续刚构桥,预应力混凝土连续刚构桥是连续梁桥与T形刚构桥的组合体系,也称墩梁固结的连续梁桥。
连续刚构桥的梁体连续,墩、梁、基础三者固结为一个整体共同受力,这使得连续刚构桥有着突出的优点。墩梁固结省去了桥梁支座,不必像简支梁桥或连续梁桥那样对支座进行设计、制造、养护和更换,因而节省了相关的费用;连续刚构桥,可以仅在桥梁两端设置伸缩缝,因而相对简支梁桥而言,连续刚构桥整体性及行车舒适性好;恒载作用下的连续刚构桥和连续梁桥的跨中弯矩及竖向位移基本一致,连续钢构桥中双肢薄壁墩使墩顶截面的恒载负弯矩小于相同跨径连续梁桥,同时,墩梁固结使得墩梁共同参与工作,连续刚构桥由活载引起的跨中正弯矩较连续梁要小,因而可以降低跨中区域的梁高,并使恒载内力进一步降低,因此,连续刚构桥的主跨径可以比连续梁桥的大些,所以连续刚构桥跨度较大,这样就减少了桥墩的数量,一定程度上降低了桥墩造价;墩梁固结使各个桥墩可参与承受水平地震力的作用,而在一般的连续梁桥中,需要设制动墩并且需要采用价格较贵的抗震支座,因而,连续刚构桥相对连续梁桥而言,抗震性能较好;墩梁固结使得便于采用悬臂浇筑法施工,就不必像一般的连续梁桥那样在施工过程中进行体系转换时需要采用临时固结,在一定程度上,施工过程得到一定的简化;由于闭合箱形截面抗扭刚度非常大,同时因其顶板和底板都具有较大的截面面积,能够有效的抵抗较大的正负弯矩,因而连续刚构桥的主梁大多采用箱形截面,因此顺桥向抗弯刚度和横桥向抗扭刚度很大,可以满足大跨径桥梁受力要求,同时薄壁墩顺桥向抗推刚度小,从而能有效地减小温度、混凝土收缩徐变和地震的影响。
3.连续刚构桥的施工方法
连续钢构桥的施工方法包括支架施工和悬臂施工。支架施工是在支架上现浇混凝土,因而施工时需要大量支架,一般在连续刚构桥的直线段用支架施工,悬臂法施工用于连续刚构桥的T构段施工,尤其适用于深水、大跨、高墩的情况,工序较简单。悬臂法施工是连续刚构桥施工的核心问题,下面重点阐述悬臂施工方法。悬臂施工法又包括悬臂拼装和悬臂浇筑,前者是将预制块拼装在一起,后者是利用挂篮现场浇筑混凝土。相对而言,悬臂浇筑施工法利用泵送混凝土现场浇筑,不需要占地很大的预制场地,逐段浇筑使得梁段的位置易于调整和控制,悬臂浇筑后的结构整体性好,悬臂浇筑不需要大型机械设备,各段施工属于严密的重复作业,需要施工人员少,工作效率高。因此悬臂浇筑施工的方法在连续刚构桥施工中有着广泛的应用。免费论文参考网。
悬臂浇筑施工可分为0号块托架施工和以后各块的挂篮施工两个阶段。0号块位于墩的正上方,可以利用托架浇筑混凝土。在墩顶托架上浇筑0号块并实施墩梁固结系统,当托架施工为挂篮施工提供了足够的起步长度后,可以拼装挂篮进而应用挂篮进行悬臂浇筑施工。免费论文参考网。挂篮悬臂浇筑可以分为以下几个步骤:挂篮拼装与立模、绑筋、管道安装、混凝土浇筑与养生、预应力筋的张拉、压浆,接下来移动挂篮进行下一阶段的悬臂浇筑。在悬臂浇筑过程中,需要注意以下几个问题:
3.1混凝土的浇筑与养生
悬臂浇筑一般采用泵送混凝土,混凝土浇筑,原则上是一次浇筑,一般先浇筑底板,然后分别对称浇筑两侧腹板,浇筑过程中应严格控制混凝土浇筑质量。免费论文参考网。混凝土浇筑后,应派专人进行养生,以确保混凝土水化硬化过程中不出现较大裂缝,从而保证施工质量。
3.2预应力钢筋张拉时的混凝土强度
只有当混凝土的强度达到预定要求时才能进行预应力钢筋的张拉,否则就有可能会在张拉时引起混凝土崩裂或者桥梁的受力性能不能达到设计中的预定目标。混凝土强度可采用标准试件尺寸为150mm×150mm×150mm的立方体试块测定,根据养生方法的不同可以分为实验室标准养生和同体养生。根据养护时间的不同可以分为7d和28d。
3.3立模标高的确定
温度变化对桥梁结构的受力与变形影响很大,这种影响程度随温度的改变而改变,在不同时刻对结构的变形和应力进行量测,结果不同,尤其是悬臂较长的阶段,悬臂受力及变形受温度变化影响更加显著,如果施工过程中忽略了该项因素,就难以保证施工质量。
一般来说若在上午6~8时测定立模标高,可不进行修正,在其它时间测定立模标高时,均应进行日照温差影响的修正。对于阴雨天气应视具体情况分析,也可不作修正,立模标高修正值可根据现场实测数据而定。
3.4跨中合拢段施工中应注意的问题
悬臂浇筑进行到跨中合拢段,是悬臂浇筑施工过程中悬臂处于最长的时候,此时,悬臂的受力和变形较之前些阶段受温差的影响最大,所以此时更应该考虑到温差的影响。因而,跨中合拢段浇筑一般宜选在夜间进行。为了保证混凝土浇筑过程中跨中合拢段的稳定,可以在两侧悬臂端部配重,配重方式宜用水池蓄水做平衡重,同时应注意,为确保平衡重不使悬臂发生扭转,要保证将水池沿桥梁的中轴线对称砌筑,在施工过程中,宜一边浇筑混凝土一边放掉水箱中的水。
4.结束语
连续刚构桥由于自身的优点在大跨度桥梁建设中占据重要的地位,施工过程中,施工质量的控制对连续刚构桥的使用性能有至关重要的作用,只有在施工中能够全面的考虑影响施工质量的因素,保证施工质量,才能使桥梁在国民经济建设中发挥重要作用。
参考文献:
[1]. 杨余江.T形连续刚构桥合拢施工要点[J].山西建筑.2008.(3):346-347
[2].杜洪,蒋陈.连续刚构桥梁施工控制[J].公路交通技术.2003.(4):44-46
[3]. 盛明宏,李全,浦玉炳,张舍.预应力连续钢构桥悬浇施工的工艺控制[J].安徽建筑工业学院学报(自然科学版).2004.5:90-93
[4]. 蒋国富.大跨径桥梁高墩日照温度效应的研究[D].长安大学2005.6
[5].范立础.预应力混凝土连续刚构桥[M].北京:人民交通出版社.1999
[6].邵旭东.桥梁工程[M].北京:人民交通出版社.2007.02:81-83
[7].余诗泉.桥梁工程[M].北京:人民交通出版社.2005.03:81-92
[8].杨雄伟、吴文明.大跨度预应力混凝土箱梁桥悬臂施工中温度变形控制[J].森林工程,2003.19(5):55~56,36
篇5
关键词:型钢混凝土组合结构,型钢,型钢混凝土梁,型钢混凝土柱,应用
中图分类号:TU37 文献标识码:A
前言
型钢混凝土组合结构是由混凝土包裹型钢做成的结构。它的特征是在型钢结构的外面有一层混凝土的外壳。型钢混凝土组合结构中的型钢除采用轧制型钢外,还广泛使用焊接型钢。此外还增加钢筋和钢箍配合使用。这种组合结构在各国均有不同的名称,在英美等国家将这种组合结构称为混凝土包钢结构( Steelencased Concrete),在日本则称为钢箍钢筋混凝土,在苏联则称为劲性混凝土。我国在50年代就从前苏联引进了劲性钢筋混凝土结构;60年代以后,由于片面强调节约钢材,型钢混凝土组合结构的应用推广就显得很难进行;直到80年代后,型钢混凝土组合结构在我国又一次被兴起起来。北京国际贸易中心,香格里拉饭店和京广大厦等超高层建筑的底部几层都是日本建筑专家在中国设计的型钢混凝土组合结构。
国内外专家试验显示,在低周期反复荷载作用下型钢混凝土组合结构拥有良好的滞回特性和耗能能力。特别是型钢混凝土组合结构构件内配置的是实腹型钢,它的延性性能、承载力和刚度,比配置空腹型钢的型钢混凝土组合结构构件更胜一筹。
型钢混凝土梁和柱是型钢混凝土组合结构中最基本的构件,实腹式和空腹式为型钢的两大类。实腹式型钢一般是由型钢或钢板焊成,较常用的截面形式有大写的英文字母I型、H型、工字型、T型、槽形和矩形及圆形钢管等。一般由缀板或缀条连接角钢或槽钢而组成的是空腹式构件的型钢。型钢混凝土框架是由型钢混凝土柱和梁组成的。采用钢梁、组合梁或钢筋混凝土梁作为型钢混凝土组合结构框架的框架梁。钢筋混凝土剪力墙可在高层建筑的型钢混凝土框架中设置,型钢支撑或者型钢桁架也可以设置在钢筋混凝土剪力墙中,或将薄钢板预埋在剪力墙中,通过这几种处理方法就可组成各种形式的型钢混凝土剪力墙。在超高层建筑中,型钢混凝土剪力墙的抗剪能力以及延性比钢筋混凝土剪力墙能发挥更好的作用。
1)型钢混凝土组合结构中的型钢可不受含钢率的限制,其承载能力可以高于同样外形的钢筋混凝土构件的承载能力的一倍以上;可以减小构件的截面,对于高层建筑,可以增加使用面积和楼层净高。
2)型钢混凝土结构的施工工期比钢筋混凝土结构的工期大为缩短。型钢混凝土中的型钢在混凝土浇灌前已形成钢结构,具有相当大的承载能力,能够承受构件自重和施工时的活荷载,并可将模板悬挂在型钢上,,而不必为模板设置支柱,因而减少了支模板的劳动力和材料。型钢混凝土多层和高层建筑不必等待混凝土达到一定强度就可继续施工上层。施工中不需架立临时支柱,可留出设备安装的工作面,让土建和安装设备的工序实行平行流水作业。
3)型钢混凝土结构的延性比钢筋混凝土结构明显提高,尤其是实腹式的构件。因此,在大地震中型钢混凝土组合结构呈现出优良的抗震性能。日本抗震规范规定高度超过45m的建筑物,不得使用钢筋混凝土结构,而型钢混凝土组合结构不受此限制。
4)型钢混凝土框架较钢框架在耐久性、耐火度等方面均胜一筹。
由于型钢混凝土组合结构有如此诸多优势,因此,以下就型钢混凝土组合结构在高层及超高层建筑、桥梁工程中的应用做了如下搜集整理,为今后此方面的深入研究奠定基础,促进型钢混凝土组合结构在其他建筑工程领域的发展应用。
1 型钢混凝土组合结构在大跨度建筑工程中的应用
浙江广厦学院文体中心拟建在浙江广厦建设职业技术学院建筑工程分院北面,此文体中心是由浙江大学建筑设计院设计,有浙江省浙南综合工程勘察测绘院勘察。此工程现在已处在二层主体结构施工阶段,整个建筑长×宽×高为174.6m×139.2m×26.5m,地上三层,地下局部1层。主体结构设计使用年限为50年,抗震设防烈度为非抗震,建筑结构安全等级为二级,地基基础设计等级为乙级,地下防水等级为二级,建筑物耐火等级为一级。基本风压取50年一遇基本风压w=0.35KN/,雪荷载为0.55KN/,地面粗糙度为B级,体型系数为1.3,其中型钢混凝土组合结构部分构件计算采用MIDAS GEN ver.730 软件。在结构设计方面也有部分结构采用型钢混凝土组合结构,采用此结构的目的主要是其能满足大跨度,增大使用空间的实际使用要求,型钢混凝土组合结构部分构件计算采用MIDAS GEN ver.730 软件。型钢柱和型钢梁所用钢板及热轧型钢均采用Q345B.。钢檩条、钢板天沟采用Q235B。
在室外或有侵蚀性气体环境中的称重钢结构宜采用耐候钢,型钢混凝土组合结构混凝土强度等级按结构设计说明,按最大骨料粒径25mm。
型钢混凝土组合结构构件中,纵筋间净间距,对梁不小于30mm,对柱不小于50mm,且不小于粗骨料最大粒径的1.5倍及钢筋最大直径的1.5倍。纵筋与型钢钢骨的净间距不小于30mm,且不小于粗骨料最大粒径的1.5倍。纵向受力钢筋的混凝土最小保护层厚度应符合国家标准相关规定。型钢钢骨的混凝土梁保护层最小厚度不宜小于100mm;型钢钢骨的混凝土柱保护层最小厚度不宜小于150mm。型钢钢骨混凝土结构的混凝土最大骨料直径宜小于型钢钢骨外侧混凝土保护层厚度的三分之一,且不宜大于25mm。为保证混凝土的浇筑质量,在梁、柱节点处及其他部位的水平加劲肋或隔板上应预留透气孔。型钢钢骨梁端箍筋设置时,其第一个箍筋应设置在距节点边缘不大于50mm处。在型钢钢骨上穿孔应兼顾减少钢骨截面损失与便于施工两个方面。型钢钢板上的空洞,应在工厂采用相应的机床或专用设备钻孔,严禁现场用氧气切割开孔。钢筋混凝土次梁与型钢钢骨混凝土主梁连接时,次梁中的钢筋应穿过或绕过型钢钢骨混凝土主梁中的钢骨。当框架柱一侧为型钢钢骨混凝土梁时,另一侧为钢筋混凝土梁时,型钢钢骨混凝土梁中的钢骨伸长段范围内,钢骨上下翼缘应设置栓钉。
2 型钢混凝土组合结构在高层及超高层建筑工程中的应用
日本是一个岛国,也是一个地震发生频率很高的国家,由于受地理条件限制的原因,迫使日本建筑结构专家必须找到一种既有实用性又有良好抗震性能的结构形式。目前世界上型钢混凝土组合结构研究和工程应用最多的国家就是日本。在日本,采用型钢混凝土组合结构的高层建筑大约占到50%左右,由型钢混凝土组合结构和其他结构再复合而成的混合结构的数量也是相当可观的。
在我国,龙希国际大酒店就是其中一例,龙希国际大酒店是集酒店式公寓及附属公共配套设施于一体的超高层综合体。此工程建筑高度328.0m,总建筑面积达212987.42。由3个60层(高252.6m)的筒体和1个74层(高328m)的中央核心筒体构成,中央核心筒体顶部设有一直径为50m的球体结构。主要结构形式采用型钢混凝土组合结构,3个筒体采用外框架-内筒体结构。外框架采用钢管混凝土柱、型钢混凝土组合梁框架结构,内筒体为型钢混凝土组合结构。
此工程在建筑上的独特设计在于整个大楼顶部设置一直径为50m的球体,在球体下方的支撑构件-中央核心筒体中,型钢混凝土组合结构担起了承受顶部球体荷载的主要任务。结构中设有实腹式H型钢柱,并在每层平面中有型钢梁相连,在剪力墙混凝土结构内部形成钢框架,这样不仅能够充分承受由于顶部球体自重产生的竖向荷载,还能有效地抵抗球体在300m高空的巨大风荷载以及地震作用带来的破坏性冲击。
其次,义乌市近期正在建造义乌世贸中心超高层酒店,地下3层并每层设夹层,地上54层。此世贸中心超高层酒店是由同济大学建筑设计研究院(集团)有限公司设计,其主要结构形式也是采用的型钢混凝土组合结构,即采用外框架-内筒体结构。
再者,苏州市唯亭镇一高层建筑工程主楼采用了型钢混凝土组合结构和钢筋混凝土混合框架结构。南部型钢混凝土框架由劲性H型钢柱和劲性H型钢梁组成,梁柱钢材材质为Q345B,组合柱中主要型钢H800×400×18×35,组合梁中主要型钢H1250×400×20×45。其中钢柱与基础连接为M36地脚螺栓连接;钢柱与钢梁连接为刚接,钢梁与钢梁的连接也为刚接。
由以上已建的及在建的高层及超高层建筑来看,中国现行在此型钢混凝土组合结构方面的应用已经日趋壮大。这充分发挥了此种组合结构的优势,为后续地震区四川的汶川及雅安重建奠定了抗震设计的新模范。
3 型钢混凝土组合结构在桥梁工程中的应用
广州猎德大桥桥塔下塔柱的设计就是型钢混凝土组合结构在桥梁工程中的一个应用实例。根据受力特性及《混凝土结构设计规范》中规定配置普通钢筋对桥塔下塔柱采用型钢混凝土组合结构的设计,在H型钢的外侧加配普通钢筋。将8根H型钢配置在桥塔窄边,将28根H型钢配置在桥塔长边,两翼均配置28根H型钢,并用箍筋将H型钢套箍。采用此种桥塔设计主要是利用型钢混凝土组合结构中桥塔钢材的抗拉性能和混凝土的抗压性能都得以充分发挥,提高了截面抗力。钢骨与高强度混凝土之间相互约束,使各自的强度得到了提高,增加了结构和构件的延性,从而改善由于混凝土本身延性差而带来的不利于抗震的脆性特性。桥塔的普通钢筋和H型钢所组合的结构在地震作用下将形成2道防护,在外层混凝土剥落的情况下,核心型钢混凝土仍然具有强大的抗震性能。在异型桥塔尤其是桥塔根部弯矩较大的桥塔采用型钢混凝土组合结构,可提高桥塔的抗震性能。
广州猎德大桥是由谢尚英教授级高工领衔设计,在此引用仅此说明我国在桥梁工程中已经能很好地将型钢混凝土组合结构应用到位,并能设计出造型比较独特的桥梁。为今后型钢混凝土组合结构在桥梁工程中的发展及应用树立了榜样。因此,在我国地震高发地带如四川省雅安及汶川等地区的重建桥梁尽量推广应用型钢混凝土组合结构,充分利用其良好的抗震性能,提高我国桥梁工程在大地震面前的抵抗力。
4结语
13年10月下旬台湾发生了7级以上地震,浙江大部分高层及超高层建筑大约在8层以上均有较大震感。通过对此三种工程结构中型钢混凝土组合结构的应用研究,表明现行中国型钢混凝土组合结构的计算理论及节点构造图集日趋完善。利用型钢混凝土组合结构使结构受力更加合理,有效地减小了构件截面尺寸。缩短工程的建造工期,增加使用空间及降低建筑物的自重和资金成本。
参考文献:
期刊论文型钢砼与钢筋砼混合框架结构施工探讨2012.14.020
篇6
【关键词】桥梁;养护;健康监测
中图分类号: U445 文献标识码: A 文章编号:
有关专家认为从桥梁的建成到使用超过25年以上的则是步入老化期。据统计,我国40%的左右的桥梁已经在此范畴之内。随着时间的推移“老龄”桥梁的数量将不断增加,为了解决“老龄”桥梁的安全问题,桥梁健康监测系统和桥梁预防性养护技术的研究尤为重要。
一、桥梁健康监测的概念与意义
桥梁健康监测实际上就是通过对桥梁结构状况的监控和评估(例如可靠性,耐久性等)。在通过无损检测(NDT)或者是桥梁结构特性分析(其中包括桥梁结构响应)等技术为桥梁在特殊天气条件下又或者是特殊的交通条件下,导致发生桥梁运营状况异常,而发出预警信号,同时桥梁健康监测也为桥梁的日常维护和维修、管理与决策提供依据和指导性意见。然而,桥梁结构健康监测不仅是为了结构状态监控和评估,其信息反馈于结构设计的更深远的意义在于,结构设计方法与相应的规范标准等可能得到改进。再有就是桥梁健康监测带来的不仅仅是监测系统和对某特定桥梁设计的反思,还可能并应该成为桥梁研究的“现场实验室”。桥梁健康监测为桥梁工程中的未知问题和超大跨度桥梁的研究提供了新的契机。由运营中的桥梁结构与其环境所获得的信息不仅是理论研究和实验室调查的补充,还可以提供有关结构行为和环境规律的最真实是信息。因此,桥梁健康监测不只是传统桥梁检测加结构评估新技术,而且被赋予了结构监控与评估、设计验证和研究与发展三方面的意义。近年来,通信网络、信号处理、人工智能等技术的不断发展加速了桥梁监测系统的实用化进程。业界纷纷着手研究和开发各种灵活、高效、廉价、并且不影响桥梁结构正常使用的长期实施监测方法或技术。桥梁健康监测系统的部署和应用不单单具有重要的现实意义,还具有重要的研究价值,在推动和发展智能化、数字化和信息化桥梁工程中起到了积极的作用。
二、桥梁预防性养护的概念
千里之堤,溃于蚁穴,桥梁也不例外,随着近几年全国危旧桥梁事故频率的上升,桥梁预防性养护的开展日益重要。桥梁的预防性养护一般是指为了防止桥梁病害的发生和延迟桥梁轻微病害的进一步扩展,以减缓桥梁病害发展速度、延长桥梁使用寿命为目的的养护作业。它是一种周期性的强制保养措施,它并不考虑桥梁是否已经有了某种损坏,而是通过采用先进的检测技术努力拓宽人们对于桥梁早期病害的认识空间,提前发现道路隐藏的隐形病害的存在,并施以正确的预防性养护措施,其核心是要求采用最佳成本效益的养护措施,强调养护管理的计划性。
三、桥梁预防性养护技术研究
实践中要做好桥梁的预防性养护工作,在技术层面,我们一般可从以下几个方面开始着手:
(一)掌握桥梁结构状态和桥梁的实时运营状态
桥梁的预防性养护首先必须完善检查机制,同时以先进的检测手段做为基础,这样才能够全面、持续的掌握桥梁结构状态以及桥梁的实时运营状态,从而为判断养护时机和选择养护方法提供依据。
完善的检查机制能够为桥梁的运营状况提供完整数据记录,这样能够比较完整的反映出桥梁在使用过程中的结构状况变化和桥梁病害的发展程度,为分析判断桥梁病害原因和研究有针对性的养护对策提供了有力的依据。
先进的检测技术则能保证检测数据的精度和科学性,处理数据和信息的能力也大大提高。所以重视高速公路桥梁的检测效率和质量尤为重要,同时,应该重视现在已经开发和使用的集成检测技术。
(二)建立健全桥梁养护管理系统
通过建立健全桥梁养护管理系统,能够对桥梁基础信息及检查、检测、维修保养等信息进行记录和统计分析,为快速、科学的进行养护决策提供了坚实的基础。同时,通过统一、规范的桥梁养护管理系统,也能够规范桥梁检查、检测内容和方法,统一桥梁技术状况评定标准,能够更加有效的反映桥梁现状,有利于桥梁管养单位做好桥梁养护管理工作。
(三)加强日常小修保养工作,及时恢复结构承载能力与耐久性
实施预防性养护应高度重视日常小修保养工作,当桥梁出现各类病害时,及时判断病害成因和发展趋势,尽快采取经济有效的小修保养措施,控制病害发展,恢复结构的承载能力和耐久性。
(四)常见的桥梁预防性养护方法
结合湖北京珠高速公路桥梁的常见病害,在桥涵构造物养护维修中,常见的预防性养护方法有以下几种:对于混凝土结构表面裂缝和缺陷,及时采取裂缝封闭、混凝土缺陷表面修补等处理措施,防止裂缝和缺陷扩展引起钢筋锈蚀等病害;对于伸缩缝与泄水孔的堵塞,及时进行清理,以防连锁性破坏;在原有伸缩缝失效时(如伸缩量在未到最高环境温度时为0等),安排合理时机更换伸缩缝,避免气温变化引起桥梁其他病害;对于实心板桥存在铰缝裂缝、渗水可能失效的,采用安装横桥向钢肋板,加强板梁间横向联系,以防止出现单板受力等病害;对于部分空心板底部裂缝较多的情况,采用粘贴碳纤维布的方式,恢复结构耐久性,延长桥梁使用寿命。
上述桥梁预防性养护措施实际上也是在我们以往的桥梁养护工作中可能常用到的措施,但没有明确发展相应的预防性养护观念。实际上,我们认为桥梁的预防性养护是一种养护理念及实施这一理念的一整套养护策略。因此,它并不是以预防性养护技术为核心,而是以其实现的一整套政策、体制、模式和运作方式为核心,技术只是最终的实现方式。
结束语
桥梁的健康监测与预防性养护及其重要,这是掌握不同桥型、不同病害与灾害的特点,为制定合理的桥梁维修与加固方案提供有效的数据依据,我们应该贯彻以预防为主的原则,提高桥梁的抗灾能力和服务水平,才能发挥更大的经济效益和社会效益。
参考文献:
篇7
关键词:桥梁抗风;风致振动;动力作用
Abstract: As more and more bridges damage and collapse due to wind-induced vibration and the influence of wind on the bridge structure, more and more bridges attention, mainly introduced the research and development status of bridges, wind load on the bridge of the classification of the commonly used measures, bridges and need to be improved in the wind, to provide reference for research of bridge.
Key words: bridge; wind-induced vibration; dynamic action
中图分类号:K928.78文献标识码:文章编号:
一、桥梁抗风发展过程、研究方法和现状
对于大跨度桥梁结构来说,风荷载是主要的控制荷载之一,有时它直接关系到桥梁结构的安全。早期人们对于风对桥梁结构的认识仅仅限于风对桥梁结构的静力荷载作用,1940年秋,美国华盛顿州建成才四个月的塔科马悬索桥在8级大风仅(17-20m/s)的作用下就发生了强烈的风致振动并最终倒塌的严重事故。在这一事件的推动下,桥梁工程师和空气动力学家开始意识到桥梁风致振动问题。
目前对桥梁风致振动的研究方法主要有四类:理论分析、风洞试验、数值模拟和现场观测。本文主要介绍桥梁风工程中的理论分析、风洞试验、数值模拟这三种方法。
1.1理论分析
根据荷载的表达方式不同,风致振动分析理论主要有频域分析和时域分析。
在频域内分析桥梁结构颤振的理论有经典耦合颤振理论、分离流颤振理论和多模态颤振理论。经典耦合颤振理论最早是Bleich用Theodorsen的平面薄翼理论研究悬索桥颤振而发展起来的,该理论以Theodorsen自激力模型为基础。
在时域内分析桥梁结构抖振的理论有Davenport抖振分析理论、Scanlan抖振分析理论、Scanlan多模态抖振理论。Davenport于20世纪60年代研究了桥梁结构的抖振问题,他运用概率统计的方法和随机振动理论建立了柔性细长结构的湍流抖振响应分析模型,并给出了抖振力模型。Davenport抖振分析理论认为风速的脉动决定了风荷载的统计特性,柔性细长结构的阵风响应可以通过模态叠加求得。Davenport对抖振分析的重要贡献是在功率谱中引入气动导纳来修正按准定常气动力模型计算的误差,,引合承受函数来描述气动力沿桥跨方向的相关性。
1.2风洞试验
桥梁结构模型风洞试验可分为节段模型试验、全桥模型试验、拉条模型试验;按照悬挂方式的不同,节段模型试验可以分为刚性悬挂节段模型试验、强迫振动节段模型试验、自由振动节段模型试验、弹性悬挂节段模型试验。
1.3数值模拟
数值模拟是应用计算流体力学方法(CFD)模拟气流经过桥梁结构时结构周围的流场分布情况并求解结构表面的风荷载。这是近几十年发展起来的一种结构风工程研究方法。随着计算机技术的普及与应用能力的提高,数值模拟技术得到了迅速的发展,可用于桥梁结构空气动力参数研究的计算流体力学方法有多种,如有限体积法、有限元法、有限差分法、离散涡方法。数值模拟结果的准确性和可靠性依赖于对实际问题建立正确的数学模型和算法。目 前,对于气动弹性分析的数字模拟技术,在二维模型和均匀来流条件下的计算比较成熟,正在向三维模型、紊流风场和高雷诺数方向发展。计算流体力学的商业软件比较多,如CFX软件、PHOENICS软件、FLUNET软件等等。
二、风荷载分类
2.1风的静力作用
静力作用指风速中由平均风速部分施加在结构上的静压产生的效应,可分为顺风向风力、横风向风力和风扭转力矩。在顺风平均风的作用下,结构上的风压值不随时间发生变化,作用与桥梁上的风力可能来自任一方向,其中横桥向水平风力最为危险,是主要的计算对象。它所造成的桥梁破坏的特点主要是强度破坏或过大的结构变形。在桥梁的静风作用分析中,通常将风荷载换算成静力风荷载,作用在主梁、塔、缆索、吊杆等桥梁构件上,进行结构的计算分析。
2.2风的动力作用
一个空间结构的桥梁振动体系在近地紊流风作用下的空气弹性动力响应是许多因素共同作用的结果,大致可分为两大类。一类是在平均风作用下,振动的桥梁从流动的风中吸收能量,产生自激振动,如弯扭藕合的古典颤振、扭转颤振、驰振、涡激振。另一类主要是在脉动风作用下的强迫振动,包括抖振和涡激振。虽然涡激振动也带有自激性质,但它和驰振或颤振的发散性振动现象不同,其振动响应是一种强迫型的限幅振动,因而具有双重性。
三、桥梁抗风的方法措施
3.1结构构造的制振方法
增加扭转刚性对提高大跨度桥梁设计的发散振动极限风速是非常有效的。如在加劲桁架上设置无钢筋网络相连的行车道桥面结构时,采用设置上下横梁的方法形成准闭合断面可以显著增加扭转。另外,还可以在缆索支撑桥梁上加一些辅助设施同样可以提高其抗风稳定性。比如,在悬索桥的主缆与主梁之间加中央扣可以大大提高发散风速。
3.2空气动力的制振方法
断面形状对于对风敏感的结构是否稳定有重要 的作用。通常流线型断面的形状要比钝体断面的抗风性能好得多。但当采用薄翼型的断面时,受水平风作用时,有产生涡激振动的可能,薄的流线型断面在有迎角的风作用下,易产生颤振,所以对于各种流线型断面的选择也要慎重考虑,通常通过风洞试验进行试验确定。另一种增加抗风稳定性的方法是采用桁架断面。由于其通风空间较箱形断面大得多,所以静风阻力小得多。此外,常采用在上部结构安装一些附属设施来减小风振,如翼板、导流器及绕流器等。
3.3机械构造的制振方法
由于缆索体系桥梁的跨度较大,桥梁结构更轻更柔,结构的阻尼特性减弱,造成风和车辆等因素激励下结构响应值加大,故常需要增加结构的阻尼来抑制风振。常常采用被动抑振(如TMD,TLD或ID)和主动抑振(AMD)。被动抑振又分为调谐附加质量方法(如TMD等)和非调谐质量法(如ID冲击阻尼器)。主动抑振方法是采用计算机系统进行监控,如达到需要抑振时,自动驱一套装置改变质量分布、刚度或阻尼等方法来抑振。
四、结束语
随着近年来人们对桥梁抗风问题认识的逐渐加深,桥梁抗风研究已经取到一定的成果,但在以下几方面仍然存在薄弱点,需要通过创新实现突破性进展。
4.1风振机理研究
从技术层面上看,大跨度桥梁的颤振稳定性问题和长拉索风雨激振问题可以通过有效的结构和气动措施加以解决。但是由于对机理研究的滞后,至今仍然没有充分弄清颤振发散的微观机制,拉索风雨激振的机制以及能有效抑制风致振动的一些气动措施的空气动力学机制。因此,对风振机理的研究是一个需要长期努力的课题。只有弄清了各类风振的致振和抑制机理,才能实现从技术层面向科学层面的飞跃。
4.2风振理论的精细化
对于非危险性的限幅风致振动,如抖振和涡振,应该说虽然已经建立起一套可用于解决工程抗风设计的近似方法,但对于风特性参数的合理取值,气动参数、特别是气动导纳函数的识别以及通过节段模型识别参数时的雷诺数效应等都存在着一些不确定性和难度,致使分析结果与现场实测数据还不能取得一致,需要通过典型工程的案例研究加以对比和验证,对现行的抖振和涡振分析理论进行精细化的改进,甚至建立新的分析理论和方法。可以说,要更好地解决桥梁抖振和涡振的分析和控制问题,还有许多工作要做。
4.3概率性评价方法
风是一种随机荷载。对各种风振的安全检验和评价理应采用概率性的方法。然而,由于动力可靠度分析在理论上的困难以及各种统计参数的缺乏,目前虽然国内外部分学者对几座大桥做了概率性评价的初步探索,但几乎所有国家的抗风设计规范仍采用基于经验安全系数的确定性方法来进行各类风振的安全检验。在世界桥梁设计规范已经向基于可靠度理论的方向过渡的总形势下,应当通过努力尽快改变抗风设计规范的落后局面。
4.4 CFD技术和数值风洞
目前,对于气动弹性分析的数值模拟技术,在二维模型和均匀来流条件下的计算已比较成熟,正在向三维模型、紊流风场和高雷诺数方向发展。数值模拟和缩尺物理模型实验相比,可以避免缩尺模型制作带来的材料本构关系的相似性困难和其他的缩尺效应问题(如雷诺数效应)。此外,前面提到的关于风振机理研究和风振理论精细化研究也有赖于数值模拟方法的帮助,以便于揭示致振机理、改进参数识别精度、提高抗风措施的有效性以及建立更为合理的抖振和涡振理论框架等。可以预期,随着计算流体动力学理论的进步,数值模拟方法将会逐步替代风洞实验形成“数值风洞”新技术。因此,数值模拟方法应当是本世纪的研发目标。
参考文献
[1]陈羽,张亮亮 桥梁抗风研究方法综述 四川建筑 2010.12
[2]陈政清,项海帆.桥梁风工程 人民交通出版社 2005
[3]谭建领,田万涛,李颖 风荷载对桥梁结构影响分析.黄河水利职业技术学院学报 2007.7
篇8
【关键字】大跨度施工;钢结构施工
1 引言
随着经济、文化建设需求的扩大以及人们对建筑欣赏品位的提高,大跨度空间钢结构由于其形式多样化,造型美观,经济性好等特点越来越受到设计师们的青睐。目前大跨度空间结构主要被应用到机场建筑、会展中心、体育场馆、展览馆等大型公共建筑的屋盖结构中。各种类型的大跨度空间钢结构在美、日、欧、澳等发达国家发展很快,其跨度和规模越来越大,新材料和新技术的应用越来越广泛,结构形式越来越丰富。许多宏伟而富有特色的大跨度建筑已成为当地的象征性或标志性人文景观。
2 大跨度空间钢结构建筑的结构类型
大跨度空间钢结构和形式丰富多彩,最典型的表现就是奥运建筑,综观奥运近50余年的发展历史,奥运建筑为大跨度空间结构技术提供了精美的展示舞台和实践机会,而大跨度空间结构技术对丰富多彩的奥运建筑产生了起到促进作用,例如:奥运历史上著名的罗马大小体育馆(1960年意大利罗马奥运会)采用了装配现浇式钢筋混凝土薄壳结构,莫斯科中央之家综合体育馆(1980年莫斯科奥运会)采用了空间桁架网架结构,东京代代木国立体育中心(1964年东京奥运会)采用了张拉结构,巴塞罗那圣乔地体育馆(1992年巴塞罗那奥运会)采用了网壳结构。大跨度结构建筑是指横向跨越30米以上空间的各类结构形式的建筑,其结构类型可以分为以下四类:一、实体结构类--薄壳结构、折板结构;二、网格结构类--网架结构、网壳结构;三、张力结构--悬架结构、薄膜结构;四、其它新型大跨度空间结构-- 可展开折叠式结构、开合屋盖、 张拉整体结构、 张弦结构、 整体张拉预应力拱架结构。几种主要的大跨度空间结构分析:
2.1 网架结构:由多根杆件按照一定的网格形式通过节点连结而成的空间结构。具有空间受力、重量轻、刚度大、抗震性能好等优点;网架结构广泛用作体育馆、展览馆、俱乐部、影剧院、食堂、会议室、候车厅、飞机库、车间等的屋盖结构。具有工业化程度高、自重轻、稳定性好、外形美观的特点。缺点是汇交于节点上的杆件数量较多,制作安装较平面结构复杂。 如图1、图2所示。
2.2 网壳结构。网壳结构是一种与平板网架类似的空间杆系结构,系以杆件为基础,按一定规律组成网格,按壳体结构布置的空间架构,它兼具杆系和壳体的性质。其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。1989年建成的北京奥林匹克体育中心综合体育馆,平面尺寸为70m X 83.Zm,采用人字形截面双层圆柱面斜拉网壳,为目前国内跨度最大的网壳结构。同年建成的濮阳中原化肥尿素散装库,平面尺寸为58mX135m,采用双层正放四角锥圆柱面网壳,为国内覆盖建筑面积最大的网壳结构,也是第一个采用螺栓球节点的网状筒壳。1967年建成的郑州体育馆,采用肋环形穹顶网壳,平面直径64m,矢高9.14m,为国内跨度最大的单层球面网完。又如1988年建成的北京体院体育馆,采用带斜撑的四块组合型双层扭网壳,平面尺寸为59.2m见方,矢高3.5m,挑檐3.5m,为我国跨度最大的四块组合型扭网壳。
2.3 悬索结构。如图3所示,北京工人体育馆是我国第一座大跨度圆形悬索结构的多功能综合体育馆。悬索结构由柔性受拉索及其边缘构件所形成的承重结构。索的材料可以采用钢丝束、钢丝绳、钢铰线、链条、圆钢,以及其他受拉性能良好的线材。悬索结构能充分利用高强材料的抗拉性能,可以做到跨度大、自重小、材料省、易施工。其应用可以追溯到古代就的竹、藤等材料做成的用来跨越深谷的吊桥、明朝成化年间(1465~1487年)用铁链建成霁虹桥。近代的悬索结构,除了应用于大跨度桥梁工程外,还在体育馆、飞机库、展览馆、仓库等大跨度屋盖结构中应用。
3 目前我国大跨度空间钢结构施工技术的新特点
3.1 大跨度空间结构跨度趋大化,空间结构形式多样化,施工技术复杂化,如“鸟巢”跨度296米,“水立方”跨度177米,广州国际会展中心跨度126.6米,南京奥体中心体育场跨度360米。
3.2 结构形式不再局限于采用传统的单一结构形式,新的结构形式和各种组合结构形式不断涌现,如“水立方”采用了基于泡沫理论的多面体空间刚架结构、“鸟巢”采用复杂扭曲空间桁架结构、奥运会羽毛球馆则采用世界跨度最大的弦支穹顶结构、广州国际会展中心采用了张弦桁架结构。
3.3 预应力作为一项新技术,得到充分应用,涌现了索穹顶、张拉整体结构和索膜结构等新型结构形式,如奥运会羽毛球馆(北京工业大学体育馆)采用了世界跨度最大的弦支穹顶结构、国家体育馆采用了世界跨度最大的双向张弦梁结构。在大跨度空间结构中引入现代预应力技术,不仅使结构体形更为丰富而且也使其先进性、合理性、经济性得到充分展示。通过适当配置拉索,使结构获得新的中间弹性支点或使结构产生与外载作用反向的内力和挠度而卸载,前者即为斜拉结构体系,后者则为预应力结构体系。这一类“杂交”结构体系改善了原结构的受力状态,降低内力峰值,增强结构刚度,技术经济效果明显提高。
3.4 现代空间钢结构大多采用仿生态建筑,为了满足建筑造型,采用了各种各样的节点形式,结构复杂、设计难度越来越大,如铸钢节点、锻钢节点、球铰节点等。构件数量和截面类型越来越多,深化设计难度越来越大。一般而言,这类大型工程都由几万个构件,甚至逾10万个构件组成,并且这些构件的截面形式尺寸和长度均不相同,这样给施工单位放样带来极大困难,对于有些弯扭构件,还需进行专门试验和研究才能完成。
3.5 构件加工难度大,加工精度要求高。这类工程都属于国家重点工程,工程质量要求相当高。只有提高构件加工精度,才能满足质量要求。并且大量焊缝要求一级焊缝标准,给施工带来极大难度。现场焊接工作量大,施工技术难度高。为保证施工精度,这些工程都需要进行预拼装,并且现场焊接工作量特别大。由于结构新、跨度大,为了保证经济、安全,都必须采用先进的施工技术才能顺利完成。
4 大跨度空间钢结构建设项目及新技术
大跨度空间钢结构施工技术的新特点,给大跨度空间钢结构施工带来了机遇与挑战,促进了施工技术的革新。近年来我国多项重点建设项目工程中,研究和实施了许多新的施工技术和方法,填补了国内外大跨度空间钢结构施工工艺的空白,推动了我国此类大跨度空间结构形式的应用和推广,带动了我国相关行业国民经济建设的发展。下面将通过几个重点建设项目来分析其中的大跨度空间钢结构施工技术:
4.1 国家体育场大跨度空间钢结构施工工程。国家体育场,钢结构总重4.2万吨,最大跨度343米,是一个大跨度的曲线结构,体育场建筑屋面为马鞍形双曲面,整体结构按照主次分为主结构(包括桁架柱,桁架梁),立面次结构和楼梯,肩部次结构和顶面次结构。主结构构件相互支撑,形成网格状,次结构构件采用与主构件相同的外形尺寸,不规则地分布于主结构的外表面,从而形成体育场独特的“鸟巢”造型。主、次结构构件均为大尺寸焊接薄壁箱形截面,在肩部大量采用空间扭曲箱形构件。多根箱形构件空间交汇形成节点,其构造及其复杂。
该工程的实际施工不仅面临着支撑塔架设置、特大型构件吊装、空间异型构件安装、安装精度控制、铸钢件与高强钢焊接、厚板与低温焊接、冬季施工、结构合拢等方面的技术问题,还面临着主结构安装完成后的支撑塔架卸载与拆除方案、防腐涂装方案及安全措施设置等问题,施工难度相当大。针对这一系列技术上的问题,施工方组织了大跨度空间钢结构技术研究,在吸收以往工程经验的基础上,形成了系列特大型空间异型钢结构工程施工技术:(1)特大型、空间异型钢结构安装综合技术;(2)多功能可拆卸式支承塔架的研发和使用;(3)计算机动态吊装模拟,包括吊装现场平面模拟、巨型钢桁架吊装分段的重心和吊点位置确定及巨型钢桁架吊装全过程工况模拟分析;(4)热电偶自动温度监测系统在合拢温度监测中的应用;(5)分区分级等比例液压同步卸载技术。
4.2 五棵松体育馆大跨度空间钢结构施工工程。五棵松体育场馆主体结构为多层混凝土框架,屋架结构为双向正交鱼腹式空间钢桁架体系,它的比赛场馆的屋顶的轴线跨度为120*120米,屋顶结构支撑于沿建筑物周边布置的二十棵柱子上。钢桁架间距12米,共有26榀。桁架截面共有7种形式,支座处高位6.3米,跨中高6.3米到9.3米,工程特点是:施工时结构受力体系改变大、结构跨度大、结构双向布置、其桁架下弦存在空间关系、单件体型大,构件重、钢结构加工、安装焊接技术难度较大等。在该工程中,施工方根据工程的实际特点,采用整体累积滑移技术进行钢桁架的安装。滑移采用了三滑到施工方法,应用油缸行程自动控制结核榕栅位移传感器闭环检测、人工测量印证的同步控制方法来控制滑移同步,应力应变检测来确保施工期间屋面桁架钢结构及滑道钢结构在滑移及卸载过程中的安全。
5 结束语
近二十余年来,建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别,采用了许多新材料和新技术,发展了许多新的空间结构形式。相信随着理论研究的深入和工程实践的大量增加,我国科技人员必将进一步研制开发出适应我国大跨空间钢结构需要的新体系、新技术、新材料,更充分地体现大跨度空间结构的先进性、经济性与合理性,促使我国大跨空间钢结构更积极、健康发展,更好地为我国经济建设服务。
参考文献
[1]杜杨. 基于仿真分析的大跨斜拉索拱钢结构安装方法研究[D]东南大学, 2006 .
[2]杜秀丽. 大跨钢结构合拢与卸载研究[D]太原理工大学, 2007 .
篇9
【关键词】荷载试验;桥梁;安全监测
【 abstract 】 load test is a kind of important safety testing method, can for policy makers to the bearing capacity of the bridge to scientific evaluation, provide favorable and intuitive basis, can for the new design theory, the new structure and new construction technology development and application practice material accumulation. Therefore, the bridge for the overall safety performance analysis has strong theoretical significance and broad application prospects. In system research literature in the field, and on the basis of selecting paper has built the completion of zhoushan bridge project as object of study, the theoretical analysis, numerical simulation and actual combining the method, the static load and dynamic loading bridge response parameters change, and then evaluate the safety of the bridge, to ensure the safety of the bridge operation period to provide scientific data. Paper is of important theoretical and application value.
【 key words 】 load test; Bridge; Safety monitoring
中图分类号:K928.78文献标识码:A 文章编号:
1 引言
随着我国经济迅速持续的发展,我国的交通运输业迎来了一个灿烂辉煌的发展时期,我国依靠自己的技术力量,相继成功建成了多座现代化斜拉桥、大跨度悬索桥、连续刚构桥及拱桥。每年都有一大批新材料、新工艺、新结构桥梁建成,其科技含量高,技术性复杂,这标志着我国桥梁技术已进入世界先进行列。截至2005,中国公路总里程已达19万公里,高速公路总里程超过了3.5万公里,公路桥梁总数已超过33万座[l]。与此同时,交通运输量大幅提高,行车密度及车辆载重也日益增大,高架桥梁和跨河桥梁在交通运输工程中的重要性与日俱增[2]。相对于其他基础设施建设,桥梁造价高、投资大,社会效益和影响巨大,为了确保其安全与质量,适应交通运输载重不断发展的需要,使既有桥梁和新建桥梁更加安全地为交通运输事业服务,需在强化施工、质量监督、管理等程序的前提下,对那些影响较大、结构新颖的桥梁进行试验检测[3],由于自动化技术的发展以及计算机的普遍应用,测试技术、分析手段也取得了巨大进展,借以提供精确可靠的试验数据,实践证明,桥梁试验检测是竣工验收时对桥梁工程内在质量进行评定时最直接和有效的方法和手段,同时也为设计理论、施工技术总结积累经验,为桥梁建设总体水平的提高创造条件,为桥梁竣工验收和桥梁正常运营养护提供技术依据[4]。
2 试验荷载和加载控制原则
2.1 静力试验荷载确定原则
静力试验荷载拟采用单辆重约300kN的三轴载重汽车充当,就某一加载试验项目而言,其所需加载车辆的数量,将根据设计标准活荷载产生的该加载试验项目对应的控制截面内力或变位等的最不利效应值,按下式所确定的原则等效换算而得。
式中:— 静力试验荷载效率;
— 试验荷载作用下,某一加载试验项目对应的
控制截面内力或变位等的最大计算效应值;
— 设计标准活载不计冲击荷载作用时产生的该加载试验项目对应的控制截面内力或变位等的最不利计算效应值;
— 设计计算取用的冲击系数。
2.2 加载位置与加载工况确定
① 尽可能用最少的加载车辆达到最大的试验荷载效率;
② 在满足试验荷载效率以及能够达到的试验目的前提下,加载工况进行简化、合并,以尽量减少加载位置;
③ 每一加载工况依据某一加载试验项目为主,兼顾其他加载试验项目。
为了获取结构试验荷载与变位的相关曲线,防止结构加载意外损伤,就某一加载试验项目,其静力试验荷载分成四至五级加载,分两级卸零。加载方式为单次逐级递加到最大荷载,然后分级卸至零荷载。静力试验荷载的加载分级主要依据加载车在某一加载试验项目对应的控制截面内力和变位影响面内纵横向位置的不同以及加载车数量的多少,大约分成设计标准活荷载产生该加载试项目对应的控制截面内力或变位的最不利效应值的40%、60%、80%、100%。
2.3试验加载程序控制
① 在进行正式加载试验前,用两辆载重加载车对测试对象中跨跨中进行横桥向对称的预加载,预加载试验的持荷时间为20分钟。预加载的目的在于,一方面是使结构进入正常工作状态,另一方面是检查测试系统和试验组织是否工作正常。
② 预加载卸至零荷载,并在结构得到充分的零荷恢复后,才可进入正式加载试验。正式加载试验分别按加载工况序号逐一进行,完成一个序号的加载工况后,应使结构得到充分的零荷恢复,方可进入下一序号的加载工况。结构零荷充分恢复的标志是,加载试验实测的结构最大变位测点在卸零荷后变位恢复最后一个10分钟的增量小于第1个10分钟增量的15%。
3 实例分析
3.1 工程概况
舟山高架桥为9孔30米预应力混凝土T梁连续刚构桥,桥梁全长281.24延米,桥梁起点桩号K7+536.38,桥梁终点桩号为K7+817.62。
桥跨结构采用跨径为30米预应力混凝土预制T梁通过现浇桥面板及现浇连续段整体化处理,形成9×30米的连续刚构体系,全桥9跨共1联。桥梁上行、下行桥分别布置,单幅桥宽15.75米。
下部结构共有2个桥台,8个桥墩,桥台为重力式U型桥台,桥墩为分离式钢筋混凝土薄壁Y型墩身,都是扩大基础,要求基底承载力大于500KPa.桥台两侧接挡土墙。
桥面铺装设8厘米厚沥青混凝土铺装,桥面内外侧设钢筋混凝土墙式防撞护栏,两桥台处设置SEJ-160板式橡胶伸缩缝;.5m护栏+14.75m行车道板+0.5m+护栏)。每单幅桥宽由7片无中横隔梁T梁组成,梁距2.22米,预制T梁高1.72米,梁顶面设2%单向横坡,现浇桥面板厚度18~20厘米。全桥T梁在桥台侧设置300×400×39四氟划板式橡胶支座28块。桥梁设计荷载为:汽车-超20,挂车-120。
3.2 检测目的与内容
桥梁养护检查情况是了解桥梁基本状况的重要参考资料,本规程所规定的桥梁检测在内容和目的上是不同于桥梁的养护的定期检查。本规程规定桥梁检测是为了桥梁承载能力鉴定提供客观、真实可靠的资料。因此,从某种意义上说,本规程的桥梁检测只关心与桥梁承载能力相关的内容,以具有代表性或最不利的桥跨或桥孔作为检测评定对象,能对全桥或整体的评定结果起到控制作用。
桥梁结构设计时承载能力的计算以构件为分析对象,以控制截面的承载能力情况来反应桥跨结构的承载能力。本规程采取的桥梁的承载能力鉴定方法是考虑检测或试验结果后,针对结构构件进行的以检算分析为主的承载能力鉴定。因此,桥跨结构的检测宜分上下部结构,针对构件进行,以便有效、合理地运用检测结果进行承载能力鉴定工作。
4 桥梁检查
测点应布置在桥梁结构各部件模态振型的峰、谷点,并进行多点多方向的测量。信号记录时应保证足够的记录长度,并检查记录信号的有效性。记录结构振动信号同时应记录地面随机振动信号。信号处理分析时有关参数的确定应遵循对随机信号分析处理的要求。实测的桥梁结构各部件自振频率 与设计理论计算值 比值可对桥梁结构各部件的整体性能和技术状况作出评定,其评定标准见表1。
表1实测自振频率评定桥梁结构技术状态的评判标准
桥梁部件 桥梁上部结构 桥梁下部结构
评定标度
技术状况
技术状况
1
良好状态
良好状态
2 1.0~1.1 较好状态 1.0~1.2 较好状态
3 0.9~1.0 较差状态 0.95~1.0 较差状态
4 0.75~0.90 坏的状态 0.80~0.95 坏的状态
5 0.75以下 危险状态 0.80以下 危险状态
备注 对缺少资料的中小跨径钢筋混凝土或预应力混凝土桥梁,可按下式计算上部结构一阶竖弯自振频率 (标准差: )式中:L为上部结构的计算跨径,单位为米; 单位为Hz。
4.1 检查分析
损伤将导致结构特征频率的变化。特征频率的变化有以下特点:1)特征频率的改变和结构整体特性有关,是一种典型的加权型累加值,而不是局域量;2)特征频率的改变是由结构损伤程度和损伤位置共同决定的,不是由单一因素决定的;3)在损伤位置一定时,损伤程度越大,则频率改变量也就越大;4)在损伤程度一定时,损伤位置对频率改变的影响相当复杂,即一些位置的损伤对某些低频成分的影响大些,另一些位置的损伤则对某些高频成分的影响大些,还有一些位置的损伤及其组合,对结构的某些特定的频率的改变不大,甚至没影响。鉴于以上特征频率改变与损伤的程度之间的特点,在引入特征频率作为动态测试中桥梁结构或构件刚度变化标识量时,要做一些处理。为消除损伤或截面损失位置等其他一些因素的影响,只取一些控制截面的特征频率来作为损伤标识量。并规定取特定阶数的特征频率。在跨中位置,振动的能量主要其中在低阶频率上,在桥墩附近,振动的能量分布比较平均,所取的特征频率的阶数要多一些。
4.2 桥梁自振特性测试
桥梁频谱实测结果见图1,实测振型结果见图2。
在本试验中采用频谱图中的半功率谱带宽来计算阻尼比:
式中 表示第n阶频率, 表示第n阶半功率带宽频率.
图1桥梁横向自振频谱图
图2 桥梁横向1阶振型
从上面的测试结果及分析可以得出:
1、实测竖向基频为0.273Hz,与计算值吻合,其它高阶次的实测频率与计算值的误差相对较大,说明结构动力计算模式和实际结构有一定差异,特别在对梁体多支承体系的模拟应进一步优化;
2、实测一阶阻尼比为0.007,说明结构的阻尼系数较小,衰减较慢,这与结构的形式是一致的;
3、实测结构一阶对称扭转振动频率(0.957)与一阶对称竖弯振动频率(0.277)的比值为3.51,该比值大于3.0,说明桥梁的颤振临界风速大,结构具有良好的抗风能力;
4、实测低阶频率的频带宽范围在0.273-0.957Hz,而运营车辆转向架等悬挂体系的频率一般在2Hz以上,故车辆的频率不会祸合进入低频带区域,也极少出现受迫共振的现象,故桥跨结构具有良好使用性能。
结论
通过桥跨静载试验以及对试验结果的分析结果表明,试验荷载下,桥梁结构变形对称性良好,实际受力状态与理论计算模式基本一致,卸载后应力回零良好,说明结构处于弹性受力状态;各加载工况下的梁体挠度结构校验系数在0.75-1.07之间,实际结构受力变形与计算值相互一致,表明主梁结构竖向刚度符合设计要求;各加载工况下的梁体应力结构校验系数在O.84-0.91之间,实际结构受力变形与计算值吻合良好,表明主梁强度符合设计要求。
参考文献:
1.张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001 , 19
篇10
【关键字】悬臂挂篮技术桥梁施工应用
中图分类号:K928.78 文献标识码:A 文章编号:
一、悬臂挂篮技术的相关介绍
悬臂挂篮技术作为桥梁修筑最主要的施工技术之一,在桥梁施工中广泛应用。悬臂挂篮施工法是桥梁箱梁施工的常用方法,具有操作方便、施工速度快、结构轻盈等优点。特别是早跨越河流、山谷、湖泊等大型的桥梁施工中,悬臂挂篮技术使用更加广泛。在桥梁建筑中,挂篮是一个能够行走移动的活动支架,悬挂在已经张拉锚固的梁段上,在施工时,混凝土浇筑、
钢筋绑扎和压浆等材料和工序均在挂篮上进行。因此,可以说,挂篮既是空中的施工平台,也是一个承重结构。在桥梁工程建设中,悬臂挂篮技术已经比较成熟,但是挂篮一般应用在比较高的空中,其结构相对较为复杂,对施工的技术要求较高,因此,在桥梁建设中使用悬臂挂篮技术时要注意控制其施工技术和要点,只有严格按照施工工艺制造的挂篮,才能确保其施工质量。
二、篮的主要施工技术
1、挂篮制作、吊装
两对贝雷析架拼装挂篮采用在现场进行加工,挂篮的主承重析架、模板是悬臂施工中最关键最重要的受力结构,制作加工时均按图纸及钢结构施工规范加工制作,对锚固精轧螺纹钢吊杆进行试验,来保证挂篮施工中绝对安全可靠。当墩顶叶梁段施工完毕,需在墩顶拼装挂篮。在拼装前做好充分准备,或利用有利地形先在岸上进行试拼装,其拼装程序应按设计要求的程序对称地进行。挂篮安装的基本程序简略为:主架锚固系悬吊系底模架侧模内模(绑扎完钢筋后进行) 端模张拉平台。
挂篮安装后,应进行全面的安全、技术检查;并按设计荷重进行压重试验,加荷和卸荷要分级进行,测得弹性变形和残余变形,以此控制各段梁段抛高量(预拱度)。在挂篮的操作平台下应设置安全措施和防止物体坠落的隔离措施,确保安全。要求挂篮四周设置护栏,全封闭,上下层应尽量有专用扶梯,以便操作人员上、下方便安全。
2、混凝土的浇筑
混凝土的悬臂浇筑一般采用泵送方式。塌落度一般控制在14-18 cm,并应随温度变化及运输和浇注速度作适当调整。箱梁各阶段混凝土在灌注前,必须严格检查挂篮中线,挂篮底模标高;纵、横、竖三向预应力束管道;钢筋、锚头、人行道及其它预埋件的位置,认真核对无误后方可灌注混凝土。
混凝土的灌注宜先从挂篮前端开始,以使挂篮的微小变形大部分实现,从而避免新、旧混凝土间产生裂缝;各阶段预应力束管道在灌混凝土前,宜在波纹管内插入硬塑管作衬填,以防管道被压扁,管道的定位钢筋应用短钢筋做成井字形。并与箱梁钢筋网固定,定位钢筋网架间距应保持在0.2—0.8 m左右,以防混凝土振捣过程中波纹管道上浮,引起预应力张拉时产生沿管道法相的分力,轻则产生梁体的内力分布不合理,重则产生混凝土崩裂,酿成严重事故;箱梁混凝土灌注完毕后,立即用通孔器检查管道,处理因万一漏浆
等情况出现的堵管现象。
3、连续梁的合拢
根据结构情况及梁温的可能变化情况,选定适宜的合拢方式。合拢口的锁定应迅速、对称地进行,先将外冈0性支撑一段与梁端预埋件焊接(或栓接),而后迅速将外刚性支撑另一端与梁连接,临时预应力束也应随之快速张拉。合拢口混凝土宜比梁体提高一级,并要求早强,最好采用微膨胀混凝上,并须作特殊配比设计,浇注时应认真振捣和养护。为保证浇筑混凝土过程中,合拢口始终处于稳定状态,必要时浇注之前可在各悬臂端加与混凝土重量相等的配重,加、卸载均因对称梁轴线进行。混凝土达到设计要求的强度后,先部分张拉预应力钢索,然后解除劲性骨架,最后按设计要求张拉全桥剩余预应力束。
4、合拢段及体系转换
合拢足连续梁施工和体系转换的重要环节,合拢施工必须满足受力状态的设计要求和保持梁体线形,控制合拢段的施工误差。利用连续梁成桥设计的负弯矩预应力筋为支承,是连续梁分段悬浇施工的受力特点。悬程中各独立T构的梁体处于负弯矩受力状态,随着各T构的依次合拢,梁体也依次转化为成桥状态的正负弯矩交替分布形式,这一转化就是连续梁的体系转换。通常多跨连续梁合拢段施工的顺序为先各边跨,再各次边跨,最后为中跨。次边跨和中跨合拢段施工的原则和要求类似边跨合拢施工,中跨合拢段因温差引起的变形变位大,由此产生的应力也大。对合拢临时连续约束的设施亦有更高要求。
三、挂篮施工在桥梁中的应用
我集团公司承建的蕉门水道特大桥就采用了挂篮施工技术。蕉门水道特大桥为(83m+140m+83m)三跨变截面预应力混凝土连续箱梁,桥梁全长306m。第三部分为主桥1~16#块及1’#~16’#采用挂蓝悬臂的施工方法。根据设计要求,施工方法采用先临时固结成“T”构,后连续的方法,即先按“T”构悬臂浇注施工,每浇筑完一对梁段,待达到规定强度后就张拉预应力筋并锚固,然后向前移动挂篮,进行下一梁段的施工,直至合龙成为连续梁。主桥连续刚构箱梁受工期限制,所包括的四个“T”构需同时施工,需加工八套挂篮。根据本桥的特点,本桥挂篮选用菱形桁架式挂篮。
1、挂篮设计
挂篮是悬臂浇筑箱形梁的承重设备,又是极为重要的吊挂施工平台的施工设备。悬臂的前端承担新浇筑梁段混凝土的重量,后端锚固在已浇梁体上,保持整体平衡的施工结构。在施工过程中,挂篮受力的情况必须清晰、明确,稳定必须保证,并且在施工的全过程要有尽量大得作业空间和施工阶段的每个施工步骤简洁可靠,保证施工安全。综合各方面因素,设计菱形挂蓝。
2、挂篮检验验算挂篮受力
本工程两个挂篮拼装好后,在灌注1#块(或1’号块)梁段前,按3#块梁段混凝土重量的1.2倍荷载对挂篮进行模拟压重。测量并详细记录各加载时其吊杆的弹性变形、非弹性变形,主梁前后端及各主要构件的变形情况,为下步工作提供参考数据。此工作,按挂蓝的设计,在地面做,直接消除栓接的非弹性变形,试验所得的弹性变形,用以检验理论计算值。
挂篮自重为68. 3t(含包括模板系统重量),箱梁最重节段为3#节段,梁长L=3.5m,砼方量106.24m3,砼重2762KN;产生弯距最大节段为7#节段,梁长L=4.0m,砼方量99.43 m3,砼重2585KN,外导梁前吊杆轴力Nmax=237.5KN,主桁架弯距为Mmax=237.5×5.5×2=2612.5KN.m,挂篮加载试验取7#节段产生的弯距2612.5KN.m。
3、挂篮走行
挂篮走行采用三个10t 倒链牵引,均衡用力,拉挂篮前行,并在挂篮后端同样加挂三个10t 倒链拉住挂篮桁架的尾部,实现挂篮行走安全的双保险。挂篮走行速度不宜过快,应做到挂篮三片主梁同步走行。挂篮前移到位后,将后锚杆与竖向预应力筋连接好,并且纵桁前支点为重要受力处,必须支承牢固,绝不允许在浇筑时产生滑动。挂篮前移时,应采取跟踪测量的方法,以保证中线误差不超过规定限值,并便于随时调整。
4、挂篮的使用情况
在挂篮施工前已完成的0#块上完成拼装主桁架。并且利用千斤顶来实施分级预压,从而取得挂篮的实际变形数值以消除非弹性变形。再进行拼装挂篮的底模,完成拼装底模后,再进行绑扎底、腹板钢筋以及支设内模,之后完成绑扎预板钢筋。在浇筑混凝土之前要按监控指令所给出的标高值来调整挂篮预抛值。再进行养护、浇筑、注浆、张拉、挂篮走行完成块件的施工。在施工过程中应严格控制好块件轴线的偏位,仔细的测量块件在浇筑前、浇筑后以及张拉后的标高,从而控制悬臂端上下左右的偏移。确保合龙前对接位置偏移符合设计的要求。在主桥悬臂施工过程中,菱形桁架式挂篮的变形符合要求,走行过程十分安全、稳定没有发生箱梁梁体扭转、变形现象。所有的悬臂在合龙前对接标高、轴线偏位都控制以内,挂篮是可靠安全的。
【参考文献】
[1] 栗勇红枫湖大桥挂篮施工方法研究[学位论文] 2003
[2] 褚立军紫洞大桥挂篮设计与施工[期刊论文]-山西建筑 2009(15)