地质勘查论文范文

时间:2023-03-19 06:23:47

导语:如何才能写好一篇地质勘查论文,这就需要搜集整理更多的资料和文献,欢迎阅读由公务员之家整理的十篇范文,供你借鉴。

地质勘查论文

篇1

1.1类型

按照不同的划分标准,包括矿体分布范围、矿产规模大小、矿质形态变化以及铁矿构造的难易程度等将铁矿类型划分为四类。在完成类型划分后,依据不同的类型使用不同的工程密度设置工程,以此圈定矿体进而控制铁矿的变化。在我国的铁矿分布中,第一类型的铁矿主要是由变质沉积而形成的,如蒙库铁矿;还有的是由于海相沉积而形成的,比如庞家堡铁矿。第二类型的铁矿有由于岩浆作用产生的铁质,比如攀枝花铁矿,另外,以梅山、大顶铁矿为代表的形态比较简单的铁矿也属于第二类型。第三类铁矿形成原因较为复杂,是由陆相火山岩作用形成的铁矿床,比如大冶铁矿。第四类铁矿因其规模较小、形态复杂且矿石质量与数量不稳定的特点而单独成为一大类型。

1.2工程密度

在进行铁矿勘探时,依据经济的原则对铁矿控制矿体,最为基础的一步是确定工程密度。当前,我国常使用的铁矿勘探确定方法包括:经验法、类比法、精度分析法以及地质对比法、资料对比法。随着科技的不断进步与应用,梳理分析法正逐步成为广泛应用的新的确定矿床的方法之一,除此之外,地质对比法也是常用的确定探矿工程密度的方法。

2地质勘探深度

铁矿具体的勘探深度以及勘探程度要遵照矿山建设的实际要求来确定。就目前我国的勘探及建设实例来说,铁矿勘探深度一般控制在1000m以内,对于深度超过1000m的勘探矿体要以特殊技术控制其储量,以为将来的远景规划提供数据支持。对于难度较高的大型铁矿矿床勘探来说,一般采用分阶段的方式进行,以避免全面开采而导致浪费现象的出现。

3地质勘探技术要求

为保证铁矿地质研究的可靠性及真实性,使用的各项地质勘探技术必须严格遵照相关勘探规范,以促使勘探质量有据可循,进而达到规定要求,比如对地质图的比例尺要求,必须使用国家测地坐标的规范比例尺,除此之外,铁矿探矿工程必须依据矿体形状以及具体的地形、地质条件使用。铁矿石的质量是铁矿质量最为关键的影响因素,因此,铁矿勘探的最主要目标就是要采集最为可靠的矿体标本以确定铁矿质量,为此必须最大限度穿切矿体,以保证矿石样本的科学性,保证矿石化验的真实性。

3.1基本分析

矿石中的铁含量是铁矿质量的最为关键的部分,为保证化验结果的真实可靠,必须对铁矿石实地取样。一般样长在1~2m为佳,采样方法常使用1/2劈心发法,采集规格一般为10cm×3cm。基本的化验分析项目为全铁,但当样本中含有较高含量的硫化铁或者硅酸铁时,应做磁性铁实验。除此之外,对于矿石中含有的伴生成分,要依据含量变化及具体的要求具体分析。

3.2组合分析

所谓组合分析是指在查明矿石基本成分的基础上,对矿石中的伴生成分进行具体分析的过程,组合样重量一般为100g到200g,分析方法包括光谱全分析和化学全分析两种。

3.3光谱全分析

采用光谱全分析的方法是为了了解矿石中的化学成分及其含量,以确定矿石的不同类型。化学全分析方法是为了全面了解矿石类型中的主要组成元素及其元素成分,进而以此为依据确定铁矿石的不同性质及特点,化学全分析是以光谱全分析为基础的。

3.4物相分析

物相分析方法是利用矿石中含有的化学成分,以此确定矿石中铁含量的分析方法,为确定铁矿石的自然分带提供最为真实的数据支持。物相分析方法一般应用于分析磁性铁、硫化铁以及碳酸铁等类型。

3.5单矿物分析

单矿物分析是为了分析出矿石中含有的矿物化学成分,以确定铁矿石中的铁含量以及分布情况,为铁矿冶炼工艺的选择提供依据,较为容易分析出的单矿物重量一般在2~20g。为保证矿石的利用性能,确定矿石冶炼的工艺流程,必须选取试验样进行可选性试验或者流程试验。一般情况下,选矿试验基本由勘探单位负责,半工业试验则有工业部门与勘探单位协助完成,工业试验则主要有工业部门单独完成。

4水文地质勘探技术要求

地质水文条件对于铁矿的开发影响尤为显著,在矿产开发的各个阶段都要对地质水文的详细变化情况了解清楚。不但要进行地质调查,开展水文观测工作,还要详细部署矿区水文及地质勘查工作。主要的地质水文工作是在研究掌握区域水文地质条件的基础上,查明导致铁矿矿床充水的具体原因,了解地质复杂的原因以及复杂程度,进而为保证铁矿开发的安全性全面掌握矿区含水层的富水性。除此之外,通过专门的试验,取得真实可靠的数据,为矿床开发开拓方案的实行提供数据支持。要依据矿区地质的复杂程度,分析矿床的地质类型,以便进一步开展铁矿地质勘探工作。对矿产开发可能引起的环境问题做出正确的预测,以最大程度降低矿产开发的阻挠因素影响。

5结语

篇2

任何一项工程地质勘察工作都需要对水文地质的勘察结果进行评估,可是,在长期的工作过程中,我们都没有重视地下水对岩土层的不良作用,并且在评价时也没有考虑施工现场地下水活动会带来的各种影响。如果继续沿袭这样的工作方式,就可能对建筑工程的稳定性产生极大的威胁,导致许多施工工程问题的产生,可能威胁使用者的人身安全。所以,我们在深入的分析探究了这些问题后,对评价工作的重点进行了调整和更新。主要有下列几个方面:第一,进行工程地质勘查工作时,水文地质勘查的评价过程中,传统的评价报告中往往会忽略地下水对岩土层的影响,同时也没有结合具体的施工现场地下水的特性。因此在这样的一种情况下,就会让地下水对建筑工程造成很大的危害,各种各样的施工质量问题就会出现,甚至会造成很大的安全事故。我们在总结了以往经验与教训之后,可以事先制定一套防护方案,以保证勘测工作的有效性。第二,要深入探究地下水的运动情况,并探究地下的岩土状况,并且要将与之有关的众多水文地质文件找出来作为借鉴,只有为工作奠实基础,才能得出最准确的结论。第三,要深入分析地下水可能对工程施工造成的不良影响,并针对岩土结构的差异分别进行讨论。

2岩土水理的性质

岩土由于受到地下水的影响,就可能出现各种各样的性质,这就是岩土的水理性质。我们在进行工程地质勘察工作时,一定要将岩土水理性质的勘察作为关键工作,这样才能掌握最真实的岩土地质状况。

2.1地下水的储存形式

我们平时生产、生活中所使用的地下水,都是以三种状态储存在岩土层中的,也就是重力水、结合水和毛细管水。地下水之所以能以这种状态储存在岩土深处,其实就是因为地下水有着赋存的特征。

2.2岩土的水量性质

2.2.1软化性。若岩土受到水的浸湿,就会使其力学强度显著降低,在这种条件下,岩土就会体现出软化性的特征。我们在评估岩土的软化性强弱时通常会将软化系数作为指标。而在评价岩土的耐风化程度和耐水浸性能时,则需要以软化系数为依据,因此我们必须准确的确定软化系数。几乎所有类型的岩石都会表现出一些软化性特征。

2.2.2透水性。岩土的透水性就是指当水受到重力的作用,岩土让水通过自身的一种性质。岩土的透水性通常都是用渗透系数来表示的,但岩土的透水性强弱却要受到岩土自身的物质组成和结构的很大影响,通常情况下,岩土的坚硬性和岩土的透水性是成反比的。此外,岩土的颗粒直径也会对其透水性产生一定的影响。

3地质勘查中水文地质的问题分析

工程勘察中,应密切结合建筑物地基基础的类型预测地下水对建筑工程可能存在的危害,并以实际状况为前提,根据勘察区域的水文地质条件差异,对地下水存在的问题按照水文地质勘察计划,找出应对的措施,保证水文地质勘察工作的进行,降低地下水对地质勘察工程的危害,提高建筑质量。进行水文地质勘察工作时,地下水与岩土的相互作用是重要的工作内容。尤其是地下水的运动,对于岩土工程的整体质量有着不可估量的影响,所以我们必须做好这方面的工作。它可能带来的不良作用主要包括下述几点:

3.1给基坑开挖造成的影响。进行基坑的挖掘工作时,地下水常常会流到基坑的内部,这便会影响基坑挖掘工作的顺利开展,不仅延误工作进度,还可能降低工作质量。这时,我们应该做的工作是及时的排水,可是这有可能会影响基坑结构的稳定性,甚至可能会使附近的建筑工程发生不均匀沉陷。

3.2给土质造成的影响。万一基坑内涌入了地下水,则处理会影响工程的顺利施工,还可能会影响地质结构的稳定性,极易产生流沙或者是管涌等问题,因此我们要极力避免地下水的这种恶劣影响。若基坑中存有地下水,还可能导致基坑的侧壁变形或者是底鼓,无法保障基坑工程的质量。所以,在整个基坑施工的过程中,我们都一定要注意避免地下水的不良影响。

3.3地下水水位上升。导致地下水位升高的诱因是多种多样的,主要有环境影响、人类活动和地质的变动等主要方面。在岩土工程的施工中,一旦地下水位发生变动,则会给工程施工带来极其恶劣的影响。比如说地下水的水位上升会让土壤沼泽化,水量的增大会增大对建筑物的腐蚀性,对整个岩体的结构造成破坏,导致一些岩土出现滑移、崩塌等现象,甚至使整个建筑工程丧失结构的稳定性,无法正常使用。

3.4地下水水位下降。在岩土工程施工中,经常会出现的一个问题就是地下水位的下降,主要原因是人们日常的生产生活中常常会抽取地下水,这便会导致地下水位的下降。而这一变化对于岩土工程的施工同样有着非常恶劣的影响,可能会出现地面的不均匀沉陷、塌陷或者是地裂等问题,这对于岩土工程的整体结构是致命性的破坏,并且也不利于生态环境的稳定发展,因此,在施工的过程中一定要注意好这一问题,保证好施工的质量和安全。

4地质勘查过程中水文地质问题的注意事项

开展岩土工程的水文地质勘察工作时,不仅要分析水文地质状况,还需要解决好与之相关的各种问题。在工作过程中一般会做好下列几项工作:首先,必须给予各种水文地质问题足够的关注,并保证各项水文地质参数的准确性,要了解施工地区的水文地质状况、岩土结构和地下水的运动状况。其次,开展工程地质的水文地质勘察工作时,若土层内含有地下水,则必须深入探究地下水的性质及相关参数,这样才能给后续的工作提供科学的依据。

5结语

篇3

根据GPS定位系统的相关规范,在地心参照系中,通过静态定位的精度能够达到毫米。在连续观测中,相邻的多次观测基线的产犊年变化率值能够控制在2毫米的范围内。通过多年的勘察和几率,工程精度三百千米到一千五百千米定位中,每小时的测量误差都不会超过一毫米。在使用RTK作业过程中,基准线能够通过数据链把基准站采集到的载波香味及时地发送给流动测量站。在计算机系统中通过一些算法就能够定位坐标点,进而计算出具体的定位,精度达到厘米。

2煤田地质勘查中GPS、RTK定位技术的应用

2.1构建煤田勘探控制网

建立煤田勘查控制网需要勘查测量人员不仅要完成地质勘查研究区域的地质剖面测量数据,还需要控制测量数据以及勘查的点位等工作,并对这些数据进行整合。在收集这些资料的过程中,应该对地形的高差、坡度等方面加以注意,我们应该采用相关的定位系统测量规范中的精度要求来进行设置测量点并对这些点进行网络实时测量。在煤炭勘察测控网建立后,我们就可以利用RTK技术进行控制测量点位。主要的优势在于能够在实时的测量中对这些定点的精度和坐标实时获取,实现了不同点的完全通视,比传统测量方法操作更加方便。

2.2修缮煤田工程地质平面图

煤田工程地质平面图大多都是使用1:5000或者是1:10000比例尺的地形图。为了能够保证煤炭开采工程的质量,我们需要在测量之前就成立专门的测绘小组,根据当时当地的情况选择最佳的测量手段,而且如果使用全站仪进行修缮地质平面图的话,那么就需要增加测量水文地形情况、附近新增加的居民点、公路网络等方面,这对于工程人员来说面临时间久、任务量大、成本高、精度低的问题。如果我们采用RTK定位技术做这项工作,则能够很好地解决这些问题。

2.3工程测绘地质剖面图及地质勘探放样

RTK定位技术的优点主要有勘查半径大、通视条件要求低、能够长时间的连续性工作,精准度也比较高。这项技术不仅能够避免一些通视环境比较差的地区,而且其勘查的精度能够符合相关标准。在进行放样的时候,就直接把坐标对应到这项技术的手册当中,该系统就自动生成坐标点,方位以及相对距离也能够直接反映出来,这就方便了放样人员的工作。

3结束语

篇4

据以往地质勘查结果,场区潜水含水层、第一承压含水层、第二承压含水层、第三承压含水层、第四承压含水层和第五承压含水层发育。根据本次南汇县幅中最大勘查深度设计要求,250m以浅各含水层水文地质条件概述如下。

1.1潜水含水层

为全新世(Q4)河口—滨海相沉积物,场区及邻近地区普遍分布。潜水含水层一般由全新世(Q34)的灰色砂质粉土夹粉砂(A砂层),厚3~10m不等。潜水含水层富水性弱,单井涌水量小于10m3/d(口径500mm,降深2m),局部大于10m3/d。渗透系数小于1m/d。水质多为矿化度1~3g/L的微咸水。

1.2第一承压含水层

为晚更新世晚期中段(Q2-23)海滨—泻湖相沉积物,场区广泛分布。含水层顶面埋深一般28m,厚度在30m左右。部分地区与第二承压含水层沟通,顶面埋深一般30m左右,砂层厚70m左右。岩性为褐黄、灰黄色粉细砂、细砂夹砂质粉土,灰色细中砂为主。含水层富水性较好,单井涌水量在1000~3000m3/d。渗透系数一般在5~10m/d。水质以矿化度3~10g/L的半咸水为主。

1.3第二承压含水层

为晚更新世早期(Q13)河口—滨海相沉积物,场区广泛分布且发育良好。含水层顶面埋深一般73m左右,层厚10m左右。部分地区与第一承压含水层呈沟通现象,砂层厚40~50m。含水层岩性以灰色粉细砂含少量砂砾石为主。含水层富水性好,单井涌水量在1000~3000m3/d及3000~5000m3/d。渗透系数一般在10~30m/d。含水层水质较差,多为矿化度3~10g/L的半咸水。

1.4第三承压含水层

为中更新世早期(Q12)河口—滨海相沉积物,场区广泛分布。含水层顶面埋深一般100~110m,厚度20~40m,岩性为灰色细砂、粉细砂含砾,中粗砂。该含水层富水性较好,单井涌水量普遍在1000~3000m3/d。渗透系数一般在10~30m/d。含水层水质较差,普遍为矿化度大于10g/L咸水。

1.5第四承压含水层

为早更新世中晚期(Q21)河流相沉积物,场区分布广泛。含水层厚度大,顶面埋深在150~170m,厚50~70m。含水层岩性以灰色细砂、中细砂含砾石为主。含水层富水性较好,单井涌水量为1000~3000m3/d。渗透系数一般在10~30m/d。地下水水质为矿化度小于1g/L的淡水。

2施工设计

2.1成孔质量

2.1.1孔径、井径

地质鉴别孔孔径应不小于130mm。依据水文地质勘查孔勘查要求,孔径不小于500mm,井径不小于200mm。为此,本次水文地质勘查孔,孔径为500mm,井径为219mm。

2.1.2孔深

地质鉴别孔孔深原则上以揭穿目的含水层底面2m时终止。孔深一般在235~255m之间。

2.1.3孔深误差

孔深误差不大于1‰。每50m孔深及终孔时各校正孔深一次,正确记录,发现误差及时纠正。测量方法可采用一定长度的标准钢丝测绳,或利用具备测深功能的测斜仪,进行孔深测量。

2.1.4孔斜控制

要求钻孔圆直。每钻进25m及终孔时,采用测斜仪测斜一次,正确记录,发现误差及时纠正。孔斜每100m不得超过1°。对于大于100m的钻孔,每钻进100m时,顶角不大于1.0°,终孔顶角可递增计算,但最大顶角不得超过2.0°。

2.1.5取芯(样)和编录

(1)地质鉴别孔取芯。水文地质勘查孔首先进行地质鉴别。地质鉴别孔岩芯采取率,粘性土不低于90%,砂性土不低于80%,含砾粗砂不低于70%。连续落粘性土不超过2m,砂性土不超过3m,否则补取。取芯时每回次进尺不超过2m。岩芯从岩芯管中取出至岩芯箱内时,应避免重物锤击岩芯管,安放时应小心轻放,以避免岩芯受到扰动。

(2)目的含水层砂样采集。在含水层的上部、中部、下部进行取样,或在含水层岩性变化明显处进行加密取样。样品重量不少于1kg。样品放至塑料袋中,并附有取样时间、地点、深度等内容的标签。样品及时送至实验室进行粒度分析。

(3)岩芯保护。对取出的岩芯进行现场地质编录后,应及时装入PVC岩芯管,并加盖保护,以免遭受曝晒。岩芯在运输过程中防止剧烈摇晃、震荡,尽量保持水平搬运。岩芯包装时将PVC岩芯管顶部空余部分去掉,或尽量用清洁物品填充,并用胶带对PVC岩芯管进行密封,在柱体上及时做好样品标识,包括样品的钻孔编号、柱状样品的上下方向、取样深度、取样时间等都应标识清楚,并且标记格式统一、耐磨。并贴好样品编号标签,标签用胶带密封,防止标签污损。

3施工工艺

3.1施工设备配置

3.1.1机械设施配备

根据本次水文地质勘查孔地质鉴别、成井技术要求,施工单位需配置水文钻机等施工设备。

3.1.2施工材料购置

水文地质勘查孔成井时需用主要材料有:井管、滤水管、沉淀管、天然石英砂、粘土球、粘土及配制泥浆用的Na2CO3、膨润土等。预计5处勘查孔(井)累计井管长度1180m,滤水管长度60m,天然石英砂砾料105t,止水优质粘土球35t,封孔粘土220t。

3.1.3施工前准备工作

(1)进场前进行施工现场踏勘,落实水电供应。若供水供电不足,进场前落实好取水水源,自备发电机等准备工作;

(2)平整施工场地,钻塔塔脚处地基夯实,必要时浇注混凝土墩。塌架牢固稳定;

(3)挖好泥浆池,泥浆池容积不小于8m3,泥浆循环槽的总长不小于15m;

(4)按规范要求由专职电工接好电源,装好电源箱;

(5)开钻前,所有材料都应及时运至场区,其中井管、滤水管和天然石英砂应附有生产厂家提供的质量保证书。3.2鉴别孔施工工艺

3.2.1鉴别孔施工前准备工作

(1)平整、压实施工场地,钻塔塔脚处浇注混凝土墩加固;

(2)安装钻机设备,使天车、立轴与孔口三点成一垂线;

(3)挖好泥浆池,其容积应为钻孔体积的1.0~1.2倍,设置好泥浆循环系统;

(4)挖好废浆池,其容积应大于泥浆池的2倍,用于暂时存放废弃泥浆;

(5)配备好泥浆出砂装置;

(6)接通电源,安装电源箱。3.2.2成孔工艺

(1)钻进方法:用110mm/130mm外肋骨合金取芯短钻具开孔,取芯钻进至灰色粘土,孔深预计15m,再采用170mm单套钻具带后导向进行扩孔,下入168mm孔口保护管,孔口管居中、保证其垂直度为0°,周围用粘土封实并固牢。以下覆盖层110mm/130mm外肋骨钻具带长后导向管(长度10~15m)继续进行减压钻进取芯。每回次下钻到底,慢速轻压钻进,再逐渐调整至正常转速、钻压钻进至终孔深度。(2)提高岩芯采取率措施。对于粉细砂、细砂夹砂质粉土、灰色细中砂层取芯我们采取的钻具是伸拉型接头。

(2)钻孔护壁:采用优质粘土加碱配制泥浆护壁。粘土粉选用造浆率高、杂质少的优质膨润土,配比为:粘土粉4%~6%(泥浆体积),其原浆的主要性能指标为:比重1.06~1.10g/cm3、粘度23s、pH值8.5~9.5、失水量6~8mL/30min、泥皮厚0.5~1.0mm。经常检测泥浆性能,性能指标达不到以上要求时及时更换补充新鲜泥浆。以保证孔壁稳定。防止因泥浆过稀而导致孔内坍塌。

(3)钻进记录。做好每一回次的钻进记录、钻进事故及处理记录(包括具体情况及部位,说明事故原因,事故处理及对成井的可能影响),注明钻进所使用的钻具类型、规格,泥浆性能以及钻进过程中的各种情况,各类丈量尺寸应真实详细。报表按班填报,相关人员签名确认。

(4)地质编录。本次按第四纪地质编录要求认真做好地质编录,编录内容要求齐全、真实,准确,以备校核、验收。

3.3成井施工工艺

3.3.1施工顺序

钻进至设计深度(成孔)—成井(一次调浆、下入滤水管、井管、二次调浆、投天然石英砂砾料,止水、止水效果检验、封孔、洗井等)—抽水试验—现场验收和取水样—孔口保护。

3.3.2钻进成孔方法

采用SPJ-300钻机和BW-850泥浆泵钻进,二级扩孔钻进,以300mm、500mm三翼刮刀合金钻头扩孔钻进,孔口视上部填土层厚度下600mm定向保护管,不少于1.5m。

3.3.3钻孔护壁

采用优质粘土加碱和膨润土配制泥浆护壁钻进。经常检测泥浆性能,性能指标达不到要求时及时更换补充新鲜泥浆。以保证孔壁稳定。

3.3.4成井工艺

(1)清孔换浆:下管前用直径500mm的带保径圈刮刀合金钻头自上而下扫孔至孔底,更换孔内泥浆,逐渐调稀,在含水层位置上下反复扫孔,当孔口上返泥浆粘度为18~19s,手摸无明显砂感,停止换浆,提拔钻具。

(2)下管:下管前全面检查井管质量,按照下管深度,配备足量的井管,逐根丈量、编号、记录;清除井管内、外壁锈蚀层及杂物;井管和沉淀管均为同一材质的219mm无缝钢管,沉淀管底部钢板封堵,为保证滤水管在孔内居中,滤水管上下端各放置外导向架。如下管受阻,可小幅提拉井管,如仍不能正常下管,应提起井管重新扫孔后再下入,严禁猛提和墩拉井管,防止损坏井管、滤水管缠丝及破坏孔壁。

(3)二次调浆及填砾、止水:井管下到位后,井管内下入带活塞的钻杆进行二次清孔换浆,孔内上返泥浆接近清水后,采用动水填砾法进行填砾,边投砾边测量投砾高度,待砾料落实后,投入优质粘土球止水,填砾与止水高度均按设计要求进行。

3.3.5洗井与抽水试验

粘土球投至设计高度后,即利用拉动水活塞,检验止水效果,确定止水效果后,用水活塞在含水层段进行洗井,同时用清水将孔内和管内泥浆调稀换出,直至水路畅通后,换拉干活塞洗井,达到水清、砂净后方更换空压机扬水,做抽水试验。并取全分析水样送检。

3.3.6监测井封孔

在活塞洗井和空压机扬水的同时,回填优质粘土封井,直至孔口。抽水试验结束后测定沉淀管内沉渣厚度,当满足要求时结束,否则进行捞砂。

4结语

(1)由于本区粉细砂、细砂夹砂质粉土、灰色细中砂层厚度大,取芯是一大难题,保证岩芯采取率,落土、落芯不超过规定间隔。钻进过程中必须限制岩芯管长度和限制回次进尺,一般岩芯管长度2~3m,为了不超过落芯间隔规定,回次进尺不超过2m,钻进过程中要根据地层情况,适当控制水量和干钻长度,落土、落芯后应立即用取土器或无泵钻具、双管钻具续取。

(2)钻孔护壁,因所钻地层均为第四系覆盖层,钻进过程中可能会出现缩径、泥包、坍孔、漏失等情况。为了确保钻孔孔壁稳定,选用优质粘土加碱泥浆护壁,泥浆性能:比重1.06~l.08g/cm3,粘度20~25s,定期测定泥浆性能,不合格的及时更换,遇漏失层及时补充优质泥浆,以保证钻孔稳定。

(3)成井过程中还要严格确保成井工艺;孔深、滤水管严格执行设计要求,在含水层扩孔换浆时要再次核实孔深;加大洗井力度,提高成井质量;成井止水后,在止水层以上孔段,要及时回填优质粘土块进行封孔,以防止塌孔。

篇5

地质钻探机组是煤田地质勘察钻探中重要的组成部分,其工作质量直接影响着勘测数据的真实性。煤田地质钻探过程中要有质量管理体系做好保障。根据标准体系开展工作,这样能够满足质量管理体系要求。因此,在作业中,根据质量手册及施工程序文件需求进行工作,这样才可以更好的保障工作顺利执行。这个过程中,最关键的是进行质量管理,做好质量控制过程,这样才能满足地质勘探需求。当质量管理目的逐渐提升时,才能更好开展工作。实施质量管理工作,最根本的内容就是做好地质勘探工作,使得施工过程安全可靠。

1.1钻探的施工特点

所谓金刚石绳索取芯钻进是在直径较大的钻杆中置入芯管,它是勘探的主要步骤之一。随着勘探的深入,岩芯会逐渐进入取芯管中。对该取芯管进行提取,将钻杆中的底孔再放入其中,持续钻进。基于取出岩芯过程,可以进一步了解地下的地质情况,同时可以了解煤层的埋深深度。笔者认为,煤田地质勘探施工主要有以下几方面的特点:第一,钻机施工往往以单机作业为主,而对质量管理期间以扎根机组为主。第二,钻探作业施工使用的机组非常多,例如:液压钻机、变量泵,金刚石绳索取芯钻具等等,而且整个过程也比较复杂。进行施工时,需严格按照相关标准进行操作,以达到提高施工质量的目的。第三,施工过程中应先于勘探部位的上方搭设钻塔,并在钻机绞车的辅助下实现控制升降。这些施工辅助设备,对于开展施工有重要影响,这是保障机组质量的一大体现。在开展施工过程中,需要认真落实质量控制和管理工作。

1.2地质钻探质量管理

基于质量基础下,强调人的主观能动性,在ISO9000质量保证体系标准中,已经明确的指出,进行施工时,应该将质量放置在第一位。需要在以人为本基础上开展工作,人的安全意识、质量意识在施工中要体现出来。根据质量管理体系开展工作,这是保障工作前提和基础。因此,在工作进行时,每个部门技术人员相互配合,相互监督。同时严格按照地质编录、现场协调、报告编制等相关流程进行操作。工作人员明确了自身责任之后,这样才能更好的开展工作。员工开展工作,自身具备敬业精神,作业中严格要求自己,关注每个质量点。企业可以鼓励员工深入学习,参加培训,保障每个员工持证上岗。这样可以更好的把握新工艺、新方法,从而使得施工技能有所保障。

2勘探施工质量控制

2.1质量控制原则

相关部门应根据石油勘探现状、影响因素等,了解勘探期间存在的问题,并提出具体的解决措施。本文对钻探项目质量的影响因素进行深入探讨,从现状着手分析,从而进行正面评价。这个评价过程应该包含全方面的评价,相关的影响因素以及对严重程度分析。这样可以更加明确的看出质量事故斗争重点,在明确出现的问题时,如何采取有效措施进行应对。质量控制表现在多个方面,例如:人身安全,还应对其安全影响因素进行分析。进入钻探生产环节时,每个岗位人员应该严格做好质量控制工作,每个岗位都有明确的责任制,这是开展勘探工作必不可缺少的重要组成部分。因此,需要让广大职员明白,生产经营活动过程中,必须满足质量法律以及技术的要求,在生产过程中则需满足规范化和标准化需求,这样才可以更好的保障钻探工作质量。

2.2质量控制的实施

钻探的实质是流水作业,任何一个环节均可能对整体安全质量造成影响。因此,必须提高技术人员的专业素质,先对勘探的地质条件进行分析,从整个场地地质都有详细研究。记录人员对地质数据做好记录工作,严格检查钻孔进尺,施工期间再对其进行复查。技术人员进行核查期间,必须先对岩土的照片进行分析,核实野外描述。此外,还应及时加强对室内图片的核实。实验室人员工作核心是对岩芯质量进行提取,做好质量检测工作,将数据及时反馈到野外部门中,每个部门在工作中相互合作,相互配合。同时,还应加强对施工现场的控制,提高各工种之间的配合度。

2.3质量控制的持续改进

质量检查是一个强化管理监督过程,这是一个重要步骤。机组质量小组应该从施工管理上,从对设备的改造上做好自身工作。需要对施工质量、钻孔深度以及取芯的过程进行全面了解。从打分评价中对工程进行管理,对存在的薄弱环节应该及时提出整改意见。这样可以做好定性的质量检查工作,从而提升质量评估效益。这些工作最关键的部分是基于机组做好钻探工作。钻探机组需要基于实际检查中发现的问题进行分析,提出针对性意见,进入排查环节时,需要做到举一反三,作好复查工作。同时,还应按照自查、整改相结合的程序进行评价。做好施工设备维护工作,提升设备使用周期。另外,定期对勘探设备进行维护,了解施工现象存在的安全隐患,及时进行整改,提高施工安全性,这样就可以更好的提升质量管理目的,提升施工质量。改进钻探产品质量,可以更加完善管理体系,使得钻探工作得以顺利进行。当工作承诺并且履行工作,当做出承诺之后就应该积极推动,使得员工明确质量管理重要性,在工作中可以严格要求自己,可以明确自身职责。这样对煤田工程施工有推动作用,责任落实下去了,每个人都肩负起自身责任,这样开展工作会更加顺畅。

3结语

篇6

关键字:水文 地质 电法勘探

Abstract: this paper briefly describes the rapid development in our country, are widely used several bit of exploration method and its application in hydrogeology survey.

Key word: hydrogeology electric prospecting

中图分类号: P641.72 文献标识码:A 文章编号:

自从19世纪初期,P.Fox在硫化金属矿中发现了自然电场现象开始,电法勘探的方法至今已有一百多年的历史了。20世纪30年代,当时还在北平研究院物理研究所的顾功叙先生开创了我国的电法勘探事业。时至今日,在70余年的发展下,我国在电法勘探的基础理论、方法技术等方面取得了巨大进展,电法勘探已成为我国应用地球物理学中应用面最广泛、方法种类技术最多样化、对各类状况适应性最强的一门学科。与此同时,经过历代工作者的不断努力,这一技术已经深入到社会生活,科学研究的方方面面。

一、高密度电法

集合了电测谈法与电剖面法的高密度电法,除在观测中需设置高密度观测点外,其他原理基本与普通的电阻率法相同,属于阵列勘探方法。

在进行野外测量时,需将全部电极置于剖面上,利用危及工程电测仪和程控电极转换开关使剖面中不同电极距及不同电极排列方式的数据自动快速采集。相对于常规电阻率法,这一方法具有以下优点:

(一)能够一次性完成对电极的布置,在减少了因设置电极而导致的故障和干扰的同时提高了效率。

(二)电极的排列方式相对灵活,在测量时可以获得更为丰富的电断面信息。

(三)在一定程度上实现了野外数据的自动化或半自动化,在提高数据采集速度的同时也有效地避免了手工操作的导致的失误。

出上诉三点外,随着地球物理反演方法的发展,电阻率成像技术也从原始的一、二维发展到三维,极大程度上提高了地电资料的精度。

这一方法的应用领域较广,而在水文和工程地质勘察方面更能收到良好效果。

二、激发极化法

在使用电法勘探中,当出现电极排列向大地供入或切断电流的瞬间,在测量电极之间经常会发现随时间缓慢变化的附加电场。这一现象被称为激发极化效应。而激发极化法就是通过岩、矿石等的这一反应差异来解决地址问题的勘探方法。上世纪50年代,这一方法开始在我国研究并推广,从最早期的以直流激电发为主,到上世纪70年代初开始研究的变频法,而80年代初又开始研究频谱激电法。由于这一方法测量的是二次场,所以具有可测量参数多、不受地形影响等特点。

在实际应用中,这一方法也由初期的勘察硫化金属床发展到工程地质问题、非金属矿床等领域,近年来,更是由于其找水效果十分显著而被誉为“找水新法”。这里值得注意的一点是,利用本方法找水或确定地层含水性时与高密度电阻率法结合,可以有效降低地球物理解释的多解性,提高找水成功率。

三、可控源音频大地电磁法

这一方法是在大地电磁法和音频大地电磁法的基础上发展起来的。1975年,Myron Goldstein提出这一基于电磁波传播理论和麦克斯韦方程而建立的组视电阻率和电场与磁场比之间的关系。并根据电磁波趋肤效应得出电磁波的探测深度和频率之间的关系,通过改变发射频率来改变探测深度,进行频率测深。这一方法采用可控制人工场源,对电偶极源传送到地下的电磁场分量进行测量。由于本方法的探测深度较大,并且探测范围具立体性,因此具有以下优点:

(一)这一方法的抗干扰能力强,受地形的影响较小

(二)在不改变几何尺寸的情况下,通过改变频率可进行不同深度的测探,大大提高了工作效率。

(三)探测范围大。

(四)由于其横向分辨率高,可以更快速的发现断层。

(五)高阻屏蔽作用小,可直接穿透。

由于受静态效应和进场效应的影响,“静态效应”对此方法的影响可通过多种静态校正消除。

此法从一出现开始就展现了其相对良好的发展应用前景,在实际应用中,可作为激发极化法与电阻率法的补充应用,有效解决深层的地址问题。如在油气构造勘察、地热勘查、寻找音符金属矿、水文工程地质勘察等方面都取得了良好的效果。除上述领域外,在坝体渗漏调查,小浪底水利工程,南水北调工程的细线地质勘察中,这一方法都发挥了良好的作用。

四、瞬变电磁法

这一方法主要通过利用接地或不接地线源向地下发送一次场,通过对一次场间歇期间地质体产生的感应电磁场的变化的测量,根据二次场的衰减曲线判断地下不同深度地质体的电性特征与规模。由于单纯的对纯二次场进行观察,排除了一次场所产生的装置偶合噪音的干扰,该方法具有横向分辨率高、受旁侧地质体影响较小、体积效应小、对低阻反应灵敏、探测深度深等优点。

上世纪三十年代苏联学者为解决地质构造问题而突出了这一方法,在上世纪五十年代用于找矿,而从上世纪八十年代开始,这一方法从方法院里到一维、二维反演都得到了广泛应用,发展迅速。我国与上世纪七十年代对该方法进行研究,在上世纪九十年代后已将之逐步应用于工程检测等领域。但是,这一方法在国内还处于研究阶段,目前主要依靠进口。

这一方法不但广泛应用于石油、地热、金属矿产、海洋地质和煤田等地质勘查工作,也在水文地质勘察中发挥着极大的作用。

五、地质雷达

这一方法又被称为“探底雷达”,与探空雷达类似,地质雷达是通过宽带高频时域电磁脉冲波的反射对目标进行探测的,但由于频率相对较低,仅能用于辨别地质问题。

地质雷达是由地面发射天线对地下发送电磁波,通过分析接受地下目标反射的电磁波的时频与振幅特性等,对地质体的展布形态和性质进行评价。由于雷达的穿透深度收其发射的电磁波频率所限,造成其穿透深度相当有限,但是分辨率却相对较高。早期的地质雷达由于探测范围的限制,应用范围相对狭小。目前,由于技术的进步,地质雷达的探测范围已经可以深入到地下100米,使之成为水文地质勘察中较为有效的地球物理方法。

因为地质雷达具有高分辨率,成果结实可靠等特点,在进行浅层地质勘探时,能起到非常显著的效果,因此应用范围也相应广泛。如在探测基岩面起伏、覆盏层厚度、查找潜伏断层、管道沟、涵洞、古溶洞、破碎带以及地下掩埋体,进行考古调查,环境地质考察等。此外,在水文地质勘查中,地质雷达的应用也十分广泛。

结论:

综上所述,本文通过对几种主要的电法勘探方法的原理、发展及实际应用进行了详细叙述,说明了水文地质勘查中电法勘探有着相当广泛的应用,下面将这几点归纳列出:

1. 高密度电法由于其效率高、探测深、且地剖面成像精确,等特点,呗广泛应用与水文地质勘查中,成为效率最高的方法。但是考虑到该方法的分辨率偏低,在具体应用中需结合电测井等其他电法勘探,以达到地质解释精细化的目的。

2.可控源音频大地电磁法与激发极化法由于其特点成为水文地质勘探中电法勘探的首选方法,在寻找地下水源时,若能将这两种方法进行有效结合,见效果将异常显著。

3.瞬变电磁法在水文地质勘查中的应用范围相当广泛,其中,大功率瞬变电磁仪不仅可以在深部地质勘探中发挥作用,而且由于其分辨率较高的特性,若能与高密度电法合理搭配,综合运用,将为深部地质勘察的精细问题带来突破。

4.地质雷达是工程类地质勘探的首选方法。并且由于其分辨率高的特点,该方法可以借用地震勘探中已有的资料处理和解释技术,必将应用于更多的领域。

参考文献:

[1] 李金铭.《电法勘探方法发展概况》[J].物探与化探.1996.20(4)

[2] 张赛珍.王庆乙.罗延钟.《中国电法勘探发展概况》[J].地球物理学报.1 994.37(增刊1).

[3] 煎浩斌.王传霄.《高密度电法的发展与应用》[J].地学前缘(中国地质大学).2003.10(1)

篇7

1堤防工程地质勘察的过去与现状

我国已建江河堤防工程总长20余万公里,98特大洪水后尚有大量堤防工程正在规划建设中。许多已建堤防工程过去基本上没有进行过真正工程意义上的工程地质勘察,更谈不上各大江河湖海堤防工程系统化规范性的地质资料的汇编与分析整理工作。正因为如此,许多堤防工程在98特大洪水期间险象环生,出险堤段堤基的地质条件没有足够的资料可供抢险分析,为确保万无一失,只能按最坏情况进行抢险,其人力物力的巨大付出实在是不得已而为之;洪水期间上至中央下到地方的各级领导以及全国人民的精神紧张程度和精力耗费更是无法用实物价值去衡量。如此被动局面,一方面是大自然教训人类的生动一课,另一方面则是祖先给我们留下的世纪难题。

建国以来,随着大规模工程建设的需要,工程地质专业从无到有,日益发展壮大,成为国家工程建设不可缺少的重要基础性专业。工程地质勘察的法规性准则也逐渐成熟与完善,与工程地质相关的规程规范相继出台,并结合工程实践的反馈信息进行修订修编。水利部1997年2月了行业标准《堤防工程地质勘察规程》(以下简称《规程》,编号SL/T188,同年5月1日起实施),这是我国堤防工程地质勘察的第一部法规性行业标准。而国家标准《堤防工程设计规范》(以下简称《规范》,编号为GB50286-98,自1998年10月15日起施行)则是98特大洪水之后出台的。特大洪水前后出台的这两部法定标准或许是历史的巧合,也许是历史的必然。巧合与必然都说明这样一个事实:工程地质是工程建设的基础和侦察兵,具有超前意识和预见性,信不信由你。

《规程》颁布前的堤防工程地质勘察工作基本上没有什么标准。《规程》颁布后,地质工作有规可循,有法可依。更为98特大洪水后大规模堤防建设奠定了基础。首次颁布此《规程》,与工程实际存在一些差异再所难免。《规程》实施三年多来,主要存在三方面的问题,一是《规程》本身的实践性与可操作性问题;二是地质师对《规程》的理解程度与把握尺度;三是人们对堤防工程地质勘察的认识程度与理解程度。近两年来,生产第一线的广大地质师对《规程》提出了许多好的意见和建议,我们在工程审查过程中,也在逐渐地深化对堤防工程和《规程》的理解,力求较准确地把握审查尺度,紧密地与工程实际相结合,避免教条和呆板地执行《规程》中明显与工程实际不相符合的条款,要求客观地、创造性地应用和执行《规程》,同时也强调执行《规程》的严肃性。

近年来,堤防工程地质勘察工作基本上可以满足堤防工程设计与施工的要求。随着工程实践经验的积累和对堤防工程深层次的认识与理解,一些具有全局性和普遍性的问题,迫切需要提出来进行讨论,以便引起足够的重视。

2堤防工程隐患与险情分类

2.1分类的意义与原则

堤防工程存在隐患出现险情,导致大洪水时十分紧张。大规模的堤防工程建设正是针对隐患和险情而提出来的“整险加固”或“除险加固”。显然,对隐患和险情实施科学分类,不仅是从实践上升到理论的成熟过程,也为堤防工程的勘测设计工作明确了任务,同时为“加固”工程指明方向,提供依据。

在分类之前,我们先给出险情和隐患的定义:

险情是指正在发生或发生过程中被抢险保住了的事故堤段,具有直观性,措施明确性等特点。针对险情,需要分析出险原因,界定险情性质,预测再次出险的可能性,落实工程措施,确保大堤安全。

隐患是指尚未发生或可能将要发生险情的事故堤段,具有隐伏性,随机性,再生性等特点,更需要技术人员的分析判断,以便对症下药,采取措施消除隐患。

险情与隐患有明显区别但又并没有严格的界线,往往在险情中存在着隐患,在隐患中孕育着险情。辩证地看,险情是隐患发展到一定程度后的质变或必然结果,隐患是潜藏着的险情。从过程时态来看,险情是现在进行时或过去完成时态;隐患是过去、现在和将来组成的全过程时态,或单个过程时态。

本文分类的原则主要体现在:水工建筑物(堤身、穿堤建筑物)与天然地质体(堤基)区别开来,出险堤段和存在隐患的堤段与非出险堤段和不存在隐患的堤段区别开来,再按险情和隐患的性质进一步细化,作为指导后续工作的纲要。

2.2堤防工程险情分类

按出险部位可分为堤基险情、崩岸险情、堤身险情和穿堤建筑物险情,这是出险时首先要明确的基本类型。前两类与地质条件直接有关,后两类与地质条件间接有关。可进一步划分如下:

(1)与地质条件与河势演变均有关系的险情:崩岸险情,具有可预见性、直观性、发展性和多变性特征。

崩岸类险情多发生在河流凹岸迎流顶冲或深弘逼岸区段,地质条件往往是抗冲刷能力较差的细砂类土或粘性土。由于河水位与河势流态的变化关系,有的崩岸险情并不发生在洪水期(高水位)而是在退水期(低水位),因此可以进一步将崩岸险情分为洪水期崩岸险情和枯水期崩岸险情,前者抢险紧张,后者可以从容对待。

(2)与地质条件直接有关的险情(主要为堤基险情,包括穿堤建筑物地基险情):堤基渗透破坏险情、堤基滑动破坏险情和堤基沉降破坏险情等。

堤基渗透破坏险情具有一定的隐伏性,往往不易准确判断,洪水期发生的渗透破坏实例与理论计算有较大出入。另外,还需注意将承压水性质的渗透破坏与堤基接触冲刷或砂性土堤基渗透破坏区别开来,因为渗透破坏机制不同,工程措施当然也不一样。

存在滑动或沉降破坏险情的堤段,堤基大多分布有软弱土层,土体抗剪强度低,压缩系数大;另一类滑动或沉降破坏是随着崩岸险情而产生的,此类险情危害最大,抢险最困难。此外,堤基内或堤基外可能存在陡坎或堤坡太陡,或堤身填筑施工速度太快,都可能出现类似破坏。

以上险情实际上也就是我们通常要求界定明确的堤防工程的三大主要工程地质问题:崩岸、渗透破坏、滑动或沉降破坏。

(3)与地质条件基本无关或关系不大的险情(主要为堤身险情):堤身渗透破坏险情(与堤身质量有关,如堤身土体的密实程度、填筑土体的渗透性质和堤身单薄等)、堤身滑动破坏险情和堤身沉降破坏险情等。

2.3堤防工程隐患分类

按隐患存在的部位可分为:堤身隐患、穿堤建筑物隐患和堤基隐患。

按隐患的性质可分为:常规患和特殊患。

常规患:堤身单薄,堤坡太陡,填筑质量差,填筑体中存在砂性土夹层,有明显的堤身裂缝等。与地质条件直接有关的主要为堤基类隐患(包括穿堤建筑物地基)。例如上覆粘性土层薄,或本身即为砂性土堤基(包括浅层砂性土透镜体),存在渗透破坏的可能性;堤基有软弱土层分布,存在滑动稳定问题。

常规患具有直观性和可检测性,隐患的分析和工程处理措施都较为明确,一般情况下可以通过常规性的堤防工程维修加固予以消除。

特殊患:进一步可分为随机患(堤身或堤基随机分布有生物洞穴、植物腐烂物等)、再生患(生物洞穴类隐患具有再生性)、人类活动留下的隐患(例如城市区与堤外江河相通的早已被废弃了的各类排泄管道,工程勘探留下的封堵不合格的钻孔等)以及地质条件不明的堤基隐患等等。

特殊患规律性差,检测困难,在洪水期一旦演变成险情,其突发性质增加了抢险难度。

2.4险情和隐患与堤型之间的关系

堤防工程的主体~防洪大堤,绝大多数为就地取材填筑的土堤类型,由于筑堤的历史条件、筑堤材料、自然环境等等因素复杂,为后人留下了长期隐患,洪水期险情不断,令人心惊。鉴于土堤存在的这些问题,近年来一些城市区的堤防工程比较倾向于改土堤为混凝土防洪墙(堤)。混凝土墙可以基本排除堤身隐患和险情,但却增加了堤基的出险负担。一是堤基的受力条件发生了较大变化,原来的土堤是大面积分布荷载,混凝土墙改为集中荷载;二是堤基较长渗径变为水头集中的较短渗径。混凝土墙显然对堤基地质条件提出了更高的要求,这是地质工作需要重视的。

另一方面,险情和隐患与堤防工程的挡水性质在很大关系。例如一些丘陵山区城市堤防工程,其挡水性质为暴涨暴落,远不能与长江中下游堤防工程高水位较长时间运行情况相提并论,其险情和隐患的性质也是有差别的,需要区别对待。而《规范》中只是对堤防工程的等级标准有所规定,并没有对反映出险情和隐患与等级标准之间的关系,需要由有经验的地质师和设计师根据具体情况去理解与把握。

3堤基工程地质分段

3.1堤基工程地质分段存在的问题

自然界的地质条件千差万别。堤防工程是长距离线状工程,跨越了不同的地质单元,不进行分段分类区别对待显然是不行的。堤基工程地质分段又称堤基工程地质分类。在实际工程中,一些勘测设计单位不进行工程地质分段,或分段不合理,或即便是进行了地质分段,但其岩土体的物理力学参数又不进行分段统计分析,工程地质条件明显不同的堤段没有区别开来。还有一些堤基工程地质分段的结果不同程度地存在自相矛盾性,对工程设计和工程措施的选定缺乏针对性。当然,更多的情况是工程地质分段的合理性与科学性不足。

例如某设计院参加过大量堤防工程地质勘察,有丰富的堤防工程地质勘察经验,他们进行堤基工程地质分段所考虑的因素有:上覆粘性土层的厚度、外滩宽度和历史险情等,将堤基分为工程地质条件好、较好、较差和差四个等级。如此分段其大原则没有什么问题,但对于一些特殊组合则不易明确。例如,某堤基段其上覆粘性土层足够厚,堤内也没有任何险情,但堤外无滩,受水流冲刷崩岸严重,是典型的险工险段。将这种堤段分成工程地质条件差或较差都不一定合适。因为出现的险情不是堤基本身的工程地质条件差,而是堤外脚受水流冲刷产生的崩塌或塌滑,且在不同水位条件下其险情不同,与江河水流及河势变化都有关系。显然,崩岸类险工险段在堤基工程地质分段时应结合河势水流特征单独进行分类,以便于有针对性考虑工程处理措施。例如对某一类崩岸问题,抛石护脚是有效的,而另一类崩岸问题或许要与“丁坝”挑流改变流态相结合才能从根本上解决问题,或者无建“丁堤”的条件,则需考虑“桩”、“笼”等工程措施。

另一方面,对于堤基工程地质条件用“好”与“差”来评价,其针对性不强。例如,存在渗透破坏的堤基划为工程地质条件差,而实际上可能此类堤基的承载能力和抗滑稳定性都是很好的,如砂性土堤基。又如淤泥质土类堤基,其承载能力和抗滑稳定性差些,但渗透系数却很小,抗渗条件是好的。如此等等,用常规的工程地质条件好或差来评价,都存在明显的矛盾。

目前各勘测单位自行制定的堤基工程地质分段原则,基本上是以工程地质条件为基础,再考虑一些自然因素和工程因素,笔者认为这种分段法的思路源自于常规的工程地质分类法,跳不出传统思维的约束,不能较好地适应堤防工程的实际,需要探索新路。

3.2堤基工程地质分段

我们在进行传统意义上的工程地质评价时,通常从工程地质条件出发,结合工程建筑物特点,界定出主要工程地质问题。在堤基工程地质分段中,我们不妨借用逆向思维的思想,以工程地质问题为主线,以工程地质条件为基础,再结合历史险情类型,争取探讨出一个符合工程实际的堤基工程地质分段法。

本文强调的是“工程地质”分段,因此主要是对堤基而言的。我们知道,无论堤基地质条件有多复杂,其主要工程地质问题则是明确的,归纳起来主要为三类(即三大主要工程地质问题):崩岸、渗透破坏、滑动与沉降变形。绝大多数堤基岩土体不外乎为:砂性土、粘性土和砂性土与粘性土的混合结构;城市区杂填土较为复杂,另当别论。

根据以上以工程地质问题为主线的分段原则,我们首先将堤基分为三大类:Ⅰ类(不存在问题的堤基)、Ⅱ类(可能存在问题的堤基)和Ⅲ类(存在问题的堤基)。对于Ⅱ类和Ⅲ类堤基,按其存在问题的性质可继续划分亚类。

(1)Ⅲ类(存在问题的堤基)

堤基发生过历史险情,尤其是一些每年汛期都要出险的部位,在汛期要投入大量的人力物力抢险才能保证大堤安全的堤段。按出除性质又分为两个亚类:Ⅲ-1和Ⅲ-2类。

Ⅲ-1类:主要指崩岸类,这是在堤基分段时对有问题的堤基段应首先分出来的一类。

Ⅲ-2类:除崩岸之外的一切堤基存在问题的堤段。按工程地质问题继续分出两个子类:

Ⅲ-2-1类:存在渗透破坏的堤基段。汛期出现过冒砂、涌混水等险情;堤基为砂性土,或表层粘性土较薄,或浅层有砂性土透境体分布,或堤身与堤基接触部位存在渗漏破坏问题。

Ⅲ-2-2类:存在滑动与沉降变形的堤基段。运行期或施工期发生过堤基土层滑动,或沉降过大导致堤身开裂;堤基有压缩性大、承载力和抗剪强度低的软弱土层分布,或堤基清基不彻底,导致堤身与堤基接触面存在滑动软弱带。

(2)Ⅱ类(可能存在问题的堤基段)

此类与前述的堤基隐患相对应。在汛期有一定渗水情况发生,但并未发展成为险情;或经地质勘察,地基中存在砂性土透镜体、软弱夹层等不利地质条件,经渗控或稳定性验算,安全系数达不到规范要求的堤基;或存在生物洞穴等其它隐患的堤基。

(3)Ⅰ类(不存在问题堤基段)

历史上无险情发生,堤基为厚度较大的粘性土或基岩,物性指标和力学指标均较好,不存在三大主要工程地质问题。

(4)结合工程实际进一步细分亚类的原则

以上分类法,从宏观上将堤基分为三大类别,但在具体实施过程中,还可以根据工程实际按不同工程地质条件和工程地质问题进一步细化。例如,对于Ⅱ类堤基段,可以按可能存在问题的性质进一步细化;对于Ⅲ类堤基段,也可以按存在问题的严重程度或岩土体的性质等进一步细化。堤基分段的科学性、合理性、实用性和可操作性,不但是地质师对堤防工程理解程度的反映,更是一项创造性的工作。本文所提出的分段原则和方法,尚有待工程实践去检验。

3.3堤基工程地质分段对勘测设计工作的指导作用

在进行工程地质勘察时,Ⅲ类是重点,应根据具体情况加密勘探点;Ⅱ类次之,实施常规性勘探即可;Ⅰ类基本上可以不考虑地质勘察。设计方面,Ⅲ类堤基必须考虑工程措施;Ⅱ类堤基应视具体情况而定,也可以通过进一步勘探和检测或监测结果来确定工程措施;Ⅰ类堤基则不需要采取工程措施,仅仅通过堤防工程的常规性维护即可。

4执行《堤防工程地质勘察规程》的基本原则

从《堤防工程地质勘察规程》颁布实施三年多来的实践可以看到,除了《规程》本身存在一些尚需修订的问题之外,能够将《规程》与工程实际相结合,创造性地执行和应用《规程》,准确地把握《规程》的原则性与灵活性,是对地质师综合素质的高标准要求。业务能力和创新意识,是检验和考察我们对堤防工程的认识深度与理解能力。笔者的理解主要反映在以下几个方面。

4.1勘测阶段

已建堤防除险加固工程可以一次进场,达到初设深度;新建堤防可按可研和初设两个阶段进行。其理由是:新建堤防存在线路比选问题,不可能将比选堤线的工程地质条件都按初设要求做到相同深度;已建堤防一般不存在线路比选问题,因此也就不存在多阶段多方案的反复比选问题。另外,新建堤防工程应该在规划阶段即开展工程地质工作,以便将规划线路从地质专业的角度先期界定其可行性。

4.2勘测深度及勘探工作量

在实际工作中,对于堤防工程勘测深度与勘探工作量问题,在理解和把握上有较大差异。有人喜欢严格按《规程》要求布置勘探工作量,而少在工程地质条件的查明与工程地质问题的分析方面下功夫。笔者强烈主张,一是将安全正常运行的堤段与险工险段区别开来,二是将堤身出险情况与堤基出险情况区别开来,分别对待。这也是本文费了较多笔墨进行险情隐患分类和堤基工程地质分段的目的之一。特别是经历了98特大洪水考验过的堤防工程,未出险的堤段完全没有必要“严格”按照《规程》要求的勘探工作量去实施地质勘探,即使按照《规程》中的上限要求,也是一种毫无意义的巨大浪费。而应在分析险工险段的具体问题之基础上明确勘察目的,研究和选择勘探方法,合理布置勘探工作量,重点在工程地质问题的分析上下功夫。如果认可本文提出的堤基分段原则和方法,地质勘探工作的布置则更为方向明确目标清楚。

4.3《规程》原则性与灵活性的准确把握

《规程》的原则性和严肃性是不可置疑的,这并不等于“死”规定。明显与工程实际不相符合的具体问题,需要由地质师的创造性劳动加以“灵活”处理。规程规范是指导技术工作的法规性文件,并不等同于为犯罪分子定罪的法律条款,因此执行规程规范是可以有“灵活”性的。灵活性的把握原则是:不应因忠实严格执行规程规范而遗漏重大工程地质问题,留下工程隐患造成工程事故;也不应造成不必要的浪费。例如,对于某些特殊的险工险段、Ⅲ类堤基、城市区规律性差的杂填土和人类活动留下的隐患管道等,《规程》规定的勘探工作量可能就不能满足要求;而对于安全正常运行多年的Ⅰ类堤基,按《规程》规定的勘探工作量又显得没有必要。总之,准确把握执行规程规范的原则性与灵活性,需要地质师的责任心、业务水平和创新意识,同时也体现出了工程地质专业的特殊性与复杂性。

5不同行业标准之间的关系

堤防工程地基多为土质地基,其工程地质评价的基本理论依据是土力学,因而容易与工民建基础设计相混淆。目前反映比较集中的是执行水利行业标准还是执行以工民建为主要对象的《岩土工程勘察规范》(国家标准GB50021—94简称《岩土规范》)。两个标准既有共同之处,又有一定的差异。我们认为应该以水利行业标准为主要依据,同时参照《岩土规范》。原因是:①《岩土规范》主要是针对一般性工民建地基勘察与评价,而水工建筑物与工民建有根本性的区别,前者地基所承受的荷载以垂直向为主,建筑物对地基的要求主要反映在承载力;后者的荷载是垂向与水平向的组合,地基岩土体处于复杂应力状态,特别是水荷载对地基岩土体的复杂作用,是水工建筑物与工民建的根本区别。②《岩土规范》在总则中表示该规范适用于除水利工程、……以外的工程建设岩土工程勘察。明确了不适用于水利工程。③《岩土规范》中对勘探量的安排和勘探工作的布置主要依照岩土工程勘察等级来制定,而堤防工程则主要从工程勘测设计的阶段来确定。

关于土的分类问题,也是近年来较为混乱的问题之一。1990年以前,土的分类主要以1962年版的《土工试验操作规程》为依据,采用土的分类三角坐标,这种分类法以颗分为基础,以砾石、砂粒和细粒的含量百分比来给细粒土定名。广大设计院应用这种分类方法比较成熟。1991年国标《土的分类标准》(GBJ145-90)颁布,此标准以颗分为基础,以塑性指数和液限为控制指标对土进行分类,1999年颁布的水利行业标准《土工试验规程》对土的分类也沿用此国标。我们认为,目前两种分类都有各自的特点,原则上应使用国标和最新的行业标准为主,现阶段也可以根据各单位对标准的理解和与工程相结合的具体情况,互相参照使用,只要能够客观地反映工程实际,满足为工程设计提供有关地质参数的要求即可。另一方面,我们也提倡和鼓励对此类问题深入探讨,为进一步统一标准进行实践和理论准备。

6堤防工程地质勘察的成果资料

堤防工程地质勘察所获得的基础性资料数据,具有种类繁多数量巨大的特点。这些资料数据的分析整理归纳汇总,要求标准化,计算机化,最后形成能够通过计算机综合管理的数字化的基础资料数据库系统,并与堤防工程的其它资料数据库系统集成,充分应用计算机网络技术,为堤防工程建设、管理和抗洪抢险提供使用方便功能强大的检索查询指挥调度系统。集成后的系统可在局域网、城域网、广域网和Internet/Intranet上运行。系统要求具有灵活的结构定义、多种存储方式、强大方便的查询定位功能、丰富的统计报表功能以及可靠的数据安全保证体系等;能够通过图示图表提供隐患预测、险情分析、抢险提示、决策支持、模拟溃堤和决口后洪水进堤的演变趋势。目前的基础性工作是制定目标,统一规划,结构设计,系统集成。

堤防工程数据库系统需要列为专题研究,力争全国统一,至少也应该全流域统一。各类资料数据的使用权限、归档管理、存储格式和形式、存储介质等等,都应该及早研究,统一规定。

7结语

98特大洪水期间,抗洪抢险场面之惊心动魄,至今仍然令人难以忘怀。大洪水给人以大启示。中国历史上前所未有的大规模堤防工程建设在98特大洪水之后迅速拉开序幕。经历了98特大洪水洗礼过的江河堤防工程,其工程隐患基本暴露无遗,认真研究堤防工程的出险机理,总结未出险工程的成功范例,吸取前人修建堤防工程的历史经验,做好堤防工程的勘测设计工作,是肩负着堤防工程建设的各级领导和工程技术人员的神圣职责。

近几年来我们参加了大量堤防工程审查,在向生产第一线的广大工程技术干部学习的同时,也对堤防工程地质勘察中普遍存在的一些问题进行了认真思考。本文对于执行《规程》的原则、勘探工作量的控制、勘测资料的整理等等问题表明了我们的观点;关于堤防工程险情和隐患分类,我们认为是实践上升到理论的必然过程;关于堤基分段分类的原则与方法,属于工程地质理论与实践相结合的探讨性课题,同时又是指导工程勘测设计的基础性工作。

本文观点供同行们参考,愿与大家共同讨论。

参考文献:

1韦港、冀建疆,关于《堤防工程地质勘察规程》中若干问题的探讨,《水利水电技术》,1999年第10期。

2韦港、冀建疆,堤防工程与环境地质问题,《水利规划设计》,水利部水利水电规划设计总院院刊,2000年第1期。

3《岩土工程勘察规范》,中华人民共和国国家标准,GB50021-94,中国建筑工业出版社1995年。

篇8

关键词:水利水电;工程地质问题;环境问题;勘测问题

一、水利水电工程建设与环境问题

1.1水利水电工程与地震问题水库等水利水电工程建筑物蓄水后,由于地应力的调整或水体下渗等原因,触发了地质断层的复活而诱发地震。研究表明,要触发一个比较大的地震需具备以下三个条件:①水库岩石比较破碎,且处理效果不十分理想;②存在有利于应力集中的地质环境条件;③水库水荷载所产生的超孔隙水压力足够大。关于水库诱发地震的事件国内外均有报道,一般而言,水库的坝址没有较大的断裂带存在,仅仅是水荷载引起的地应力,诱发地震的可能性是很小的。但如果诱发大的地震,那将是灾难性的。从1987年的资料至今,我国已建设的坝高在15米以上的水库共18000多座,已发现水库诱发地震的有13座。

1.2水利水电工程与水文问题水利水电工程建成后改变了下游河道的流量过程或周围环境水域的分布,从而对周围环境造成影响。例如:①大坝水库不仅存蓄了汛期洪水,而且还截流了非汛期的基流,往往会使下游河道水位大幅度下降甚至断流,并引起周围地下水位下降,从而带来一系列的环境生态问题;②下游天然湖泊或池塘因断绝水的来源而干涸;③下游地区的地下水位下降;④入海口因河水流量减少引起河口淤积,造成海水倒灌;⑤因河流流量减少,使得河流自净能力降低;⑥以发电为主的水库,多在电力系统中担任峰荷,下泄流量的日变化幅度较大,致使下游河道水位变化较大,对航运、灌溉引水和养鱼等均有较大影响;⑦当水库下游河道水位大幅度下降以至断流时,势必造成水质的恶化。由此可见,水利水电工程对水文的影响是不容忽视的一个重要问题。

1.3水利水电工程与气候问题一般情况下,区域性气候状况受大气环流和水体分布所控制。如果修建大、中型水库及灌溉工程后,当地水体的分布会发生较大的变化。如原先的陆地变成了水体或湿地。局部地表空气变得较以前更加湿润,形成新的小气候,对当地气候会产生一定的影响。主要表现在对降雨、气温、风和雾等气象因子的影响方面。

1.4水利水电工程与鱼类、生物物种问题①对鱼类的影响:切断了洄游性鱼类的洄游通道;水库深孔下泄的水温较低,影响下游鱼类的生长和繁殖;下泄清水,影响了下游鱼类的饵料,从而影响鱼类的产量;高坝溢流泄洪时,高速水流造成水中氮氧含量过于饱和,致使鱼类产生气泡病。②对植物和动物的影响:库区淹没和永久性的工程建筑物对植物和动物都会造成直接破坏;同时局部气候变化、土壤沼泽化、盐碱化等都会对动植物的种类、结构及生活环境等造成影响。

二、工程地质工作中存在的问题

2.1工程地质勘察的质量问题在工程地质勘察过程中,主要问题有以下几种:①工程概念不清,勘探侧重点不明确,针对性不强,方法不当,手段落后;②工程地质分析工作中所选择的理论、方法、计算公式等与实际情况有较大出入,其适应条件的物理意义混淆不清;③地质报告中基本地质条件不清楚。我们遇到的主要工程地质问题有:①界定不准确或论证不充分,有问题遗漏甚至结论性错误;②有些地质报告没有地质结论,也有些工程没有做多少地质工作就先下结论,极不严肃。此类问题产生往往造成阶段性工程审查不能一次性通过,可能延误开发时机;或者尽管通过了审查,但却给工程留下了隐患,这种情况的危险性极大。

2.2勘测周期不合理的问题从工程地质勘察到地质报告的提交需要一定的工作周期,这是再简单不过的道理,然而有些工程却没有进行基础性的前期投入。主要存在问题有以下几个方面:①一旦需要申报项目,立即就要求提交地质报告;②今天刚刚提交可研报告,明天就要求提交初设报告。此类情况多为地方性工程,一般国家投资的大型工程出现这种局面的不多。没有足够的勘测周期所造成的后果是严重的,由于地质条件不清楚,直接导致投资控制不住,施工后修改设计等情况。更可怕的是留下了工程隐患,可能造成重大的工程事故。

三、结语

工程地质学是20世纪才建立和发展起来的一门地球科学。水利水电工程地质勘察是所有行业中涉及面最广、问题最复杂、任务最艰巨、声望最高、最具权威性的龙头行业,它具有自身的特殊性与复杂性。水利水电工程建设与环境保护是一项长远的任务,是水利水电工程顺利进行的重要保证之一。保护和改善工程环境是保证人们身体健康的需要,是现代化大生产和保证工程质量的客观要求,是保证工程永久利益的必须条件。工程地质工作的质量,对工程方案的决策和工程建设的顺利进行至关重要。由于地质问题引起的工程事故时有发生,轻则修改设计延误工期,严重时造成工程失事,给人民生命财产带来重大损失。近年来,工程地质勘察质量有下滑趋势,工程地质分析不够深入,有时甚至出现工程地质评价结论性错误这样严重的问题。笔者认为,总结分析水利水电工程地质勘察过程中存在的问题,具有重要的现实意义。

参考文献:

[1]林妙月.区域构造稳定性及地震性危险评价问题[M].北京:地震出版社,2008:99-100.

[2]王连生.水利水电工程地质[M].武汉:武汉大学出版社,2008:13-15.

篇9

1.1辩证唯物论观点

某坝基夹层双侧的岩体侧向抗滑效应比较大,如果按照既有的规律,不进行考虑的话就不符合坝基的实际。但是,进行绝对地考虑的话,也不一定非常合适。事实上,只要按照正常的办法,将其作为安全储备,而不参与坝基稳定计算就可以了。

1.2整体论观点

每一个工程地质问题都存在一定的系统之中,只有采用系统分析法才能够对其进行客观的分析和判断。系统方法论认为,人们在研究和解决系统问题时,仅仅重视各要素自身的可靠性是不够的,而应当将重点放在如何通过对具有必要可靠性的诸多要素的优化组合,以达到系统的整体效应最佳,而并不追求每个要素自身可靠性都达到最高等级。否则,工程地质决断就必然是偏于保守的。

1.3经验支持论观点

随着工程地质勘察的深入,其经验越来越多,作用也越来越大。工程经验可以帮助人们认识工程地质环境,建立数学模型进行研究[1]。工程地质勘察的经验还能够帮助人们分析地质状况是否适合进行相关的水利水电工程操作,如果能的话,需要在实际的工作中注意哪些问题。

2水利水电工程地质勘察理论现状

随着社会的发展、科学技术的进步,水利水电工程的建设逐渐实现了现代化,水利水电工程地质工作亦是如此。这些先进的技术为水利水电工程地质研究提供了现代化的理论基础与实践水平。实现现代化的操作、运用先进的科学技术也将是水利水电工程地质研究工作的必然途径。近几十年来,水利水电工程的地质研究工作取得了多方面的发展,从勘察技术到测试技术,再到数值分析技术等都获得了迅速的发展。虽然水利水电工程地质在理论、知识上获得了长足的发展,但是由于地质环境的复杂以及地质信息获取难等原因,导致了水利水电地质研究工作无法成为一门精确的学科,在众多方面还存在的缺陷。

3水利水电工程地质勘察主要内容

水利水电工程地质勘察工作是一项复杂的系统工作,应该涵盖到多个方面。但是传统的水利水电工程地质勘察工作由于受到理论以及经验方面的限制,只考虑到地质信息的基本调查工作。在实际工作中,仅对水利水电工程区的地质进行简单的分析,为建设人员提供建设区地形地貌、地层岩性以及地质构造等信息[2]。这样,就使得水利水电工程地质勘察报告不够完善,为工程建设提供的帮助也较为有限。自20世纪70年代,随着技术水平的提高,勘察的工作内容也逐渐丰富起来。当前,水利水电工程地质勘察工作包括多个组成部分。主要包括:基本地质信息的调查;工程地质问题的提出、分析以及判断;对工程地质进行改造的问题分析;对地质信息进行监测以及反馈,并且依据监测反馈内容进行调整。基础信息的调查是勘察工作的基础,然而后3个方面的增加则逐渐完善了勘察工作,将勘察的目标从简单的地质勘察延伸至地质工程方向。这种方向的转变能够有助于水利水电工程的建设,同时也给勘察人员提出了新的要求,他们不仅要是地质专家,也要了解水利水电方面的知识。这样,才能提高地质勘察工作的水平。

4水利水电勘察实物工程量与工程地质问题决断质量的关系

水利工程地质勘察工作中,首先是要进行地质勘察,进而对地质做出决断,这是该项工作的最基本环节,同时也是一项重要的环节,因为决断的质量会直接作为水利水电工程建设时的参考。但是对于这一环节,许多人存在一个误区,主要是关于水利水电勘察实物工程量与工程地质问题决断质量的关系。许多人会认为工程地质问题决断质量完全与勘察实物的工程量成正比,受到勘察实物工程量的直接影响。但是实际上,二者并无如此明显的因果关系。勘察实物工程量会为工程地质问题的决断工作提供基础,但是决断的质量大部分还是取决于勘察人员的专业素养。水利水电工程所面临的地质条件往往较为复杂,这本身就对勘察人员的素质提出了较高的要求。面对这么复杂的地质环境,勘察人员要想进行正确、科学的决断必须要有扎实的专业基础、具有较高的综合决断能力。

5水利水电工程地质决断风险问题

工程地质决断风险(简称地质风险),主要是指因为重要地质信息的遗漏或者工程地质决断失误等原因,为社会、经济以及工程带来危害的事件。所有的工程都想通过建设,在风险降到最低水平的前提下,达到一定的经济、社会效益,水利水电工程也是如此。但是有些人一味地要求工程完全无风险,是不够科学的,是一种理想化的认知,尤其是对于水利水电工程。水利水电工程的选址往往是在河道、山体等地质较为复杂的地区,这些地区所面临的地质风险概率很大。因此,水利水电工程的建设都必备地质勘察流程。通过这一工作来对地质进行分析、决断,指导工程建设,降低地质风险。依据地质风险事件的危害程度,可以将风险事件划分为毁坏型风险事件和损伤型风险事件。从实际而言,损伤性的风险事件是被允许的,但是毁坏型则完全不予允许。虽然地质风险客观存在,但是为了确保水利水电工程能够发挥更大的效果,减少损坏,勘察人员们必须要加强专业知识的学习,利用经验等各种理论,结合实际对地质问题进行正确的决断,确保决断质量,将地质风险控制在最低的状态。

6水利水电岩体工程稳定性地质评价问题

由于水利水电工程必须建立在一定的岩体之上,所以水利水电工程地质勘察工作,还需要对岩体工程进行稳定性分析以及评价。这一工程由坝基工程、地下工程以及边坡工程等构成。实际的分析评价中,要立足工程实际,综合多方面因素来进行。开展岩体工程的稳定性分析首先要为岩体工程确定目标以及预定工程需要达到的可靠度。此外,为整个工程建立一套完善的稳定性评价系统,从整体出发,利用系统将各个单方面因素结合起来进行综合的分析。从而使得稳定性评价工作能够达到应有的效果。这一工作的科学、有效也将为后期的地质决断提供基础。

7结语

篇10

沉积特征

1沉积发育的多旋回性与多期次的沉积间断

新生界下第三系主要为断陷湖泊沉积,纵向上在附近凹陷发育出出现两个沉积旋回,即沙二段—东营组、沙四段—沙三段。这两个沉积旋回都处于比较完整的状态,其水体变化过程为浅—深—浅,岩性的变化过程为粗——细——粗。因为该地区的构造出现继承性的发育,下第三系沙四期到东营早期,致使从凹陷中心向隆起部位出现逐层超覆的沉积现象,一直至东营中期才呈现出覆盖潜山构造顶部的现象[2]。下第三系在沉积之后,受喜山期东营幕的影响,因此与渤海湾盆地等地区一样,出现上升的现象,因此遭受剥蚀。上第三系处在坳陷沉积期时,馆陶组—明化镇组出现河流相沉积等特点,在纵向方向,出现从粗至细的正旋回,其旋回比较完整。同时出现多旋回等沉积现状,因此出现了多套生、储以及盖的组合;在横向方向,沉积层的展布范围出现逐层扩大的现象。在沉积方面,该地区不仅具备多旋回性的特征,而且还具备多次沉积间断的特征,多次沉积间断主要由燕山及喜山期出现多次区域性抬升而形成的,该地区受中生界和下第三系之间的沉积间断的影响比较大,其间断期也比较长。同时,此外,第三系内部也出现两次重大的沉积间断,其一位于上、下第三系之间,其二位于沙二段和沙三段之间。这几次沉积间断是潜山油气藏形成的关键因素,特别是前第三系和下第三系之间的沉积间断,对潜山油气藏的形成起着至关重要的作用。

2中生界超覆式(底超)沉积

该地区在印支运动挤压应力场的影响下,古生界出现逆断与褶皱的现象,背斜轴部出现在埕北20井区域处,古生界受剥蚀作用明显,相反,两翼古生界可以保留较全的地层层序,相比其厚度也比较大,中生界下侏罗统在沉积过程中,在构造翼部出现逐层超覆式(底超)的沉积。

勘探潜力

1石油勘探面积大

胜利埕岛油田位于渤海湾盆地,而渤海湾盆地是我国石油、天然气勘探最重要的阵地之一,为我国工业发展和经济发展做出卓越的贡献。在石油工业“稳定东部,发展西部”的战略实践中,渤海湾油田的开发起着至关重要的重要,是我国东部石油勘探与开发的重中之重。在渤海海域中,山东海域领域占的比率比较大,大约占33.3%以上,仅胜利油田管辖领域的就有414km海岸线周围的4870km2的浅海面积以及极浅海面积。同时,由山东省管辖的胶东半岛渤海海域也拥有广阔的浅海面积,但因为各个方面的原因,浅海海域石油的勘探程度依然处于低级的状态。目前,渤海浅海海域主要的勘探区域为老黄河口之北埕北低潜山600~700km2的范围内,其余区域的勘探程度依然处于预探阶段,需要进行进一步的勘探观察,以便开发出更多的油气资源。

2雄厚的石油资源潜力