数量关系解题技巧—数学运算

时间:2022-04-30 03:42:00

导语:数量关系解题技巧—数学运算一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

数量关系解题技巧—数学运算

数字推理题主要有以下几种题型:

1.等差数列及其变式

例题:1,4,7,10,13,()

A.14B.15C.16D.17

答案为C。我们很容易从中发现相邻两个数字之间的差是一个常数3,所以括号中的数字应为16。等差数列是数字推理测验中排列数字的常见规律之一。

例题:3,4,6,9,(),18

A.11B.12C.13D.14

答案为C。仔细观察,本题中的相邻两项之差构成一个等差数列1,2,3,4,5.……,因此很快可以推算出括号内的数字应为13,象这种相邻项之差虽不是一个常数,但有着明显的规律性,可以把它看作等差数列的变式。

2.“两项之和等于第三项”型

例题:34,35,69,104,()

A.138B.139C.173D.179

答案为C。观察数字的前三项,发现第一项与第二项相加等于第三项,3435=69,在把这假设在下一数字中检验,3569=104,得到验证,因此类推,得出答案为173。前几项或后几项的和等于后一项是数字排列的又一重要规律。

3.等比数列及其变式

例题:3,9,27,81,()

A.243B.342C.433D.135

答案为A。这是最一种基本的排列方式,等比数列。其特点为相邻两项数字之间的商是一个常数。

例题:8,8,12,24,60,()

A.90B.120C.180D.240

答案为C。虽然此题中相邻项的商并不是一个常数,但它们是按照一定规律排列的:1,1.5,2,2.5,3,因此答案应为60×3=180,象这种题可视作等比数列的变式。

1.比例分配问题

例题:一所学校一、二、三年级学生总人数450人,三个年级的学生比例为2:3:4,问学生人数最多的年级有多少人?

A.100B.150C.200D.250

答案为C。解答这种题,可以把总数看作包括了234=9份,其中人数最多的肯定是占4/9的三年级,所以答案是200人。

2.路程问题

例题:某人从甲地步行到乙地,走了全程的2/5之后,离中点还有2.5公里。问甲乙两地距离多少公里?

A.15B.25C.35D.45

答案为B。全程的中点即为全程的2.5/5处,离2/5处为0.5/5,这段路有2.5公里,因此很快可以算出全程为25公里。

3.工程问题

例题:一件工程,甲队单独做,15天完成;乙队单独做,10天完成。两队合作,几天可以完成?

A.5天B.6天C.7.5天D.8天

答案为B。此题是一道工程问题。工程问题一般的数量关系及结构是:

工作总量

________=工作时间

工作效率

我们可以把全工程看作“1”,工作要n天完成推知其工作效率为1/n,两组共同完成的工作效率为1/n11/n2,根据这个公式很快可以得到答案为6天。另外,工程问题还可以有许多变式,如水池灌水问题等等,都可以用这种思路来解题。

4.植树问题

例题:若一米远栽一棵树,问在345米的道路上栽多少棵树?

A.343B.344C.345D.346

答案为D。这种题目要注意多分析实际情况,如本题要考虑到起点和终点两处都要栽树,所以答案为346。