药物设计学课程教学案例设计研究

时间:2022-06-23 15:07:29

导语:药物设计学课程教学案例设计研究一文来源于网友上传,不代表本站观点,若需要原创文章可咨询客服老师,欢迎参考。

药物设计学课程教学案例设计研究

[摘要]在药学本科生的药物设计课程中,以细菌RNA聚合酶抑制剂的虚拟筛选为例,利用AutoDockvina软件对小分子化合物库进行分子对接虚拟筛选,用PyMOL和LigPlot软件进行结果分析。该教学案例设计可以帮助学生理解基于分子对接的药物虚拟筛选方法,认识小分子抑制剂与靶蛋白的作用机制,帮助学生更好理解药物分子设计,有效调动学生的学习积极性,达到了提高教学质量的目的。

[关键词]教学改革;分子对接;AutoDockvina软件;虚拟筛选;药物化学

药物设计是药物化学的重要研究内容,药物设计主要基于经典的药物化学原理、生物大分子的结构信息和已知化合物的结构信息,构建具有药理活性的小分子化合物,旨在提供候选药物,为创新药物的研究提供物质基础。药物设计学课程的目标是让药学本科生掌握药物分子设计的基本原理、研究内容和研究方法,建立药物分子设计的思路和理念[1]。分子对接(MolecularDocking)是两个或多个分子之间通过几何匹配和能量匹配而相互识别的过程[2-3]。分子对接在药物分子设计中具有十分重要的意义。分子对接也是药物虚拟筛选的一种常用方法,通过分子对接可以从化合物库中筛选出潜在的活性先导化合物,也可以揭示药物小分子和生物靶点之间的相互作用方式,预测化合物的亲和力及活性,也可以用于先导化合物的结构优化等[4]。目前,多重耐药菌以及耐药菌感染引发的死亡等问题已成为全球关注的医学与社会问题,严重地威胁着感染性疾病的治疗,为此迫切需要能够抵抗多重耐药菌的具有新结构与新作用机制的抗菌药物[5-6]。而细菌RNA聚合酶已成为最热门的一类抗菌药物靶标,开发其相应的抑制剂克服已有抗生素的耐药性具有重要的意义[7]。分子对接作为药物设计学课程中主要内容,既是学习的重点也是难点。笔者根据多年从事新型抗菌药物的研究经历,结合科研工作实践,在桂林医学院药学专业的药物设计学课程的教学案例中,以“虚拟筛选细菌RNA聚合酶抑制剂”作为教学切入点,以AutoDockvina、PyMOL和LigPlot等药物设计软件来进行虚拟筛选,通过自建的小型化合物库,虚拟筛选细菌RNA聚合酶抑制剂。本案例的设计目的是让学生熟悉如何从数据库选择合适的靶点作为研究对象,化合物库的构建,蛋白及小分子的预处理,以及AutoDockvina的对接流程,PyMOL和LigPlot的作图方法等,激发学生的学习兴趣,了解和熟练掌握通过虚拟筛选的手段从化合物库中发现新型活性先导化合物的方法。

1教学案例的设计

1.1软件介绍

AutoDock是由美国Scripps研究所的OIson小组开发的分子对接软件包[8-9]。AutoDock程序目前最新的版本为4.2.6。AutoDockvina是一个开源的分子对接程序[10],最初由OlegTrott博士在Scripps研究所的分子图形实验室设计和开发的。AutoDockvina与AutoDock相比,前者大大提高了准确性,而且AutoDockvina可以利用系统上的多个CPU或CPU内核来显著缩短运行时间。AutoDockvina是目前最为广泛使用的虚拟筛选软件之一。PyMOL是一款经典的三维分子结构显示软件[11-12]。PyMOL已广泛应用于正式发表的科学研究文献中的三维分子结构显示。本教学案例使用的PyMOL版本为1.7.4。LigPlot是一款针对学术用户的软件[13],是免费、开源二维的结构显示软件,可自动生成二维配体-蛋白质相互作用图,最新版本是LigPlot+v2.2,能够链接到PyMOL软件。1.2AutoDock分子对接方法的建立1.2.1小分子化合物库的建立在本次教学案例中,首先安排学生在课前进行化合物库的建立。从文献中收集具有抗菌活性的中药单体化合物,先使用ChemDraw软件绘制出单体化合物的结构,再用Caculations-MM2-MinimizeEnergy模块对小分子化合物进行能量优化,并保存成mol2格式。用raccoon软件将mol2格式批量转换为pdbqt格式,创建一个包含5个化合物(化合物1-5)的小型数据库。1.2.2蛋白的预处理从PDB数据库获取细菌RNA聚合酶三维结构(PDBID:3DXJ)。利用PyMOL1.7.4软件,保留蛋白的C和D链,除去其他链,除去水分子(保留D链的H2O1539),除去金属离子,将处理好的蛋白保存为3dxjp.pdb。在AutoDock4.2软件中,将3dxjp.pdb添加氢原子,计算电荷,设置原子类型为AssignAD4type,并保存为3dxjp.pdbqt格式。1.2.3配体小分子的预处理利用PyMOL软件,从蛋白晶体复合物中提取出共晶配体NE6,并保存为NE6.pdb格式。将NE6.pdb在Chem3DPro14.0中使用MM2力场进行构象优化,保存为pdb格式。在AutoDockTools中的Ligand模块打开此配体,在Ligand模块中选择ChooseTorsions弹出的TorsionCount对话框,并保存为NE6.pdbqt文件。1.2.4设置Grid参数打开3dxjp.pdbqt和NE6.pdbqt,设置Grid参数,以蛋白的活性位点(centerx=-11.5,centery=58.49,centerz=4.587)为中心;设置x=50,y=50,z=50,xyz分别表示在各方向上的格点的数量;Spacing设置为0.375Å,设置完成后保存为grid.gpf文件。1.2.5设置Docking参数在AutoDockTools中的Docking模块打开保存好的两个pdbqt文件,SearchParameters选择遗传算法(GeneticAlgorithm),NumberofGARuns设置为10,MaximumNumberofevals设置为250000,其他参数为默认,输出文件保存为dock.dpf文件。1.2.6执行运算图1对接配体和共晶配体OLF的构象对比图,绿色为对接配体,紫色为共晶配体OLFFig.1Conformationofthedockedligandandco-crystallizedligand.Thegreenrepresentedthedockedligand,andpurplerepresentedco-crystallizedligandOLF在键盘运行win+R,输入cmd命令,使用cd命令进入工作文件夹。输入autogrid4-grid.gpf-lgrid.glg运行程序,输出grid.glg文件。再输入autodock4-pdock.dpf-ldock.dlg,输出dock.dlg文件。在AutoDockTools的Analyze板块中对dlg格式文件进行分析,保存最优构象。为检查Autodock4.2参数设置的合理性,将共晶配体NE6与蛋白3DXJ按上述参数设置进行分子对接,然后把对接前后的NE6的结构相比较。在VMD1.9.3软件中,对NE6和保存的最优构象计算均方根偏差(RMSD)值,如果RMSD值<2Å,说明建立的分子对接模型可靠性较高。也可以利用PyMOL软件比较对接前后的共晶配体的构象(图1),如果叠合度很高,也能说明对接模型的可靠性较高。

1.3AutoDockvina虚拟筛选

根据以上建立的分子对接模型,将对接参数写进AutoDockvina的配置文件conf.txt,这个文件里面写上用于对接的详细参数。然后通过win+R进入运行窗口,输入“cmd”进入命令行窗口,进入AutoDockvina工作文件夹。输入“vina--configconf.txt”,回车,运行该程序完成对接的虚拟筛选。所得对接结果如表1所示。结果显示,化合物4与靶标蛋白3DXJ的亲和力(Affinity=-9.8kcal/mol)最强,而其他化合物对靶标的亲和力较弱(>-7.0kcal/mol)。

1.4虚拟筛选结果分析

本教学案例中,我们利用PyMOL和LigPlot软件这2种经典的分子结构显示软件,分析预测得到的活性最强的化合物4与靶标蛋白的相互作用模式。通过PyMOL的外部GUI窗口(ExternalGUI)File-Open打开AutoDock对接后产生的dlg文件,然后打开纯蛋白文件3dxyp.pdb文件,点击PyMOL的all,选择A(Action)>preset>ligandssites>cartoon。蛋白3DXJ与化合物的4三维作用模式如图2A所示。打开LigPlot程序,点击File>OpenPDBFile打开在PyMOL处理好的蛋白和最优构象的复合物pdb文件,并显示成2D作用模式图(图2B)。对接结果显示Ser1084、Gln1019、Gly620、Leu618等关键氨基酸分别与化合物4上与氮原子直接相连的羰基、羟基及六元环上氧原子存在氢键相互作用;而其他氨基酸如Val1466、Trp1038、Val1037、Glu1034、Leu619、Asn617、Lys621、Ile1467等与该化合物有疏水作用。

2教学效果及学生反馈

在实际的教学中,学生对受体蛋白的预处理和对接过程会遇到一些困难,老师会重点解答同学们的以下几个疑问:(1)为什么要对受体蛋白进行加氢处理?蛋白晶体复合物结构中通常会缺少氢原子的坐标,而氢原子尤其是极性氢原子对计算静电作用是必须的。因此,在利用AutoDock进行对接时,需要给蛋白加上氢原子,也可以利用PyMOL软件来快速完成这个操作,依次点选Edit-Hydrogen-Add-Polaronly,加上的氢原子会以白色短线形式出现。(2)可以通过几种途径来准备配体小分子?①利用ChemDraw软件准备配体小分子。如果是未有文献报道的小分子化合物,先在ChemDraw2D画好结构式,然后复制到ChemDraw3D做能量优化。能量优化步骤:Caculations-MM2-minimizeenergy-Run,然后File-Saveas-SYBYL2(*.mol2),留待在AutoDock中进一步处理备用。②利用PubChem数据库下载复杂分子。如果是已知的化合物,尤其一些结构比较复杂的分子,例如细菌RNA聚合酶抑制剂利福霉素(Rifamycin),如果我们还是用ChemDraw2D来画结构式,会很容易画错,所以建议大家直接登录PubChem数据库下载2D或者3D结构。那么怎样选择一个合适的蛋白作为研究对象呢?在实际的课堂教学中,我们一般会建议学生基于如下条件选取晶体结构:解析度尽可能高、尽可能未有氨基酸残基缺失或突变、优先选择人源、有文献报道的且带有共晶配体的复合物晶体等。总之,我们建议同学们在不知道怎么选蛋白作为研究对象的情况下,就多看文献找思路。(3)如何在分子模拟水平上验证分子对接结果的可靠性?如果已经有明确的共晶配体分子的晶体复合物作为研究对象,我们在建立分子对接模型用于虚拟筛选之前,必须进行晶体复合物重现性研究,即Re-dock研究。也就是要用复合物中的共晶配体作为配体小分子,在AutoDock中设置相关参数,对接以后得到的构象,再与对接前的原配体的构象进行比较,以RMSD值来评价两者之间相似度的差距。一般认为RMSD<2Å,才能说明对接后得到的构象与原配体差别较小,如果分子对接可以很好重现了复合物中蛋白与配体小分子的结合情况,即侧面证明了分子对接方法可靠性较高。本课程的授课对象为药学三年级的本科生,学生已学习过药物化学、生物化学、药理学等专业课程,具备一定的药学专业知识基础,也具有一定药学实验基础。但是,部分同学初次接触计算机辅助药物设计软件,专业外语的基础薄弱,导致在学习药物分子设计的软件过程中会遇到许多困难。通过对以上学情的分析,笔者在本案例的教学过程中,首先通过雨课堂的方式把相关药物分子设计的软件操作教程提前发送给学生,并录制软件的操作视频,让学生课前充分地熟悉软件的使用方法。在实际的课堂教学中,老师从小分子化合物库的构建及预处理,蛋白大分子的下载以及优化等最简单的步骤开始演示,对学生的疑问进行现场解答。鼓励学生自主学习与探索,采用小组交流讨论,鼓励同学之间互相帮助。通过这些举措,学生可快速学会软件的用法,显著提高了学生的积极性和学习兴趣。该教学案例的设计也融入药物设计学课程考核中,是重要的考核内容。药物设计学课程的成绩组成为:期评成绩=教学案例的课程作业+文献报告+课堂表现+PPT制作及讲解。我们要求学生在实施这个教学案例后,把分子对接的结果发送给老师,以及通过PyMOL和LigPLot软件制作小分子与蛋白靶标的相互作用图,通过PPT制作与讲解,鼓励和引导学生走上讲台,加深对知识点理解的同时,培养了学生分析解决问题能力、团队协作能力以及表达能力。在课后调研过程中,学生均表示了对药物设计软件的欢迎,也有同学表示在老师课堂演示之后,分子对接实践由学生自行开展,对软件的安装、熟悉和使用需要花费一定的时间精力,部分学生由于计算机基础较弱,学习具体操作存在一定困难,而被卡在某操作环节,这个时候更加需要老师和同学帮助其解决技术难关。调研结果同时表明,学生很喜欢这种极具实战性的药物分子虚拟筛选的案例课程,也希望学校多配置高性能计算机,多开展专门的药物设计软件的系统培训,从而帮助我校药学专业学生更好地熟悉软件的使用,提高学生药物分子设计和虚拟筛选的能力。

3结语

本案例已运用于桂林医学院药物设计学课程的实际教学中,并取得了良好的教学效果。本教学案例设计的内容包括化合物库的构建、靶蛋白的下载与预处理、小分子的结构获取及优化、AutoDock分子对接模型的建立,AutoDockvina虚拟筛选,以及利用PyMOL、LigPlot进行结果分析等实验内容。通过本案例虚拟筛选的练习,学生们可以掌握基于免费的药物设计软件AutoDockvina来进行虚拟筛选,学会利用PyMOL和LigPlot软件分析靶标蛋白与小分子相互作用模式,掌握计算机辅助辅助药物设计的研究方法,为药学专业本科生进行先导化合物的发现提供新的思路和手段,提升学生的药物分子设计能力。总之,该教学案例的设计,加深学生对虚拟筛选的认识,并极大地提升了学生学习药物分子设计的兴趣,为未来从事药物分子设计研究打下坚实基础。

作者:谭相端 吕良 单位:桂林医学院药学院